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1 Introduction

In a previous paper [23], a way to extend the study of finite multivariate prediction problem to
infinite-variate case was presented, also the way how the difficulties to formulate the prediction
problems in infinite-variate case was circumvented (see [10]). For stationary processes a com-
plete analysis was done and a Wiener filter for prediction was given, based on a factorization
theorem which extends the classical Lowdenslager–Sz.-Nagy–Foias factorization theorem. Also
a generalized Wold decomposition was used. The main tool which permited an operatorial
setting of the problem was an algebraic embedding of an arbitrary right L(E)-module H, which
is the state space, into L(E,K), where, as usually by L(E) was denoted the C∗-algebra of lin-
ear bounded operators on the complex separable Hilbert space E, and by L(E,K) the set of
all linear bounded operators between the Hilbert spaces E and K. This paper continues the
presentation, extended for some nonstationary cases, especially for the periodically corelated
case.

For the beginning, let us remember some necessary preliminaries. By an action of L(E) on
H we mean the map L(E)×H into H given by Ah := hA in the sense of the right L(E)-module
H. We are writting Ah instead of hA to respect the classical notations from the scalar case. A
correlation of the action of L(E) on H is a map Γ from H×H into L(E) having the properties:

(i) Γ[h, h] ≥ 0, and Γ[h, h] = 0 implies h = 0;
(ii) Γ[h, g]∗ = Γ[g, h];
(iii) Γ[h,Ag] = Γ[h, g]A.
In many proofs it is very useful the formula

Γ
[∑

i

Aihi,
∑
j

Bjgj

]
=

∑
i,j

A∗
iΓ[hi, gj]Bj

obtained by (ii) and (iii) for finite sums of actions of L(E) on H.
A triplet {E,H,Γ} defined as above was called a correlated action of L(E) on H.
By the fact that generally in H we have no topology, the prediction subsets, such as past

and present, future, etc., can not be seen as closed subspaces, therefore the powerful tool of the
usual orthogonal projection can not be directly used.

∗The work was supported by UEFISCDI Grant PN-II-ID-PCE-2011-3-0119, Institute of Mathematics
”Simion Stoilow” of the Romanian Academy, Research unit 1.

33



An example of correlated action can be constructed as follows. Take as the right L(E)-
module H = L(E,K) – the space of the linear bounded operators from E into K, where E and
K are Hilbert spaces. An action of L(E) on L(E,K) is given if we consider AV := V A for
each A ∈ L(E) and V ∈ L(E,K). It is easy to see that Γ[V1, V2] = V ∗

1 V2 is a correlation of the
action of L(E) on L(E,K), and the triplet {E,L(E,K),Γ} is a correlated action (the operator
model). It was proved [14] that any abstract correlated action {E,H,Γ} can be embedded into
the operator model. Namely, there exists an algebraic embedding h → Vh of H into L(E,K),
where K is obtained as the Aronsjain reproducing kernel Hilbert space given by a positive
definite kernel obtained from the correlation Γ. The generators of K are elements of the form
γ(a,h) : E × H → C, where γ(a,h)(b, g) = ⟨Γ[g, h]a, b⟩E and the embedding h → Vh is given by
Vha = γ(a,b).

Due to such an embedding of any correlated action {E,H,Γ} into the operator model,
prediction problems can be formulated and solved using operator techniques. In the particular
case when the embedding h → Vh is onto, the correlated action {E,H,Γ} is caled a complete
correlated action.

In the following the Hilbert space K uniquely attached to the correlated action {E,H,Γ}
will be called the measuring space of the correlated action. The name is justified by the fact
that having a state h in the state space H, what we can measure is the element Vha from the
Hilbert space K. In prediction problems we are inerested in measuring the closeness between
two states, and this fact is not possible to be directely made in the state space H which is
only a right L(E)-module, but it is possible to be done in the measuring space K, and must
be interpreted in H. So, we need to have the possibility to ”interpret” each element from K in
terms of the state space H. This fact implies a completeness condition imposed to the algebraic
imbedding of H into L(E,K). In this paper most of properties are analysed in the complete
correlated case.

2 Periodically Γ-correlated processes

In the previous part of this study stationary processes was considered. Here the non-stationary
case of a periodically Γ-correlated process is presented and a linear filter for prediction is
obtained. To do this, some usefull tools from the stationary prediction, as the imbedding in
an operatorial model, or an appropriate “orthogonal” projection, must be extended to the
T -variate case.

