
Preface

This is a book about doing model theory without an underlying logical system. It teaches
us how to live without concrete models, sentences, satisfaction and so on. Our approach
is based upon the theory of institutions, which has witnessed a vigorous and systematic
development over the past two decades and which provides an ideal framework for true
abstract model theory. The concept of institution formalizes the intuitive notion of logical
system into a mathematical object. Thus our model theory without underlying logical
systems and based upon institution theory may be called ‘institution-independent model
theory’.

Institution-independent model theory has several advantages. One is its generality,
since it can be easily applied to a multitude of logical systems, conventional or less con-
ventional, many of the latter kind getting a proper model theory for the first time through
this approach. This is important especially in the context of the recent high proliferation
of logics in computing science, especially in the area of formal specification. Then there
is the advantage of illuminating the model theoretic phenomena and its subtle network
of causality relationships, thus leading to a deeper understanding which produces new
fundamental insights and results even in well worked traditional areas of model theory.

In this way we study well established topics in model theory but also some newly
emerged important topics. The former category includes methods (in fact much of model
theory can be regarded as a collection of sometimes overlapping methods) such as (el-
ementary) diagrams, ultraproducts, saturated models and studies about preservation, ax-
iomatizability, interpolation, definability, and possible worlds semantics. The latter cat-
egory includes methods of doing model theory ‘by translation’, and Grothendieck insti-
tutions, which is a recent successful model theoretic framework for multi-logic hetero-
geneous environments. The last two chapters (14 and 15) digress from the main topic of
the book in that they present some applications of institution-independent model theory
to specification and programming and Chap. 13 shows how to integrate proof theoretic
concepts to institution-independent model theory (including a general approach to com-
pleteness).

This book is far from being a complete encyclopedia of institution-independent
model theory. While several important concepts and results have not been treated here, we
believe they can be approached successfully with institutions in the style promoted by our
work. Most of all, this book shows how to do things rather than provides an exhaustive
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account of all model theory that can be done institution-independently. It can be used by
any working user of model theory but also as a resource for learning model theory.

From the philosophical viewpoint, the institution-independent approach to model
theory is based upon a non-essentialist, groundless, perspective on logic and model theory,
directly influenced by the doctrine of śunyata of the Madhyamaka Prasangika school
within Mahayana Buddhism. The interested reader may find more about this connection
in the essay [54]. This has been developed mainly at Nalanda monastic university about
2000 years ago by Arya Nāgārjuna and its successors and has been continued to our days
by all traditions of Tibetan Buddhism. The relationship between Madhyamaka Prasangika
thinking and various branches of modern science is surveyed in [176].

I am grateful to a number of people who supported in various ways the project of
institution-independent model theory in general and the writing of this book in particular.
I was extremely fortunate to be first the student and later a close friend and collaborator
of late Professor Joseph Goguen who together with Rod Burstall introduced institutions.
He strongly influenced this work in many ways and at many levels, from philosophical
to technical aspects, and was one of the greatest promoters of the non-essentialist ap-
proach to science. Andrzej Tarlecki was the true pioneer of doing model theory in an
abstract institutional setting. Till Mossakowski made a lot of useful comments on sev-
eral preliminary drafts of this book and supported this activity in many other ways too.
Grigore Roşu and Marc Aiguier made valuable contributions to this area. Lutz Schröder
made several comments and gave some useful suggestions. Achim Blumensath read very
carefully a preliminary draft of this book and helped to correct a series of errors. I am
indebted to Hans-Jürgen Hoenhke for encouragement and managerial support. Special
thanks go to the former students of the Informatics Department of “Şcoala Normală Supe-
rioară” of Bucharest, namely Marius Petria, Daniel Găină, Andrei Popescu, Mihai Code-
scu, Traian Şerbănuţă and Cristian Cucu. They started as patient students of institution-
independent model theory only to become important contributors to this area. Finally,
Jean-Yves Béziau greatly supported the publication and dissemination of this book. I ac-
knowledge financial support for writing this book from the CNCSIS grants GR202/2006
and GR54/2007.

Ploieşti,
December 2007 Răzvan Diaconescu
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Chapter 1

Introduction

Model theory is in essence the mathematical study of semantics, or meaning, of logic
systems. As it has a multitude of applications to various areas of classical mathematics,
and of logic, but also to many areas of informatics and computing science, there are
various perspectives on model theory which differ slightly. A rather classical viewpoint is
formulated in [32]:

Model theory = logic + universal algebra.

