## Two Reduction Systems in Proof Scores Writing

Daniel GAINA<br>(joint work with Dorel LUCANU, Kazuhiro OGATA and Kokichi FUTATSUGI)

Japan Advanced Institute of Science and Technology

April 10, 2012

## Overview I

## - modeling <br> We present our methodology <br> - specification <br> through an example: <br> - verification

## Alternating bit protocol

(1) we our logical framework is sufficiently expressive to model dropping of elements in arbitrary positions of the communication channels
(2) the semantics of $=_{-}$and ${ }_{-} \Rightarrow_{-}$is that of equality; the reduction system consisting of rewriting rules is regarded as a second reduction system on top of the equational one; it has the advantage of preserving the termination property during the verification process

## Overview II

- we use conditional equations with conditions executable by matching, which increase the specification operational expressivity; this allows to handle nondeterminism successfully at the operational level
(3) an order of application of the proof rules is established (this represents the first step towards automation)
(4) a proof rule has the following general form $\frac{S P_{1} \vdash \text { Prop }_{1} \ldots S P_{n} \vdash \text { Prop }_{n}}{S P \vdash \text { Prop }}$; In the verification process we identify clearly inconsistent specifications $S P_{i}$ of the subgoals $S P_{i} \vdash P r o p_{i}$ obtained by applying a proof rule to a specification $S P$


## Alternating Bit Protocol

- Two agents, Sender and Receiver that do not share a common memory use two channels, channel1 and channel2 to communicate
- Sender sends repeatedly pairs of packets and bits, $\left\langle\mathrm{bit1}, \mathrm{p}_{\mathrm{n}}\right\rangle$, to Receiver over channel1
- Receiver sends repeatedly bit2 to Sender over channel2



## Sender's diagram

- When Sender gets bit1 from the Receiver over channel2, it is a confirmation from the Receiver that the packet sent was received. In this case, Sender alternates bit1 and selects the next packet for sending.
- Initially both channels are empty and the Sender's bit is different from the Receiver's bit



## Receiver's diagram

- When Receiver gets a pair $<\mathrm{b}, \mathrm{p}>$ such that b is different from bit2 it receives $p$ and alternates bit2.



## Snapshot I



## Snapshot II



## Snapshot III



## Snapshot IV



## Snapshot V



## Snapshot VI



## Snapshot VII



## Snapshot VIII



## Snapshot IX



## Snapshot X



## Snapshot XI



## Safety Property

We assume that the communication channels are unreliable: - data in the channels may be lost, but not changed or damaged.

## Safety Property

- If Receiver receives the $n$th packet then
- Receiver has received the $\mathrm{n}+1$ packets $p_{0}, \ldots, p_{n}$ in this order,
- each $p_{i}$ for $i=\overline{0, n}$ has been received only once, and
- no other packets have been received
- In this case study we check the above property


## Data Types used

- the Packets are indexed by natural numbers: $\operatorname{pac}(0), \operatorname{pac}(\mathrm{s} 0), \ldots, \operatorname{pac}\left(\mathrm{s}^{\mathrm{n}} 0\right)$
op pac : Nat -> Packet [ctor]
- the bits sent by Sender and Receiver have two values
op t : -> Bit [ctor] and op f : -> Bit [ctor]

The function op not_: Bit -> Bit alternates the bits

- The communication channels and the packets received by Receiver are modeled by sequences.
(1) Channel1 consists of sequences of pairs of bits and packets

$$
\left\langle\mathrm{b}_{1}, \mathrm{p}_{1}\right\rangle, \ldots,\left\langle\mathrm{b}_{\mathrm{n}}, \mathrm{p}_{\mathrm{n}}\right\rangle
$$

