
COMP∗

User Guide

Răzvan Diaconescu and Ionuț Țuțu

Simion Stoilow Institute of Mathematics
of the Romanian Academy, Romania

razvan.diaconescu@imar.ro, ionut.tutu@imar.ro

1 Overview
Comp is a specification language and analysis tool that supports the formal devel-
opment of component-based systems in a modular, hierarchical fashion: complex
systems are built by putting together subsystems/components, which may have their
own components, and so on. This allows for a powerful and efficient verification
method, guided by the hierarchical structure of the system under consideration.

From a foundational perspective, comp embodies the behavioural-abstraction
paradigm, which gives prominence to the observable behaviour of systems over their
structural representations or the functions that they may perform. The mathematical
roots of the language belong to the area of hidden algebra. In particular, the
main programming units of comp, called object modules, consist of hidden-algebra
declarations of data or state sorts, data operations, actions, observations, and axioms
that bring everything together and define the semantics of programs. Structured
specifications are obtained through parallel, synchronized, or indexed compositions
of object modules – a defining feature of comp – which enable the hierarchical
construction of larger and more complex objects from simpler components.

In this document, we go over the steps needed in order to install and use the
tool, illustrate the way it supports the specification of component-based systems –
including various commands for inspecting specifications and for working with local
files – and demonstrate the formal-verification capabilities of comp.

∗This work was supported by a grant of the Romanian Ministry of Education and Research, CCCDI
– UEFISCDI, project number PN-III-P2-2.1-PED-2019-0955, within PNCDI III.

1

razvan.diaconescu@imar.ro
ionut.tutu@imar.ro


2 Obtaining and running COMP
Comp is part of SpeX, a multi-language formal-specification environment written in
Maude that supports various specification languages by means of a generic notion
of information processor – one for each language integrated into the environment.
Among the language processors that are currently part of SpeX, comp is one of the
most advanced, taking full advantage of the environment’s computational capabilities.

Therefore, in order to use comp, both Maude and SpeX need to installed.
gnu/Linux and macOS binaries of Maude are available at its GitHub site. To
be able to run the latest distributions of SpeX and comp, we recommend installing
a recent version of Maude: 3.2 or newer. To install Maude, it suffices to:

1. Extract the files in the downloaded zip archive to a convenient directory; this
can be done, for instance, on a gnu/Linux machine, from a terminal, using a
shell like Bash, through the following command:

sudo unzip Maude-3.2.1-linux.zip -d /usr/local/maude-3.2.1/

2. Make a discoverable link to the Maude executable; for example, provided that
/usr/local/bin/ is in the PATH of directories where executable files are located:

sudo ln -s /usr/local/maude-3.2.1/Linux64/maude.linux64 \
/usr/local/bin/maude

3. Set the MAUDE_LIB environment variable appropriately (to the directory where
prelude.maude and other Maude files from the zip archive were extracted):

export MAUDE_LIB=/usr/local/maude-3.2.1/Linux64

To make this setting persistent, you can add the above line to your .bashrc
file (or to a similar startup file like, say, .zshrc in case you are using Z shell).

With Maude installed, you can proceed to downloading the latest distribution of
SpeX from its GitLab site. You can install SpeX using the following commands:

4. Extract the files in the downloaded archive:

tar -xzf spex-22.09.tar.gz

2

https://gitlab.com/ittutu/spex
https://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://github.com/SRI-CSL/Maude/releases
https://gitlab.com/ittutu/spex/-/raw/main/dist/spex-22.09.tar.gz


5. Configure, make, and install SpeX (from its source-tree directory):

cd spex-22.09/ && ./configure && make && sudo make install && cd -

You may now safely remove the downloaded archive and the directory spex-22.09.
The SpeX libraries should be installed to /usr/local/share/spex/ and a shell script
at /usr/local/bin/spex should be available in order to launch the environment.

The comp interpreter can be installed in a similar manner to SpeX. Once you
download the latest distribution of the tool from its GitLab site, comp can be
installed using the following commands:

6. Extract the files in the downloaded archive:

tar -xzf comp-22.09.tar.gz

7. Configure, make, and install comp (from its source-tree directory):

cd comp-22.09/ && ./configure && make && sudo make install && cd -

Once more, similarly to the installation of SpeX, you may remove the downloaded
archive and the directory comp-22.09. The comp libraries should be installed to
/usr/local/share/comp/ and a shell script at /usr/local/bin/comp should be available
in order to launch the tool – independently from SpeX.