A process (ft) from the right L(E)-module H is periodically Γ-correlated if there exists a
positive T such that Γ[fs+T , ft+T ] = Γ[fs, ft]. In order to make a study of such a process, firstly
the cartesian product of T copies of the right L(E)-module H is considered

(2.1) HT = H ×H × · · · ×H.

An element X of HT will be seen as a line vector (h1, . . . , hT ). On HT it is possible to have the
action of L(E) on the components, with the same operator A ∈ L(E), or on each component
with a different Ai ∈ L(E). Also we can consider the action of L(E)T×T on HT , taking for each
matrix A = (Aij)

T
i,j=1from L(E)T×T

(2.2) A(h1, . . . , hT ) := (h1, . . . , hT )A

in the sense of the right module. It is easy to see that HT is an L(E)T×T -right module and the
action of L(E) on HT is a particular case of the action of L(E)T×T on HT , taking the particular
case of diagonal matrices with the same operator, or different operators on the diagonal.
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Having the action of L(E)T×T on HT , various correlations of this action can be constructed.
For our goal we are interested in the following two operatorial correlations on HT , namely:

(2.3) Γ1[X, Y ] =
T−1∑
k=0

Γ[xk, yk],

where X = (x0, x1, . . . xT−1), Y = (y0, y1, . . . , yT−1) , and

(2.4) ΓT [X,Y ] =
(
Γ[xi, yj]

)
i,j∈{0,1,...,T−1}

.

Taking account of (2.2) it is easy to verify the properties (i)-(iii) of a correlation of the
action of L(E), respectively of L(E)T×T , for Γ1 and ΓT .

So, starting with the correlated action {E,H,Γ} of L(E) on H, we obtain the correlated
actions {E,HT ,Γ1} and {E,HT ,ΓT} of L(E), respectively L(E)T×T , on HT . As a remark, the
correlation Γ1 is the trace of the matrix given by the correlation ΓT .

Another L(E)T×T -right module which will be considered in the study of periodically corre-
lated processes will be (HT )T with an appropriate correlation of the action of L(E)T×T .

If we consider an arbitrary process {Xn} in HT , the attached prediction submodules have
the form:

(2.5) HX
n =

{∑
k

AkXk; Ak ∈ L(E)T×T , k ≤ n
}

( the past),

(2.6) H̃X
n =

{∑
k

AkXk; Ak ∈ L(E)T×T , k > n
}

(the future),

(2.7) HX
−∞ =

∩
n

HX
n (the remote past),

(2.8) HX
∞ =

{∑
k

AkXk; Ak ∈ L(E)T×T
}

(space of the process).

To a periodically Γ-correlated process {fn}n∈Z from H we can attach at least two types of
stationary processes in HT as follows:

1) taking sequences of consecutive T terms starting with fn, namely the line vector

(2.9) Xn =
(
fn, fn+1, . . . , fn+T−1

)
,

or
2) taking consecutive blocks of length T

(2.10) XT
n =

(
fnT , fnT+1, . . . , fnT+T−1

)
.

It is easy to see that {Xn} and {XT
n } are respectively Γ1 and ΓT stationary processes in HT .

From prediction point of view and the study of the periodically Γ-correlated process {fn}n∈Z
from H, the Γ1-correlation of {Xn} and ΓT -correlation of

{
XT

n

}
are equivalent, as can be seen

from the following
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Proposition 2.1. Let {fn}n∈Z from H, an integer T ≥ 2 and {Xn}, {XT
n } defined by (2.9)

and (2.10). The following are equivalent:
(i) {fn} is periodically Γ-correlated in H, with the period T.
(ii) {Xn} is stationary Γ1-correlated in HT .
(iii) {XT

n } is stationary ΓT -correlated in HT .

Proof. (i) ⇒ (ii). Having {fn} periodically Γ-correlated , i.e., Γ[fn, fm] = Γ[fn+T , fm+T ], it
follows that

Γ1[Xn, Xm] =
T−1∑
k=0

Γ[fn+k, fm+k] = Γ[fn, fm] +
T−1∑
k=1

Γ[fn+k, fm+k] =

= Γ[fn+T , fm+T ] +
T−1∑
k=1

Γ[fn+k, fm+k] =
T∑

k=1

Γ[fn+k, fm+k] =

=
T−1∑
j=0

Γ[f(n+1)+j, f(m+1)+j] = Γ1[Xn+1, Xm+1].