(2) Channel2 consists of sequences of bits

$$
\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}
$$

(3) List of packets received by Receiver consists of sequences of packets

$$
\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}
$$

## ABP |

```
fth ABP is inc CHANNEL1 . inc CHANNEL2 . inc PACKET-LIST .
sort Sys.
- - - constructors - - -
    op init: -> Sys [ctor] . - —— initial state
    op rec1: Sys -> Sys [ctor].
    op rec2: Sys -> Sys [ctor].
    op send1:Sys -> Sys [ctor].
    op send2: Sys -> Sys [ctor].
    op drop1: Sys -> Sys [ctor].
    op drop2: Sys -> Sys [ctor] .
```



```
    - - - Receiver receives pairs of bits & packets
    - — - Sender sends pairs of bits & packets
    ———Receiver sends bits
    - - dropping one element of channel1
    - - - dropping one element of channel2
- - - observers - --
    op channel1:Sys -> Channel1 . ————Sender-to-Receiver channel
    op channel2 : Sys -> Channel2 . ————Receiver-to-Sender channel
    op bit1:Sys -> Bit.
    op bit2 : Sys -> Bit.
    op next:Sys -> Nat.
    op list:Sys -> List.
    -- - Sender's bit
```



```
    - - - number of packet sent next by Sender
    ——— lists of packets received by Receiver
- - - underspecified functions - - -
    ops x1 y1:Sys -> Channel1.
    ops x2 y2 : Sys -> Channel2.
```


## ABP |I

— variables ———
var S : Sys . vars C1 C1' : Channel1 . vars C2 C2' : Channel2 .
$\operatorname{var} \mathrm{B}:$ Bit . var $\mathrm{P}:$ Packet . var $\mathrm{N}:$ Nat .
———receive1 - - -
eq channel1 $(\operatorname{rec} 1(\mathrm{~S}))=$ channel1(S) .
ceq [ch2-a] : channel2(rec1(S)) = channel2(S)
ceq [ch2-b] : channel2(rec1(S)) = C2
ceq [bit1-a] : bit1(rec1(S)) = bit1(S)
ceq [bit1-b] : bit1(rec1(S)) = bit1(S)
ceq [bit1-c] : bit1 (rec1(S)) = not bit1(S)
eq bit2(rec1(S)) = bit2(S) .
ceq [next-a] : next(rec1(S)) $=\operatorname{next}(\mathrm{S})$
ceq [next-b] : next(rec1(S)) $=\operatorname{next}(\mathrm{S})$
ceq $[n e x t-c]: \operatorname{next}(\operatorname{rec} 1(S))=s \operatorname{next}(S)$
eq list(rec1(S)) $=\operatorname{list(S)}$.
if empty = channel2(S) .
if B,C2 := channel2(S) .
if empty = channel2(S) .
if $B, C 2:=$ channel2(S) $\wedge B=\operatorname{not} \operatorname{bit} 1(S)$.
if $B, C 2:=$ channel2(S) $\wedge B=\operatorname{bit1}(S)$.
if empty = channel2(S) .
if $B, C 2:=$ channel2(S) $\wedge B=$ not bit1 (S) .
if $B, C 2:=$ channel2( $S$ ) $\wedge B=\operatorname{bit1}(S)$.

## ABP III

———drop1———
ceq [d1-a] : channel1(drop1(S)) = x1(S),y1(S)
if $\mathrm{x} 1(\mathrm{~S}),<\mathrm{B}, \mathrm{P}>, \mathrm{y} 1(\mathrm{~S}):=$ channel1(S).
eq [d1-b] : channel1(drop1(S)) = channel1(S) eq channel2(drop1(S)) = channel2(S) .
eq bit1(drop1(S)) $=$ bit1(S) .
eq next(drop1(S)) $=\operatorname{next}(S)$. [owise] .
eq bit2(drop1(S)) = bit2(S).
eq list(drop1(S)) $=\operatorname{list}(\mathrm{S})$.

## Some specification aspects

(1) ABP module is declared with loose semantics. Since the sort Sys has seven constructors, the carrier sets of the ABP models for the sort Sys consist of interpretations of constructor terms of the form $\sigma_{n}\left(\ldots \sigma_{1}\right.$ (init)), where $\sigma_{i} \in\{\operatorname{rec} 1, \ldots, \mathrm{drop} 2\}$. This semantical aspect has a direct implication to the verification methodology since it allows the use of induction on constructors for proving properties of ABP.
(2) The non-constructor functions $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y}_{2}$ are underspecified because there are no equations to define them, meaning that each model has its own interpretation of $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2$. This specification technique in connection with the associativity of sequences is sufficiently expressive to model the nondeterminism, in this case, dropping elements in arbitrary positions of the communication channels. In every model the arguments of these functions are elements consisting of interpretations of the constructor terms $\sigma_{n}\left(\ldots \sigma_{1}\right.$ (init)), where $\sigma_{i} \in\{\operatorname{rec} 1, \ldots$, drop 2$\}$, and the values returned are sequences because the modules corresponding to the communication channels are imported with protecting. The matching equations used in conditions make the equational rules executable.