You can now run comp from the command line to be greeted with the follow-
ing message. Any subsequent user input (declarations of system specifications or
commands) under the COMP > prompt is meant to be handled by the comp interpreter.

3

https://gitlab.com/ittutu/comp/-/raw/main/dist/comp-22.09.tar.gz


3 Writing COMP specifications
A comp specification consists of a series of modules that introduce either data
types or behavioural objects and are interrelated through various data-importation
and object-composition operators. The full specification capabilities of the tool are
presented in the language-definition document of comp, which is available at the
comp homepage. Here, we focus instead on some of the main specification features
of the language. We introduce them by means of a simple example of a wrist watch.

The object we have in mind has states that may change under three possible
actions: (a) tick, which governs the inner workings of the watch; (b) inc-min, which
indicates that one of the push-buttons of the watch has been pressed in order to adjust
its minute hand; and (c) inc-hour, which indicates that one of the push-buttons of
the watch has been pressed in order to adjust its hour hand. Furthermore, for each
state, there are three observations we can make, namely the positions of the second,
minute, and hour hands of the watch. The aim is to design/specify a wrist watch
where none of the two push-buttons interfere with timekeeping.

Data-type declarations
First, we specify what kind of values can be displayed by the wrist watch. These are
natural numbers that the watch increments – while it runs – up to specific bounds:
23 in the case of the hour indicator, 59 for the minute and second indicators. We
capture displayed values using a binary operation on natural numbers, inc-or-reset,
that returns either the successor of its first argument when, by doing so, it yields a
value less than its second argument (as in modular arithmetic), or 0 otherwise.

To code such an operation, we begin by loading the file Nat.comp, which provides
basic support for working with natural numbers and is available in the comp library
of examples. We load the file by typing the following command at the comp prompt.

load Nat.comp

For this to succeed, a copy of the file needs to be saved in the working directory
where comp has been launched; alternatively, you can provide an explicit path
(relative to the working directory, or absolute) to Nat.comp.

We specify the values displayed by the wrist watch by declaring a new data-type
module, called DISPLAY/VALUES, as follows (the code can be typed directly at the
comp prompt or to an external file that is then loaded into comp):

data DISPLAY/VALUES is

As it stands, the module declaration is incomplete. We proceed by importing the

4

http://www.imar.ro/~diacon/COMPproject/doc/COMP-LangDef.pdf
http://www.imar.ro/~diacon/COMPproject/COMP.html
https://gitlab.com/ittutu/comp/-/tree/main/ex
https://gitlab.com/ittutu/comp/-/tree/main/ex


module NAT/ORD, which provides knowledge about natural numbers and their typical
order relations (needed for reasoning about upper bounds).

protecting NAT/ORD .

The import is protecting (as opposed to extending or including), meaning that
none of the declarations that follow can alter the data types in NAT/ORD in any way.
Most data-type imports are of this kind.

We can now declare the inc-or-reset operation and define it using two axioms:
one matching the case where the displayed value (first argument) can be safely
incremented without exceeding the bound (second argument); and one matching the
case where the displayed value needs to be reset to 0.

op inc-or-reset : Nat Nat -> Nat .
vars N, B : Nat .
ax inc-or-reset(N, B) = s N if s N < B = true .
ax inc-or-reset(N, B) = 0 if s N < B = false .

Besides inc-or-reset, we also introduce constants used in the later part of the
specification of the wrist watch to refer to certain natural numbers, whose normal-form
representations are otherwise too cumbersome to write – obtained from 0 through
repeated applications of the successor operation. To that end, we need the addition
and multiplication of natural numbers, which we import from NAT/MULTIPLICATION.

protecting NAT/MULTIPLICATION .
ops 2, 5, 12, 24, 58, 59, 60 : () -> Nat .
ax 2 = s s 0 .
ax 5 = s s s s s 0 .
ax 12 = (2 * 5) + 2 .
ax 24 = 2 * 12 .
ax 58 = (24 + 5) * 2 .
ax 59 = s 58 .
ax 60 = 5 * 12 .