A rather different and more radical perspective which reflects the success of model theo-
retic methods in some areas of classical mathematics is given in [99]:

Model theory = algebraic geometry - fields.

From a formal specification viewpoint, in a similar tone, one may say that

Model theory = logical semantics - specification.

Each such viewpoint implies a specific way in developing the key concepts and the main
model theory methods; it also puts different emphasis on results. For example while forc-
ing is a very important method for the applications of model theory to conventional logic,
it plays a very little role in computing science. On the other hand, formal specification
theory requires a much more abstract view on model theory than the conventional one.
The institution theory of Goguen and Burstall [30, 75] arose out of this necessity.

Institutions. The theory of institutions is a categorical abstract model theory which
formalizes the intuitive notion of a logical system, including syntax, semantics, and the
satisfaction relation between them. Institutions constitute a model-oriented meta-theory
on logics similarly to how the theory of rings and modules constitute a meta-theory for
classical linear algebra. Another analogy can be made with universal algebra versus par-
ticular algebraic structures such as groups, rings, modules, etc., or with mathematical
analysis over Banach spaces versus real analysis.
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The notion of institution was introduced by Goguen and Burstall in the late 1970s
[30] (with the seminal journal paper [75] being printed rather late) in response to the pop-
ulation explosion of specification logics with the original intention of providing a proper
abstract framework for specification of, and reasoning about, software systems. Since
then institutions have become a major tool in development of the theory of specification,
mainly because they provide a language-independent framework applicable to a wide
variety of particular specification logics. It became standard in the field to have a logic
system captured as the institution underlying a particular language or system, such that
all language/system constructs and features can be rigorously explained as mathematical
entities and to separate all aspects that depend on the details of the particular logic sys-
tem from those that are general and independent of this logic system by basing the latter
on an arbitrary institution. All well-designed specification formalisms follow this path,
including for example CASL [10] and CafeOBJ [57].

Recently institutions have also been applied to computing science fields other than
formal specification; these include ontologies and cognitive semantics [73], concurrency
[138], and quantum computing [31].

Institution-independent model theory. This means the development of model theory
in the very abstract setting of arbitrary institutions, free of any commitment to a partic-
ular logic system. In this way we gain another level of abstraction and generality and a
deeper understanding of model theoretic phenomena, not hindered by the largely irrele-
vant details of a particular logic system, but guided by structurally clean causality. The
latter aspect is based upon the fact that concepts come naturally as presumed features that
“a logic” might exhibit or not and are defined at the most appropriate level of abstraction;
hypotheses are kept as general as possible and introduced on a by-need basis, and thus
results and proofs are modular and easy to track down regardless of their depth. Access to
highly non-trivial results is also considerably facilitated, which is contrary to the impres-
sion of some people that such general abstract approaches produce results that are trivial.
As Béziau explains in [20]:

“This impression is generally due to the fact that these people have a
concrete-oriented mind, and that something which is not specified [n.a. con-
cretely] has no meaning for them, and therefore universal logic [n.a. institu-
tion-independent model theory in our case] appears as a logical abstract non-
sense. They are like someone who understands perfectly what is Felix, his cat,
but for whom the concept of cat is a meaningless abstraction. This psycholog-
ical limitation is in fact a strong defect because, ... [n.a. as this book shows],
what is trivial is generally the specific part, not the universal one [n.a. the
institution-independent one] which requires what is the fundamental capacity
of human thought: abstraction.”

The continuous interplay between the specific and the general in institution-independent
model theory brings a large array of new results for particular non-conventional logics,
unifies several known results, produces new results in well-studied conventional areas,
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reveals previously unknown causality relations, and dismantles some which are usually
assumed as natural.

Institution-independent model theory also provides a clear and efficient framework
for doing logic and model theory ‘by translation (or borrowing)’ via a general theory
of mappings (homomorphisms) between institutions. For example, a certain property P
which holds in an institution I ′ can be also established in another institution I provided
that we can define a mapping I → I ′ which ‘respects’ P.

Institution-independent model theory can be regarded as a form of ‘universal model
theory’, part of the so-called ‘universal logic’, a recent trend in logic promoted by Bèziau
and others [21].

Other abstract model theories. Only two major abstract approaches to logic have a
model theoretic nature and are therefore comparable to the institution-independent model
theory.

The so-called “abstract model theory” developed by Barwise and others [12, 13]
however keeps a strong commitment to conventional concrete systems of logic by ex-
plicitly extending them and retaining many of their features, hence one may call this
framework “half-abstract model theory”. In this context even the remarkable Lindström
characterization of first order logic by some of its properties should be rather considered
as a first order logic result rather than as a true abstract model theoretic one.