Therefore {Xn}n∈Z is stationary Γ1 -correlated in HT .
Conversely, (ii) ⇒ (i). The process {Xn} being stationary Γ1 -correlated in HT we have

succesively:

Γ1[Xn+1, Xm+1] = Γ1[fn, fm]

T−1∑
k=0

Γ[fn+1+k, fm+1+k] =
T−1∑
k=0

Γ[fn+k, fm+k]

T∑
j=1

Γ[fn+j, fm+j] =
T−1∑
k=0

Γ[fn+k, fm+k]

T−1∑
j=1

Γ[fn+j, fm+j] + Γ[fn+T , fm+T ] = Γ[fn, fm] +
T−1∑
k=1

Γ[fn+k, fm+k].

It follows that
Γ[fn+T , fm+T ] = Γ[fn, fm],

i.e., {fn}n∈Z is periodically Γ-correlated in H.
(i) ⇒ (iii). Taking account that {fn} from H is periodically Γ-correlated with the period

T, we have

ΓT [X
T
n , X

T
m] =

(
Γ[fnT+i, fmT+j]

)
i,j∈{0,1,...,T−1}

=

=
(
Γ[fnT+i+T , fmT+j+T ]

)
i,j

=
(
Γ[f(n+1)T+i, f(m+1)T+j]

)
i,j

=

= ΓT [X
T
n+1, X

T
m+1]

and {XT
n } is stationary ΓT -correlated in HT .

(iii) ⇒ (i). If {XT
n } is stationary ΓT -correlated in HT , then for each n,m in Z we have

ΓT [X
T
n , X

T
m] = ΓT [X

T
n+1, X

T
m+1],
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i.e., the matrix equality(
Γ[fnT+i, fmT+j]

)
0≤i,j≤T−1

=
(
Γ[f(n+1)T+i, f(m+1)T+j]

)
0≤i,j≤T−1

.

It follows that for each n,m ∈ Z and 0 ≤ i, j ≤ T − 1 we have

(2.11) Γ[fnT+i, fmT+j] = Γ[fnT+i+T , fmT+j+T ].

Taking first n = m = 0 in (2.11) obtain that for 0 ≤ i, j ≤ T − 1

Γ[fi, fj] = Γ[fi+T , fj+T ].

Then for various other combinations of n and m, denotting nT +i = p ∈ Z and mT+j = q ∈ Z,
it follows that for each p, q ∈ Z we have

Γ[fi, fj] = Γ[fi+T , fj+T ],

i.e., the process {fn} ∈ H is periodically Γ-correlated.

For the study of the attached line vectors stationary processes from HT , the corresponding
operator model is necessary.

Proposition 2.2. There exists a unique (up to a unitary equivalence) imbedding X → WX of
HT into L(E,KT ) such that

(2.12) Γ1[X,Y ] = W ∗
XWY =

T∑
i=1

V ∗
xi
Vyi

where X = (x1, . . . , xT ) , Y = (y1, . . . , yT ).
The subset

{
WXa;X ∈ HT , a ∈ E

}
is dense in KT .

Proof. Taking account of the imbedding h → Vh of H into L(E,K) given by Vha = γ(a, h) and
Γ[h1, h2] = V ∗

h1
V h2, if we take

(2.13) WX =
(
Vx1 , Vx2 , . . . , VxT

)
,

then for a, b ∈ E we have WXa =
(
γ(a,x1), . . . , γ(a,xT )

)
and

(
Γ1[X,Y ]a, b

)
E
=

( T∑
i=1

Γ[xi, yi]a, b
)
E
=

( T∑
i=1

V ∗
xi
Vyia, b

)
E
.

By the fact that the usual scalar product onKT is the sum of scalar products on components,
it follows that (

W ∗
XWY a, b

)
E
=

(
WY a,WXb

)
KT

=
T∑
i=1

(
γ(a,yi), γ(b,xi)

)
K
=

=
T∑
i=1

(
Vyia, Vxi

b
)
K
=

T∑
i=1

(
V ∗
xi
Vyia, b

)
E
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and (2.12) is proved. Also,

∥WXa∥2KT =
(
WXa,WXa

)
KT

=
T∑
i=1

(
V ∗
xi
Vxi

a, a
)
E
≤

T∑
i=1

∥Vxi
∥2 · ∥a∥,

and WX is a linear bounded operator from E into KT .
If we consider another imbedding W ′ of HT into L(E,KT ) having the property (2.12), then,

if we take Φ : KT → KT given by
ΦW ′

Xa = WXa,

we have

∥ΦW ′
X∥2KT = ∥WXa∥2KT =

( T∑
i=1

V ∗
xi
Vxi

a, a
)
E
= ∥W ′

Xa∥2,

then for a, b ∈ E , WXa =
(
γ(a,x1), . . . , γ(a,xT )

)
and

(
Γ1[X,Y ]a, b

)
E
=

( T∑
i=1

Γ[xi, yi]a, b
)
E
=

( T∑
i=1

V ∗
xi
Vyia, b

)
E
.

