
SpeX: a rewriting-based
formal-specification environment?

Ionuţ Ţuţu

Simion Stoilow Institute of Mathematics
of the Romanian Academy, Romania

ittutu@gmail.com

The development of new formal-specification languages is often a necessary
yet challenging, even arduous, task. Declarative logical frameworks, such as lf [5],
mmt [8], and rl [6], facilitate this process by means of highly expressive meta-
languages and tools through which a wide array of logical systems and calculi can
be represented and reasoned about. This representational approach makes it easy
to provide generic tool support for newly developed formalisms, but it requires
both language developers and end-users to be familiar with the logical framework
of choice. On the other hand, systems such as the K framework [9] (which deals
primarily with the design and analysis of programming languages) and Hets [7]
(the Heterogeneous Tool Set, which provides an integrating framework of multiple
logical systems, together with proof tools and logic translations) feature a clear
separation between the meta-language utilized by system developers and the
specification language and tools offered to end-users.

In this work, we explore a similar route to that of K and Hets in order to
develop a rewriting-based environment, called SpeX, for working with formal spec-
ifications. This includes, for example, tool support for parsing and for analysing
specifications, as well as automatically generated interpreters. However, unlike
K, the environment we propose targets specification languages and is inherently
heterogeneous; and unlike Hets, for which specifications are built over logical
systems formalized as institutions [3] by means of a fixed set of structuring
constructs [10], SpeX admits a much weaker notion of ‘language’, enabling us
to capture, for instance, comorphisms of structured institutions [11] where the
structuring mechanisms can change as well along language translations.

Despite these small advancements, the basic functionality of SpeX is modest
compared to any of the tools and frameworks mentioned above. Its main asset
is the environment’s potential to be easily extended in order to accommodate
new specification languages or features, many of which may be experimental.
That is, the purpose of SpeX is distinctly academic, aiming to help bridge the
gap between the theory and practice of formal specification and verification by
providing researchers in the area with an environment that encourages prototyping
and testing ideas and techniques even from early stages of development. To that
end, we introduce a suite of software libraries, all implemented in Maude [1], that
support the integration of new formal-specification languages.
? This work was supported by a grant of the Romanian Ministry of Education and Re-
search, CCCDI – UEFISCDI, project number PN-III-P2-2.1-PED-2019-0955, within
PNCDI III.



2 Ionuţ Ţuţu

From an architectural standpoint, SpeX consists of a small supervisory kernel
that manages input/output operations and, most importantly, hosts a number of
information processors – one for each specification language that is integrated
into the environment. Some processors are concrete, pertaining to a given logical
system (say, equational or first-order logic), while others are generic, allowing
various combinations of specification-building operators to be defined on top of
base logical systems that meet certain requirements. Therefore, for any instance
of SpeX, the capabilities of the environment are dictated by the processors and
corresponding languages it hosts. At most one of those processors can actively
take part in a user interaction at a given time, and the active processor may
change as a result of the interaction, hence SpeX may react differently (even to
the same input) depending on which processor is currently selected.

To illustrate the approach and the steps needed in order to extend the
environment, we consider a new language based on hidden algebra [4] that
allows for the specification of hierarchical compositions of behavioural objects [2].
This includes the development of new parsers and analysis tools for hidden-
algebra declarations and for hierarchical compositions, as well as preliminary
proof-theoretic support, all of which are integrated within SpeX.

References
1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,

C.L. (eds.): All About Maude – A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic, Lecture Notes in
Computer Science, vol. 4350. Springer (2007)

2. Diaconescu, R.: Behavioural specification for hierarchical object composition. Theo-
retical Computer Science 343(3), 305–331 (2005)

3. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. Journal of the ACM 39(1), 95–146 (1992)

4. Goguen, J.A., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1),
55–101 (2000)

5. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. Journal of
the ACM 40(1), 143–184 (1993)

6. Martí-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework.
In: Meseguer, J. (ed.) First International Workshop on Rewriting Logic and its
Applications, WRLA 1996. Electronic Notes in Theoretical Computer Science,
vol. 4, pp. 190–225. Elsevier (1996)

7. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set (Hets).
In: Beckert, B. (ed.) Proceedings of 4th International Verification Workshop in
connection with CADE-21. CEUR Workshop Proceedings, vol. 259. CEUR-WS.org
(2007)

8. Rabe, F., Kohlhase, M.: A scalable module system. Information and Computation
230, 1–54 (2013)

9. Rosu, G.: Matching logic. Logical Methods in Computer Science 13(4) (2017)
10. Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information

and Computation 76(2/3), 165–210 (1988)
11. Ţuţu, I.: Comorphisms of structured institutions. Information Processing Letters

113(22-24), 894–900 (2013)