## Verification approach

- Proofs cannot be automated entirely.
- The best approach is the combination between interactive proof verification and automation.
- Push the boundaries of automation.
- We have two reduction systems, one given by equations ( $\quad=\quad$ ) and the other given by rewrite rules ( $\quad \Rightarrow$ _). How do they work together?

$$
t \rightarrow^{*} n f(t) \Rightarrow t^{\prime} \rightarrow^{*} n f\left(t^{\prime}\right) \Rightarrow t^{\prime \prime} \ldots
$$

## Goal

(1) Goal:

$$
\begin{aligned}
& \hline \text { goal }_{1} \operatorname{mk}(\operatorname{next}(\mathrm{~S}))=\operatorname{list}(\mathrm{S}) \text { if } \operatorname{bit} 1(\mathrm{~S})=\operatorname{bit} 2(\mathrm{~S}) \\
& \hline \hline \text { goal }_{2} \operatorname{mk}(\operatorname{next}(\mathrm{~S}))=\operatorname{pac}(\operatorname{next}(\mathrm{S})), \operatorname{list}(\mathrm{S}) \text { if } \operatorname{bit1}(\mathrm{S})=\operatorname{not} \operatorname{bit} 2(\mathrm{~S}) \\
& \text { where } \operatorname{mk}\left(\mathrm{s}^{\mathrm{n}} 0\right)=\operatorname{pac}\left(\mathrm{s}^{\mathrm{n}} 0\right), \operatorname{pac}\left(\mathrm{s}^{\mathrm{n}-1}\right), \ldots, \operatorname{pac}(0)
\end{aligned}
$$

(2) Invariants:

(3) Basic Invariants:

|  | $\mathrm{B}_{1}^{\prime} \Rightarrow \operatorname{bit1}(\mathrm{S}) \text { if } \mathrm{Ch}_{1},\left\langle\mathrm{~B}_{1}, \mathrm{P}_{1}\right\rangle, \mathrm{Sq}_{1},\left\langle\mathrm{~B}_{1}^{\prime}, \mathrm{P}_{1}^{\prime}\right\rangle, \mathrm{Ch}_{1}^{\prime}:=\text { channel1 }(\mathrm{S}) \wedge \mathrm{B}_{1}=\operatorname{bit1}(\mathrm{S})$ |
| :---: | :---: |
|  | $1 \Rightarrow \operatorname{bit1}(\mathrm{~s})$ if $\mathrm{Ch} 1,\langle\mathrm{~B} 1, \mathrm{P} 1\rangle, \mathrm{Ch} 1:=\mathrm{channel1}(\mathrm{~s}) \wedge \operatorname{bit1}(\mathrm{S})=\operatorname{bit2}(\mathrm{S})$ |
|  | bit1(s) $=$ bit2(s) if Ch2, B2, Ch2 ${ }^{\prime}:=$ channel2(S) $\wedge \mathrm{B} 2=\operatorname{bit} 1(\mathrm{~S})$ |
|  | $\mathrm{B} 2^{\prime} \Rightarrow \operatorname{bit1}(\mathrm{s})$ if $\mathrm{Ch} 2, \mathrm{~B} 2, \mathrm{Sq} 2, \mathrm{~B} 2^{\prime}, \mathrm{Ch} 2^{\prime}:=$ channel2(S) $\wedge \mathrm{B} 2=\operatorname{bit1}(\mathrm{S})$ |