Also,
∥WXa∥2KT =

(
WXa,WXa

)
KT ,

i.e., Φ is a unitary operator on KT . So, the imbedding X → WX of HT into L(E,KT ) is unique
(up to a unitary equivalence).

Now we are able to introduce an appropriate shift for the periodically ΓT -correlated process
{XT

n }. As we have seen, to each periodically correlated process {fn} from H we can attach
its T-shift, a unitary operator Uf on Kf

∞ such that UfVfn = Vfn+T
, where h → Vh is the usual

imbedding of H into L(E,K). Then it is easy to see that the unitary operator on (Kf
∞)T defined

by

(2.14) UT (Vf1 , Vf2 , . . . , VfT ) = (UfVf1 , UfVf2 , . . . , UfVfT )

is the shift operator attached to the statoinary ΓT -correlated process {XT
n } defined by (2.10).

Indeed,
UTWXT

n
= UT (VfnT

, VfnT+1
, . . . , VfnT+T−1

) =

= (UfVfnT
, UfVfnT+1

, . . . , UfVfnT+T−1
) =

= (VfnT+T
, VfnT+1+T

, . . . , VfnT+T−1+T
) =

= (Vf(n+1)T
, Vf(n+1)T+1

, . . . , Vf(n+1)T+T−1
) = WXT

n+1
.

It follows that
WXT

n
= UnWXT

0
.

For prediction purposes, we are interested to find the best estimation of an element from
HT with elements from a subset M = H1 × H2 × · · · × HT ⊂ HT . To do this, we need the
following Proposition.

38



Proposition 2.3. Let M be a subset of HT . If we take

(2.15) KT
1 =

∨
Z∈M

WZE,

then for each X ∈ HT there exists a unique element X ′ in HT such that for each a ∈ E we have

(2.16) WX′a ∈ KT
1 and WX−X′a ∈ (KT

1 )
⊥.

Moreover,

(2.17) Γ1[X −X ′, X −X ′] = inf
Z∈M

Γ1[X − Z,X − Z],

where the infimum is taken in the set of all positive operators from L(E).

Proof. Let WX′ = PKT
1
WX where PKT

1
is the orthogonal projection of KT on its closed subset

KT
1 . For each a ∈ E we have WX′a ∈ KT

1 and

WX−X′a =
(
γ(a,x1−x′

1)
, . . . , γ(a,xT−x′

T )

)
=

(
γ(a,x1) − γ(a,x′

1)
, . . . , γ(a,xT ) − γ(a,x′

T )

)
= WXa−WX′a = WXa− PKT

1
WXa = (I − PKT

1
)WXa ∈ (KT

1 )
⊥.

If there exists X ′′ with the property (2.16), then for each a ∈ E we have WXa = WX′′a +
WX−X′′a. It follows that WX′′a = PKT

1
WXa = Wh′a, i.e., X ′′ = X ′.

Moreover, (
Γ1[X −X ′, X −X ′]a, a

)
=

(
W ∗

X−X′WX−X′a, a
)
= ∥WX−X′a∥2 =

= ∥(I − PKT
1
)WXa∥2 = inf

K∈KT
1

∥WXa−K∥2 = inf∑n
1 WXj

aj
∥WXa−

n∑
i=1

WXj
aj∥2 =

= inf∑n
1 WXj

aj
∥WXa−W∑n

j=1 Xj
aj∥2 = inf

(
Γ1[X −

n∑
j=1

AjXj, X −
n∑

j=1

AjXj]a, a
)
=

= inf
Z∈M

(
Γ1[X − Z,X − Z]a, a

)
,

where for each finite systems {a1, . . . , an} of elements from E we choose A1, . . . , An ∈ L(E) such
that Aja = aj, j = 1, 2, . . . , n.

If we denote by PM the endomorphism of HT defined by PMX = X ′,then we have

WP2
M
X = WPMX′ = PKT

1
WX′ = P 2

KT
1
WX = PKT

1
WX = WPMX

and also,
Γ1[PMX, Y ] = W ∗

PMXWY = (PKT
1
WX)

∗WY =

= W ∗
XPKT

1
WY = W ∗

XWPMY = Γ1[X,PMY ].