We signal the completion of the data-type module by typing enddata at the comp
prompt. In response, the interpreter prints an appropriate message (Loading module)
indicating that the module DISPLAY/VALUES has been loaded successfully and can now
be used in subsequent declarations and/or tests, proofs, etc.

enddata

5



We can check the loaded definition of DISPLAY/VALUES (or of any other data-type
or behavioural-object module) by asking the interpreter to print it on the screen.

show module DISPLAY/VALUES

Moreover, we can inspect the sorts, operations, and axioms declared in DISPLAY/VALUES,
and also test the definition of inc-or-reset using term rewriting. For example:

open DISPLAY/VALUES
list operations
reduce inc-or-reset(2, 60) .
reduce inc-or-reset(59, 60) .

close

Here, the first command opens the module, and in this way instructs the interpreter
to expect a different kind of input, where commands, e.g., are specific to data-type
modules, and where the non-logical symbols used are those declared in DISPLAY/VALUES.
The two reduce commands should return 3 – i.e., s s s 0 – and 0, respectively. Finally,
we close the opened module to allow for further module declarations.

Behavioural-object declarations
The wrist-watch system we intend to specify consists of two kinds of counters as
subobjects. More precisely, it consists of one counter up to 24 (for hours) and two
counters up to 60 (used for minutes and seconds). We introduce these as objects with
explicit states, referred to by the sort Display, only one action (for incrementing the
counter) and one observation (retrieving the value of the counter in a given state).

bobj UP-TO-24-COUNTER with states Display is
protecting DISPLAY/VALUES .
obs value : Display -> Nat .
act inc_ : Display -> Display .
ax value(inc X:Display) = inc-or-reset(value(X:Display), 24) .

endbo

bobj UP-TO-60-COUNTER with states Display is
protecting DISPLAY/VALUES .
obs value : Display -> Nat .
act inc_ : Display -> Display .
ax value(inc X:Display) = inc-or-reset(value(X:Display), 60) .

endbo

6



These are base objects – i.e., without components – hence, according to the
specification methodology of comp (see the language-definition document) we need
to axiomatize how the observable value of a counter changes under the effect of
the inc action. That is the role of the two equations declared in the modules
UP-TO-24-COUNTER and UP-TO-60-COUNTER. The only difference between them is that
the upper bound used for inc-or-reset is 24 in one case and 60 in the other.

We are now ready to specify the watch as a compound object with three counters:

bobj WATCH is
syncing (UP-TO-24-COUNTER as HOUR)

and (UP-TO-60-COUNTER as MINUTE)
and (UP-TO-60-COUNTER as SECOND) .

We use the as construct to give names to the three component objects of WATCH – i.e.,
within WATCH, they are referred to using the names HOUR, MINUTE, and SECOND; and we
synchronize the three components, instead of using a simple parallel composition,
because incrementing the second or the minute counters may trigger, when their
values are reset to 0, an automatic incrementation of the minute or hour counters.

The states of the object WATCH are in this case implicit because we haven’t included
any with states declaration. We can refer to them using the sort State (introduced
automatically by the interpreter), as in the following declaration of variables:

var X : State . vars H, M, S : Nat .

The main action of the object WATCH, which captures the operation of the inner
ticking mechanism of the wrist watch, is defined as follows:

act tick_ : State -> State .
ax HOUR/Display(tick X) = inc HOUR/Display(X)
if MINUTE/value(X) = 59 and SECOND/value(X) = 59 .

ax HOUR/Display(tick X) = HOUR/Display(X)
if not MINUTE/value(X) = 59 or not SECOND/value(X) = 59 .

ax MINUTE/Display(tick X) = inc MINUTE/Display(X)
if SECOND/value(X) = 59 .

ax MINUTE/Display(tick X) = MINUTE/Display(X)
if not SECOND/value(X) = 59 .

ax SECOND/Display(tick X) = inc SECOND/Display(X) .

In line with the specification methodology of comp, we need to axiomatize how
the action tick affects the three counter components of the watch. This is achieved
through a series of equations (some of which are conditional) where the compo-
nents of WATCH are accessed using the projections HOUR/Display, MINUTE/Display, and
SECOND/Display – which are generated automatically by the interpreter.

7

http://www.imar.ro/~diacon/COMPproject/doc/COMP-LangDef.pdf


The remaining two actions, used for setting the watch by separately adjusting
(incrementing) the minute and the hour indicators, are defined as follows:

act inc-min_ : State -> State .
ax HOUR/Display(inc-min X) = HOUR/Display(X)
if not MINUTE/value(X) = 59 .

ax MINUTE/Display(inc-min X) = inc MINUTE/Display(X) .
ax HOUR/Display(inc-min X) = inc HOUR/Display(X)
if MINUTE/value(X) = 59 .

ax SECOND/Display(inc-min X) = SECOND/Display(X) .

act inc-hour_ : State -> State .
ax inc-hour X = inc X :: HOUR .