## Invariants

(1) In Maude inv ${ }_{1}$, inv $v_{2}$ and inv $_{4}$ are written as rewriting rules. As equational rules the above invariants would cause non-termination: when the simultaneous induction is applied to the variable $s$, $i n v_{i}$ are added as hypotheses to the specification ABP; then an application of inv $v_{1}$, for example, to reduce a term implies the evaluation of the condition
Ch1, $\langle\mathrm{B} 1, \mathrm{P} 1\rangle, \mathrm{Sq} 1,\left\langle\mathrm{~B} 1^{\prime}, \mathrm{P} 1^{\prime}\right\rangle, \mathrm{Ch} 1^{\prime}:=$ channel1(S) that requires another application of inv $v_{1}$, which produces a non-termination process. Since these hypotheses are needed in the verification process, i.e., they must be executable, we choose to formalize them as rewrite rules.
(2) The use of matching equations over Sequences as conditions of equations allows to assume an arbitrary structure of the channels of a certain type without any cost to operational semantics (the underlying conditional equations are executable).

## Order of Application of Proof Rules

The application order of the proof rules is as follows:

- Simultaneous Induction (SI)
- Case Analysis(CA)
- Sequence Case Analysis (CA(X,Y))
- Theorem of Constants (TC)
- Reduction (red)


## Simultaneous Induction I

ABP $\vdash\left\{\right.$ inv $_{1}$, inv $_{2}$, inv $_{3}$, inv $\left._{4}\right\}$
By applying simultaneous induction we obtain
$\mathrm{ABP} \vdash i n v_{i}[S \leftarrow i n i t]$
$\mathrm{ABP} * \iota_{\mathrm{s}} \cup\left\{\operatorname{inv}_{1}\right.$, inv $_{2}$, inv $_{3}$, inv $\left._{4}\right\} \vdash \operatorname{inv}_{\mathrm{i}}[\mathrm{S} \leftarrow \operatorname{act}(\mathrm{s})]$

- $\iota_{\mathrm{s}}: \operatorname{Sig}(\mathrm{ABP}) \hookrightarrow \mathbb{S i g}(\mathrm{ABP})[\mathrm{s}: \rightarrow \mathrm{Sys}]$
- act $\in\{$ init, rec 1, rec 2 , send 1 , send 2, drop 1, drop2 $\}$


## Simultaneous Induction II

Maude code for ABP $* \iota_{\mathrm{s}} \cup\left\{\operatorname{inv}_{1}\right.$, inv $_{2}$, inv $_{3}$, inv $\left._{4}\right\}$
th INV is inc ABP.
vars B1 B1' B2 B2' : Bit .
vars P P1 P1': Packet .
vars Ch1 Sq1 Ch1': Channel1
vars Ch2 Sq2 Ch2' : Channel2 .
op s:-> Sys.
crl [inv1]: B1' => bit1(s) if Ch1 ,< B1,P1 >,Sq1,< B1',P1' >,Ch1' := channel1(s) $\wedge$ B1 = bit1(s). crl [inv2]: B1 $=>$ bit1(s) if Ch1', < B1,P1 >,Ch1 := channel1(s) $\wedge$ bit1 (s) = bit2(s). ceq [inv3]: bit2(s) = bit1(s) if Ch2,B2,Ch2' := channel2(s) $\wedge$ B2 = bit1(s).
crl [inv4]: B2' => bit1(s) if Ch2,B2,Sq2,B2',Ch2' := channel2(s) $\bigwedge \mathrm{B} 2=\operatorname{bit} 1(\mathrm{~s})$.
endth
We present the proof trees for

- $\operatorname{INV} \vdash \operatorname{inv}_{1}[\mathrm{~S} \leftarrow \operatorname{rec} 1(\mathrm{~s})]$
- 

```
INV }\vdash\mp@subsup{\operatorname{inv}}{1}{}[\textrm{S}\leftarrowdrop1(\textrm{s})
```


## Diagram - inv1

$$
\mathrm{INV} \vdash \operatorname{inv}_{1}[\mathrm{~S} \leftarrow \operatorname{act}(\mathrm{~s})] ; A B P \vdash \operatorname{inv} v_{1}[s \leftarrow i n i t]
$$