Hence
P2
MX = PMX

and
Γ1[PMX,Y ] = Γ1[X,PMY ].
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Therefore we can interpret PM as an ”orthogonal” projection on M, and this will be called the
Γ1-orthogonal projection of HT on M ⊂ HT .

On the other part, let us remark that we can identifyH as the subset N = H×{0}×· · ·×{0}
in HT . From (2.13) it follows that W(h,0,...,0) = (Vh, 0, . . . , 0) and the corresponding subspace
from KT for N will be

KT
N =

∨
Z∈M

WZE = K× {0} × · · · × {0} ⊂ KT .

Considering the stationary Γ1-correlated process {Xn} ⊂ HT given by (2.9) we have

PKT
N
WXn = PKT

N
(Vfn , . . . , Vfn+T−1

) = Vfn

and follows that fn can be identified with fn = PNXn, i.e. the periodically Γ-correlated process
from H admits a stationary Γ1-correlated dilation {Xn} in HT .

Using the imbedding X → WX of HT into L(E,K)T , the corresponding subspaces of the
process from KT have the form:

(2.18) KX
n =

∨
k≤n

WXk
E (past and present),

(2.19) K̃X
n =

∨
k>n

WXk
E (future),

(2.20) KX
−∞ =

∩
n

KX
n (remote past),

(2.21) KX
∞ =

∞∨
−∞

WXnE (the space of the process).

In the following the right L(E)T×T -module
[
L(E,K)T

]T
will be considered, whose elements

will be written with capital bold face characters, to avoid the confussion with the elements from
L(E,K)T which are only capital letters.

An element
Z = (W1, . . . ,WT )

is a line vector with Wk ∈ L(E,K)T , and

Wk = (V 1
k , V

2
k , . . . , V

T
k )

with V j
k ∈ L(E,K).

A correlation of the action of L(E)T×T on
[
L(E,K)T

]T
will be done by

(2.22) ΓT [Z1,Z2] =
(
Γ1[W1j,W2k]

)T

j,k=1
,

where
W1j = (V 1

1j, . . . , V
T
1j )
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and
W2k = (V 1

2k, . . . , V
T
2k)

are from L(E,K)T .
Let {fn} be an arbitrary process in H and E be the operator of multiplying by e−2πi/T .

Taking account of the construction of the measuring space K and the action of L(E) on H (
respectively L(E,K) ) in the meaning of the right L(E)-module, to each {fn}n∈Z from H we
can attach T sequences in HT of the form

(2.23) Xk
n =

(
Eknfn, E

k(n+1)fn+1, . . . , E
k(n+T−1)fn+T−1

)
,

where k ∈ {0, 1, . . . , T − 1}.
Using the imbeddings h −→ Vh and X −→ WX of H into L(E,K), respectively HT into

L(E,K)T , we obtain T sequences in L(E,K)T taking

(2.24) Zk
n = WXk

n
; k ∈ {0, 1, . . . , T − 1},

and a sequence in
[
L(E,K)T

]T
, if we take

(2.25) Zn = 1√
T

(
Z0

n, Z
1
n, . . . , Z

T−1
n

)
.

Based on Gladyshev’s Theorem, in the following a linear predictor for periodically Γ-
correlated processes in complete correlated actions will be obtained, generalizing the scalar
case [9]. To do this, firstly we will see that the process attached by (2.25) to a periodically
Γ-correlated process {fn} from H is an explicit form of an attached stationary process.

Theorem 2.4. The process {fn} from H is periodically Γ-correlated with period T if and only

if {Zn}n∈Z from
[
L(E,K)T

]T
attached by (2.25) is a stationary ΓT -correlated process.