Note the use of the :: syntax in the axiomatization of inc-hour. This indicates that
only the hour value of the state X is updated according to the action inc from the
component HOUR, which is of kind UP-TO-24-COUNTER. No other component is affected.

We conclude the definition of WATCH with the declaration of a macro operation
(which we write H : M : S) that makes it easier to refer to watch states with specific
hour (H), minute (M), and second (S) values when performing tests or doing proofs.

op _:_:_ : Nat Nat Nat -> State .
ax value(HOUR/Display(H : M : S)) = H .
ax value(MINUTE/Display(H : M : S)) = M .
ax value(SECOND/Display(H : M : S)) = S .

endbo

Similarly to data-type modules, we can open object modules in order to inspect
their sorts, operations, axioms, and to perform tests by term rewriting. In addition,
for object modules, we also gain access to the states, projections, actions, and
observations that are automatically generated by the interpreter when declaring
compound objects. We can execute, for instance, the following commands to get all
the actions and observations of the object WATCH.

open WATCH
list State actions
list State observations

close

This yields, besides the actions tick, inc-min, and inc-hour that we have explicitly
declared in WATCH, three other implicit actions and observations, which are auto-
matically generated by the interpreter; each of them matches an action (inc) or an
observation (value) from one of the three components of the watch.

8



4 Verifying properties
Comp supports the verification of behavioural properties of objects through a check
command, which becomes available once an object module is opened for verification.
The most general form of the command is:

check ⟨property⟩ [forall ⟨pre-constr⟩] [given ⟨post-constr⟩] .

where ⟨property⟩ is the property (behavioural equality) to be verified, and ⟨pre-constr⟩
and ⟨post-constr⟩ are optional constraints on the variables used in ⟨property⟩ and on
the variables generated during the automatic verification (for indexed compositions),
respectively. Those constraints are arbitrary sentences; they may contain strict or
behavioural equalities, negations, conjunctions, and so on.

To illustrate the verification process, we consider the following property of WATCH:

Pressing the minute-incrementation pusher does not interfere with the
internal ticking of the watch.

Formally, what we need to verify is that the behavioural equality

tick inc-min (H : M : S) ∼ inc-min tick (H : M : S)

holds (i.e., it is semantically entailed by the specification) for all possible values H, M,
and S of the hour, minute, and second counter, respectively, of the watch.

We begin by opening the object module WATCH and by adding (using the command
let) two lemmas on natural numbers that we use during the verification.

open WATCH
let ax not M:Nat = N:Nat if M:Nat < N:Nat = true [label: Lemma-1.1] .
let ax M:Nat < s N:Nat = true if M:Nat < N:Nat = true [label: Lemma-1.2] .

The first one states that the ‘less than’ relation on natural numbers is irreflexive; and
the second that increasing an upper bound of a number yields another upper bound.

Next, we let <58 and <59 be any two natural numbers that are less than 58 and
less than 59, respectively. We need these during checking in order to account for
situations where the second or the minute indicator can be safely updated without
triggering an update of the minute or hour indicator. Similarly to the two lemmas
above, we introduce the two constants and their defining properties using let.

let ops <58, <59 : () -> Nat .
let ax <58 < N:Nat = true if N:Nat = 58 .
let ax <59 < N:Nat = true if N:Nat = 59 .

9



With these preparations in place, we can verify that there is no interference between
inc-min and tick simply by invoking check; but we must still distinguish several
cases, depending on whether M is at most 57, or 58, or 59, and also on whether S is
at most 58, or 59. The final form of the check command is as follows:

check tick inc-min (H:Nat : M:Nat : S:Nat)
~ inc-min tick (H:Nat : M:Nat : S:Nat)

forall (M:Nat = <58 or M:Nat = 58 or M:Nat = 59)
and (S:Nat = <59 or S:Nat = 59) .

If all goes well (as it is the case in this example), we get a successful message of
the form: Proved! The property holds. Otherwise, the interpreter provides a proof
trace that can be used for debugging purposes, which we discuss in the next section.