Another framework is given by the so-called “categorical model theory” best rep-
resented by the works on sketches [63, 88, 181] or on satisfaction as cone injectivity
[5, 6, 7, 120, 118, 116]. The former just develops another language for expressing (pos-
sibly infinitary) first order logic realities. While the latter considers models as objects of
abstract categories, it lacks the multi-signature aspect of institutions given by the signa-
ture morphism and the model reducts, which leads to severe methodological limitations.
Moreover in these categorical model theory frameworks, the satisfaction of sentences by
the models is usually defined rather than being axiomatized.

By contrast to the two abstract model theoretic approaches mentioned above, in-
stitutions capture directly the essence of logic systems by axiomatizing the satisfaction
relationship between models and sentences without any initial commitment to a particular
logic system and by emphasizing propertly the multi-signature aspect of logics.

Book content. The book consists of four parts.
In the first part we introduce the basic institution theory including the concept of

institution and institution morphisms, and several model theoretic fundamental concepts
such as model amalgamation, (elementary) diagrams, inclusion systems, and free models.
We develop an ‘internal logic’ for abstract institutions, which includes a semantic treat-
ment to Boolean connectives, quantifiers, atomic sentences, substitutions, and elementary
homomorphisms, all of them in an institution-independent setting.

The second part is the core of our institution-independent model theoretic study be-
cause it develops the main model theory methods and results in an institution-independent
setting.
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The first method considered in this part is that of ultraproducts. Based upon the
well-established concept of categorical filtered products, we develop an ultraproduct fun-
damental theorem in an institution-independent setting and explore some of its immediate
consequences, such as ultrapower embeddings and compactness.

The chapter on saturated models starts by developing sufficient conditions for di-
rected co-limits of homomorphisms to retain the elementarity. This rather general version
of Tarski’s elementary chain theorem is a prerequisite for a general result about existence
of saturated models, later used for developing other important results. We also develop
the complementary result on uniqueness of saturated models. Here the necessary concept
of cardinality of a model is handled categorically with the help of elementary extensions,
a concept given by the method of diagrams. We develop an important application for the
uniqueness of saturated models, namely a generalized version of the remarkable Keisler-
Shelah result in first order model theory, “two models are elementarily equivalent if and
only if they have isomorphic ultrapowers”.

A good application of the existence result for saturated models is seen in the preser-
vation results, such as “a theory has a set of universal axioms if and only if its class of
models is closed under ‘sub-models”’. We develop a generic preservation-by-saturation
theorem. Such preservation results might lead us straight to their axiomatizability ver-
sions. One way is to assume the Keisler-Shelah property for the institution and to use a
direct consequence of the fundamental ultraproducts theorem which may concisely read
as “a class of models is elementary if and only if it is closed under elementary equivalence
and ultraproducts”.

Another method to reach an important class of axiomatizability results is by ex-
pressing the satisfaction of Horn sentences as categorical injectivity. This leads to general
quasi-variety theorems such as “a class of models is closed under products and ‘sub-
models’ if and only if it is axiomatizable by a set of (universal) Horn sentences” and va-
riety theorems such as “a class of models is closed under products and ‘sub-models’ and
‘homomorphic images’ if and only if it is axiomatizable by a set of (universal) ‘atoms”’.

All axiomatizability results presented here are collected under the abstract concept
of ‘Birkhoff institution’.

The next topic is interpolation. The institution-independent approach brings several
significant upgrades to the conventional formulation. We develop here three main meth-
ods for obtaining the interpolation property, the first two having rather complementary
application domains. The first one is based upon a semantic approach to interpolation
and exploits the Birkhoff-style axiomatizability properties of the institution (captured by
the above mentioned concept of Birkhoff institution), while the second, inspired by the
conventional methods of first order logic, is via Robinson consistency. The third one is a
borrowing method across institutions.

We next treat definability, again with rather two complementary methods, via Birk-
hoff-style axiomatizability and via interpolation. While the latter represents a general-
ization of Beth’s theorem of conventional first order model theory, the former reveals a
causality relationship between axiomatizability and definability.

The final chapter of the second part of the book is devoted to possible worlds
(Kripke) semantics and to extensions of the satisfaction relation of abstract institutions
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to modal satisfaction. By applying the general ultraproducts method to possible worlds
semantics, we develop the preservation of modal satisfaction by ultraproducts together
with its semantic compactness consequence.