## Diagram - inv1[S $\leftarrow$ rect (s)]



## Diagram - inv1[S $\leftarrow \operatorname{drop1}(\mathrm{s})]$



## Init

$$
\mathrm{ABP} \vdash \mathrm{~B} 1^{\prime} \Rightarrow \text { bit1 (init) if } \mathrm{Ch} 1,\langle\mathrm{~B} 1, \mathrm{P} 1\rangle, \mathrm{Sq} 1,\left\langle\mathrm{~B} 1^{\prime}, \mathrm{P}^{\prime}\right\rangle, \mathrm{Ch}^{\prime}:=\text { channel1(init) } \wedge \mathrm{B} 1=\text { bit1 (init) }
$$ red in ABP : bit1(init) .

——— result Bit: $f$
red in ABP : channel1(init).
———result Channel1: (empty).Channel1
$\mathrm{ABP} \vdash \mathrm{B} 1^{\prime} \Rightarrow \mathrm{f}$ if $\mathrm{Ch} 1,\langle\mathrm{~B} 1, \mathrm{P} 1\rangle, \mathrm{Sq} 1,\left\langle\mathrm{~B} 1^{\prime}, \mathrm{P}^{\prime}\right\rangle, \mathrm{Ch} 1^{\prime}:=$ channel1(init) $\wedge \mathrm{B} 1=\mathrm{f}$
th I1-INIT is inc ABP.
ops ch1 ch1' sq1:-> Channel1.
ops b1 b1' : -> Bit .
ops p1 p1' : -> Packet.
eq empty $=$ ch1, <b1,p1 >,sq1, < b1',p1' >,ch1' .
eq b1 $=\mathrm{f}$.
endth
$\mathrm{I} 1-\mathrm{INIT} \vdash b 1^{\prime} \Rightarrow f$
search true =>* false .

## Receive1

$$
\begin{array}{ll}
\text { INV } \models \mathrm{B} 1 '=>\operatorname{bit1} 1(\mathrm{rec} 1(\mathrm{~s})) \text { if } & \begin{array}{l}
\text { Ch1, }\langle\mathrm{B} 1, \mathrm{P} 1\rangle, \mathrm{Sq1} 1,\left\langle\mathrm{~B} 1^{\prime}, \mathrm{P} 1^{\prime}\right\rangle, \text { Ch1' }:=\text { channel1(rec1(s)) } \\
\\
\\
\mathrm{B} 1=\operatorname{bit1} 1(\mathrm{rec} 1(\mathrm{~s}))
\end{array}
\end{array}
$$

red in INV : channel1(rec1(s)).
———_result Channel1: channel1(s)

$$
\begin{array}{ll}
\text { INV } \vdash \mathrm{B} 1^{\prime}=>\operatorname{bit1}(\mathrm{rec} 1(\mathrm{~s})) \text { if } & \begin{array}{l}
\text { Ch1, }\langle\mathrm{B} 1, \mathrm{P} 1\rangle, \mathrm{Sq1} 1,\left\langle\mathrm{~B} 1^{\prime}, \mathrm{P}^{\prime}\right\rangle, \mathrm{Ch}^{\prime} 1^{\prime}:=\text { channel1(s) } \\
\\
\end{array} \mathrm{B1}=\operatorname{bit1} 1(\mathrm{rec} 1(\mathrm{~s}))
\end{array}
$$

## Receive2-A

th I1-BIT1-A is inc INV .
eq channel2(s) = empty .
endth
red bit1(rec1(s)) .
——— result Bit: bit1(s)
11-BIT1-A $\vdash$ B1' $\Rightarrow$ bit1 (s) if Ch1, $\langle\mathrm{B} 1, \mathrm{P} 1\rangle, \mathrm{Sq} 1,\left\langle\mathrm{~B} 1^{\prime}, \mathrm{P} 1^{\prime}\right\rangle, \mathrm{Ch} 1^{\prime}:=$ channel1 (s) $\wedge \mathrm{B} 1=\operatorname{bit1}(\mathrm{s})$
th I1-BIT1-A-Gr is inc I1-BIT1-A .
ops ch1 ch1' sq1 : -> Channel1 . ops b1 b1' : -> Bit . ops p1 p1' : -> Packet .
eq channel1(s) = ch1, < b1,p1 >,sq1, < b1',p1' >,ch1' . eq b1 = bit1(s) .
endth
11-BIT1-A-Gr $\vdash$ b1' $\Rightarrow$ bit1 (s)
search b1' =>* bit1(s)