To get a more in-depth view of the verification process, we can ask the interpreter to
print how many equalities are examined during an execution of check – that is because,
according to the verification methodology of comp, a behavioural equality between
states of a compound object is often component-wise decomposed into behavioural
equalities between the projections of those states; moreover, a behavioural equality
between states of a base object is also decomposed into a sequence a strict equalities.

show check stats

Executing the above check command once more, we notice that 6 behavioural
equalities are examined at the top level of the object hierarchy (because we consider
three possible instances of the variable M and two possible instances for S) and 18
behavioural equalities are examined at the base level (because each of the 6 top-level
equalities is decomposed along the projections HOUR/Display, MINUTE/Display, and
SECOND/Display into three other equalities, one for each component of WATCH).

The scope of show check stats is local to the last opened module and it ends once
the module is closed. Other opened modules are unaffected by it. You can also
restore the original abridged check messages using the command hide check stats.

close

10



5 Debugging facilities
Consider a second property of the wrist watch, namely that pressing the hour-
incrementation pusher does not interfere either with the internal ticking of the watch.
Before anything else, we attempt to check the property directly:

open WATCH
check tick inc-hour (H:Nat : M:Nat : S:Nat)

~ inc-hour tick (H:Nat : M:Nat : S:Nat) .

The status of this verification is Open: neither proved nor disproved. The interpreter
provides a proof trace to indicate what went wrong. In this case, the trace consists
of two behavioural equalities (one for the top level of the object hierarchy, one for
the lower level of the hierarchy) and one final strict equality:

tick inc-hour(H:Nat : M:Nat : S:Nat)
~?~ inc-hour tick(H:Nat : M:Nat : S:Nat)

HOUR/Display(tick inc-hour(H:Nat : M:Nat : S:Nat))
~?~ HOUR/Display(inc-hour tick(H:Nat : M:Nat : S:Nat))

value(HOUR/Display(tick inc H:Nat : M:Nat : S:Nat :: HOUR))
=?= inc-or-reset(value(HOUR/Display(tick(H:Nat : M:Nat : S:Nat))), s...)

We notice that the HOUR projection of the state in the left-hand side of the original
equality cannot be evaluated. That is because, based on the axiomatization of
HOUR/Display(tick ...), the prover cannot determine whether the minute and second
indicators point to 59. Hence, we split the verification task in order to account for
situations where the values of those indicators are at most 58, or 59.

let op <59 : () -> Nat .
let ax <59 < N:Nat = true if N:Nat = 59 .
check tick inc-hour (H:Nat : M:Nat : S:Nat)

~ inc-hour tick (H:Nat : M:Nat : S:Nat)
forall (M:Nat = <59 or M:Nat = 59)

and (S:Nat = <59 or S:Nat = 59) .

The status of the verification is still Open, but for a different reason: the prover
cannot infer that <59 is distinct from 59. We address this limitation by adding the
irreflexivity of the ‘less than’ relation as a lemma – just like in the previous section.

let ax not M:Nat = N:Nat if M:Nat < N:Nat = true [label: Lemma-2.1] .

11



Running the last check command once more gives us a positive result: the property
holds. So, we have seen how proof traces can help us guide the verification tool using
case analysis or to extend its knowledge base with lemmas. In the same manner,
proof traces of desirable properties that cannot be proved or are shown not to hold
can also be used to discover faults in the original design/specification.

Assume, for example, an alternate (faulty) design of adjusting the minutes of the
watch, with only one equation instead of the four original ones:

ax inc-min X = inc X :: MINUTE .

Under this formalization, the property analysed in Section 4 no longer holds. Instead,
running the same proof steps as before gives us the following proof trace:

tick inc-min(H:Nat : 58 : 59)
~?~ inc-min tick(H:Nat : 58 : 59)

HOUR/Display(tick inc-min(H:Nat : 58 : 59))
~?~ HOUR/Display(inc-min tick(H:Nat : 58 : 59))

inc-or-reset(H:Nat, 24) =?= H:Nat

Clearly, the last equality does not hold, which is because applying inc-min after
tick in the state (H:Nat : 58 : 59) does not update the value of the hour indicator
– although it should. This is a consequence of erroneously defining inc-min X as
inc X :: MINUTE, which is local to the component MINUTE and has no effect on HOUR.

12



6 Troubleshooting
The comp interpreter analyses user input in a modal manner, meaning that the
notion of valid input varies depending on the context in which that input is evaluated:
at system-level, within the declaration of a module (and in that case, it depends
on the kind of module being declared), or after opening a module. This is a key
feature of comp that the interpreter inherits from SpeX, the formal-specification
environment where comp is implemented.