The third part of the book is devoted to special modern topics in institution theory,
such as Grothendieck constructions on systems of institutions with applications to het-
erogeneous multi-logic frameworks, and an extension of institutions with proof theoretic
concepts. For the Grothendieck institutions we develop a systematic study of lifting of im-
portant properties such as theory co-limits, model amalgamation, and interpolation, from
the level of the ‘local’ institutions to the ‘global’ Grothendieck institution. We present a
rather striking application of the interpolation result for Grothendieck institutions, which
leads for example to a quite surprising interpolation property in the Horn fragment of
conventional first order logic. The chapter on proof theory for institutions introduces the
concept of proof in a simple way that suits the model theory, explores proof theoretic
versions of compactness and internal logic, and presents general soundness results for
institutions with proofs. The final part of this chapter develops a general sound and com-
plete Birkhoff-style proof system with applications significantly wider than that of the
Horn institutions.

The last part presents a few of the multitude of applications of institution-indepen-
dent model theory to computing science, especially in the areas of formal specification
and logic programming. This includes structured specifications over arbitrary institutions,
the lifting of a complete calculus from the base institution to structured specifications,
Herbrand theorems and modularization for logic programming, and semantics of logic
programming with pre-defined types.

The concepts introduced and the results obtained are systematically illustrated in the
main text by their applications to the model theory of conventional logic (which includes
first order logic but also fragments and extensions of it). There are only two reasons for
doing this. The first is to build a bridge between our approach and the conventional model
theory culture. The second reason has to do with keeping the material within reasonable
size. Otherwise, while conventional (first-order) model theory has been historically the
framework for the development of the main concepts and methods of model theory, one
of the main messages of this book is that these do not depend on that framework. Any
other concrete logic or model theory could be used as a benchmark example in this book,
and in fact we do this systematically in the exercise sections with several less conventional
logics.

How to use this book. The material of this book can be used in various ways by various
audiences both from logic and computing science. Students and researchers of logic can
use material of the first two parts (up to Chap. 11 included) as an institution-independent
introduction to model theory. Working logicians and model theorists will find in this
monograph a novel view and a new methodological approach to model theory. Computer
scientists may use the material of the first part as an introduction to institution theory, and
material from the third and the fourth parts for an advanced approach to topics from the
semantics of formal specification and logic programming. Also, institution-independent
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model theory constitutes a powerful tool for workers in formal specification to perform
a systematic model theoretic analysis of the logic underlying the particular system they
employ.

Each section comes with a number of exercises. While some of them are meant
to help the reader accommodate the concepts introduced, others contain quite important
results and applications. In fact, in order to keep the book within a reasonable size, much
of the knowledge had to be exiled to the exercise sections.
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[7] Hajnal Andréka and István Németi. Generalization of the concept of variety and
quasivariety to partial algebras through category theory. Dissertationes Mathemat-
icae, CCIV, 1983.

[8] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory.
Kluwer Academic Publishers, Dordrecht, 2nd edition, 2002.
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définissables d’algèbres. In Mathematical Interpretation of Formal Systems, pages
98–113. North-Holland, Amsterdam, 1955.

[116] Michael Makkai. Ultraproducts and categorical logic. In C.A. DiPrisco, editor,
Methods in Mathematical Logic, volume 1130 of Lecture Notes in Mathematics,
pages 222–309. Springer Verlag, 1985.

[117] Michael Makkai. Stone duality for first order logic. Advances in Mathematics,
65(2):97–170, 1987.

[118] Michael Makkai and Gonzolo Reyes. First order categorical logic: Model-
theoretical methods in the theory of topoi and related categories, volume 611 of
Lecture Notes in Mathematics. Springer, 1977.

[119] Anatoly Malcev. The Metamathematics of Algebraic Systems. North-Holland,
1971.



Bibliography 363

[120] Günter Matthiessen. Regular and strongly finitary structures over strongly alge-
broidal categories. Canadian Journal of Mathematics, 30:250–261, 1978.

[121] Sheila McIlraith and Eyal Amir. Theorem proving with structured theories. In
Proceedings of the 17th Intl. Conf. on Artificial Intelligence (IJCAI-01), pages 624
– 631, 2001.

[122] Kenneth McMillan. Applications of Craig interpolants in model checking. In
Proceedings TACAS’2005, volume 3440 of Lecture Notes in Computer Science,
pages 1–12. Springer, 2005.
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