## Receive1-B

th I1-BIT1-B is inc INV .
op b : -> Bit . op c2 : -> Channel2 .
eq channel2(s) $=b, c 2$. eq $b=$ not bit1(s).
endth

> I1-BIT1-B $\vdash$ B1' $=>$ bit1 (rec1(s)) if $\wedge \mathrm{B} 1=\operatorname{bit} 1(\mathrm{rec} 1(\mathrm{~s}))$

## red bit1(rec1(s)) .

——— result Bit: bit1(s)

```
I1-BIT1-B \(\vdash\) B1' \(\Rightarrow\) bit1 (s) if Ch1, \(\langle\mathrm{B} 1, \mathrm{P} 1\rangle, \mathrm{Sq} 1,\left\langle\mathrm{~B} 1^{\prime}, \mathrm{P} 1^{\prime}\right\rangle, \mathrm{Ch} 1^{\prime}:=\) channel1 (s) \(\wedge \mathrm{B} 1=\operatorname{bit1}(\mathrm{s})\)
```

th I1-BIT1-B-Gr is inc I1-BIT1-B .
ops ch1 ch1' sq1 : -> Channel1 . ops b1 b1': -> Bit . ops p1 p1': -> Packet .
eq channel1(s) = ch1, < b1,p1 >,sq1, < b1',p1' >,ch1' . eq b1 = bit1(s) .
endth
11-BIT1-B-Gr $\vdash$ b1 ${ }^{\prime} \Rightarrow$ bit1(s)
search b1' =>* bit1(s)

## Receive－C

th I1－BIT1－C is inc INV ．
op b ：－＞Bit ．op c2 ：－＞Channel2 ．
eq channel2（s）$=\mathrm{b}, \mathrm{c} 2$ ．eq $\mathrm{b}=\operatorname{bit1}(\mathrm{s})$ ．
endth
I1－BIT1－C $\vdash$ B1＇$=>\operatorname{bit} 1(r e c 1(s))$ if
Ch1，〈B1，P1〉，Sq1，〈B1＇，P1’’，Ch1＇：＝channel1（s） $\wedge \mathrm{B} 1=\operatorname{bit} 1(\mathrm{rec} 1(\mathrm{~s}))$
red bit1（rec1（s））．
——— result Bit：not bit1（s）
I1－BIT1－C•B1＇$\Rightarrow$ not bit1（s）if Ch1，$\langle\mathrm{B} 1, \mathrm{P} 1\rangle, \mathrm{Sq} 1,\left\langle\mathrm{~B} 1^{\prime}, \mathrm{P} 1^{\prime}\right\rangle, \mathrm{Ch} 11^{\prime}:=$ channel1（s）$\wedge \mathrm{B} 1=$ not bit1（s）
th I1－BIT1－C－Gr is inc I1－BIT1－C ．
ops ch1 ch1＇sq1 ：－＞Channel1 ．ops b1 b1＇：－＞Bit ．ops p1 p1＇：－＞Packet ．
eq channel1（s）＝ch1，＜b1，p1＞，sq1，＜b1＇，p1＇＞，ch1＇．eq b1＝not bit1（s）．
endth
I1－BIT1－B－Gr $\vdash$ b1＇$\Rightarrow$ not bit1（s）
search not bit1（s）＝＞＊bit1（s）．

## Conclusions

Specifying the communication channels of the ABP protocol with sequences is natural and expressive; to our knowledge, this approach is novel, at least in algebraic specifications. But this expressiveness comes with a "cost".
(1) at the operational semantics level: we use both equational and rewriting rules with conditions consisting of matching equations.
(2) at the denotational semantics level: we define new proof rules to deal with the case analysis on sequences.
Sequences have many applications in communication protocols, and we believe that the methodology developed here can be applied successfully to many other important protocols.