When the input is not adequate to the current context, or if it contains errors, the
interpreter signals the issue through an appropriate warning message; moreover, it
indicates where the error occurs (at the standard input / command line, or in a file,
and at which line), and what is causing it. For example, trying to load an inexistent
file (WATCH.comp as opposed to Watch.comp) produces the message:

Warning: <standard input>, line 1: No such file or directory: WATCH.comp

And trying to show the definition of the module WATCH immediately after the failed
load command ends with:

Warning: <standard input>, line 2: no such module: WATCH

Similarly, the command list State actions is not recognized at system-level or after
opening a data-type module. Even after opening an object module, the interpreter
still checks that State is a valid state sort. Executing the command after opening the
module UP-TO-24-COUNTER, for example, where states have the sort Display, produces:

Warning: <standard input>, line 7: State is not a state sort

However, list Display actions is successful in this context and returns, as expected:

act inc_ : Display -> Display

When parsing terms, axioms, properties, constraints, etc., where the syntax is user
defined and depends on the algebraic signature of the current module, the comp
interpreter also points to the most likely cause of error within the user input. For
instance, if we execute, after opening the module WATCH, the command

check tick inc-min (H : M:Nat : S:Nat) ~ inc-min tick (H : M:Nat : S:Nat) .

without specifying that H is a variable, and without declaring it as a constant
beforehand, we get, of course, a parsing error:

Warning: <standard input>, line 11: unexpected token: H
|
| check tick inc-min (H <--- here
|________________________________

13



7 List of COMP commands

System-level commands
load ⟨file-name⟩ Loads the contents of a specified file.

eof Prevents the interpreter from reading any further from the current input stream
or file. If that stream is the standard input / command line, then the command
also terminates the execution of the interpreter.

quit Terminates the execution of the interpreter.

Top-level commands
list modules Lists the names of all modules that are currently recorded into the

comp database.

list data modules Lists the names of all data-type modules that are currently
recorded into the comp database.

list bobj modules Lists the names of all behavioural-object modules that are
currently recorded into the comp database.

show module ⟨module-name⟩ Displays the recorded definition of a given module.

list opened modules Lists the names of all opened modules.

open ⟨module-name⟩ Opens a given module and changes the input-evaluation con-
text according to the kind and contents of that module. If the module has
already been opened (without being closed in the meantime), then the command
brings the input-evaluation context of that module back into foreground.

close Closes the most recently opened module and restores the previous input-
evaluation context.

Commands available after opening a data-type module
list declarations Lists all the declarations in the module: sorts, operations,

axioms.

list sorts Lists all sorts declared in the module.

list operations Lists all operations declared in the module.

list axioms Lists all axioms declared in the module.

14



let ⟨declaration⟩ . Extends the last opened module with a given declaration.

reduce ⟨term⟩ . Reduces the given term according to the axioms in the module.

Commands available after opening an object module
list declarations Lists all the declarations in the module: data-type sorts, state-

sorts, operations, projections, actions, observations, etc.

list sorts Lists all data-type sorts declared in the module.

list states Lists all state sorts declared in the module.

list data operations Lists all data operations declared in the module.

list ⟨state⟩ projections Lists all projections of a given state sort declared in the
module.

list ⟨state⟩ actions Lists all actions of a given state sort declared in the module.

list ⟨state⟩ observations Lists all observations of a given state sort declared in
the module.

list axioms Lists all axioms declared in the module.

let ⟨declaration⟩ . Extends the last opened module with a given declaration.

reduce ⟨term⟩ . Reduces the given term according to the axioms in the module.

solve ⟨query⟩ . Finds solutions (answer substitutions) to a given query.

check ⟨property⟩ [forall ⟨pre-constr⟩] [given ⟨post-consts⟩] . Verifies a given prop-
erty under (optional) pre-constraints on the variables used in the property and
post-constraints on the variables generated during the verification process.

show/hide check stats Determines whether the number of equalities examined
during an execution of check is printed together with the outcome of check.

Comments
`` ⟨comment⟩ Indicates the beginning of a line comment. It can be used anywhere

in the input stream and is ignored by the interpreter.

* ⟨comment⟩ Indicates the beginning of an echoed line comment. It can be used
only at the beginning of a new line, and the comment is displayed (these are
useful, e.g., when loading proof scores from file).

* (⟨comment⟩) Similar to * ⟨comment⟩, but the comment may span multiple lines.

15


	Overview
	Obtaining and running COMP
	Writing COMP specifications
	Verifying properties
	Debugging facilities
	Troubleshooting
	List of COMP commands