Proof. If {fn} from H is periodically Γ-correlated with period T, then in each element of the
matrix

ΓT [Zm,Zn] =
(

1
T
Γ1[Z

j
m, Z

k
n]
)T−1

j,k=0

we have

Γ1[Z
j
m, Z

k
n] = Γ1[WXj

m
,WXk

n
] =

=
T−1∑
p=0

Γ[Ej(m+p)Vfm+p , E
k(n+p)Vfn+p ] =

=
T−1∑
p=0

V ∗
fm+p

Vfn+pE
−j(m+p)+k(n+p) =

= V ∗
fmVfnE

−jm+kn +
T−1∑
p=1

V ∗
fm+p

Vfn+pE
−j(m+p)+k(n+p) =

= Γ[Vfm , Vfn ]E
−jm+kn +

T−1∑
p=1

Γ[Vfm+p , Vfn+p ]E
−j(m+p)+k(n+p) =
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= Γ[Vfm+T
, Vfn+T

]E−j(m+T )+k(n+T ) +
T−1∑
p=1

Γ[Vfm+p , Vfn+p ]E
−j(m+p)+k(n+p) =

=
T∑

p=1

Γ[Vfm+p , Vfn+p ]E
−j(m+p)+k(n+p) =

=
T−1∑
s=0

Γ[Vfm+s+1 , Vfn+s+1 ]E
−j(m+s+1)+k(n+s+1) =

=
T−1∑
s=0

Γ[Ej(m+1+s)Vfm+1+s , E
k(n+1+s)Vfn+1+s ] =

= Γ1[WXj
m+1

,WXk
n+1

] = Γ1[Z
j
m+1, Z

k
n+1].

This implies that
ΓT [Zm,Zn] = ΓT [Zm+1,Zn+1],

i.e., the process {Zn}n∈Z is stationary ΓT -correlated in
[
L(E,K)T

]T
.

Conversely, if {Zn}n∈Z is stationary ΓT -correlated, then each element of the ΓT -correlation
matrix verifies the relation

1
T
Γ1[Z

j
m, Z

k
n] =

1
T
Γ1[Z

j
m+1, Z

k
n+1].

Taking the element corresponding to j = k = 0 we have

Γ1[WX0
m
,WX0

n
] = Γ1[WX0

m+1
,WX0

n+1
],

T−1∑
p=0

Γ[Vfm+p , Vfn+p ] =
T−1∑
s=0

Γ[Vfm+1+s , Vfn+1+s ],

and follows (reducing the similar terms) that

Γ[Vfm , Vfn ] = Γ[Vfm+T
, Vfn+T

],

i.e., the process {fn}n∈Z is periodically Γ-correlated with the period T.

In the following we will see that for a periodically Γ-correlated process {fn}n∈Z, the station-
ary ΓT -correlated process {Zn}n∈Z defined by (2.25) verifies the conditions from Gladyshev’s
Theorem. Indeed, taking account by the coefficients of the ΓT -correlation matrix function, have
the form

Bjk(t) =
1
T
Γ1[Z

j
t , Z

k
0 ] =

1
T
Γ1[WXj

t
,WXk

0
] =

= 1
T

T−1∑
p=0

Γ[Vft+p , Vfp ]E
−j(t+p)+kp = 1

T

T−1∑
p=0

Γ(t+ p, p)E−j(t+p)+kp =

= E−jt 1
T

T−1∑
p=0

B(p, t)Ep(k−j) = E−jtBk−j(t).

42



So,
Bjk(t) = Bk−j(t) exp(2πijt/T )

and the condition of Gladyshev’s Theorem is verified.
According with the definition of the past and present given in the previous section, the past

and present of the process {Zn}n∈Z from
[
L(E,K)T

]T
will be a subspace from (KT )T given by

(2.26) KZ
n =

∨
k≤n

ZkE,

where the elements are of the form

(2.27) Z =
∑
k≤n

AkZkak,

while the action of Ak ∈ L(E)T×T being understand in the sense of the right L(E)T×T -module[
L(E,K)T

]T
.

Also for the process {Zn} from
[
L(E,K)T

]T
another “past and present” denoted by KZ

n can

be considered in KT as the linear span of the finite sums of the form

(2.28)
∑
k≤n

AkZ
j
kak ; 0 ≤ j ≤ T − 1,

or:

(2.29) KZ
n =

∨
k≤n

Zj
kE.

Due to the particular form of the stationary ΓT -correlated process attached to a periodically
Γ-correlated process, the geometry of the past and present spaces is given as in the following
theorem.

Theorem 2.5. The past and present of {Zn}n∈Z has the following structure

(2.30) KZ
n =

(
KZ

n

)T

and

(2.31) KZ
n = Kf

n ×K
f
n+1 × · · · ×K

f
n+T−1.

Proof. . For each finite linear combination from KZ
n we have in(KT )T∑

k≤n

AkZkak =
1√
T

∑
k≤n

Ak(Z
0
k , Z

1
k , . . . , Z

T−1
k )ak =

= 1√
T

∑
k≤n

(
Aij

k

)T−1

i,j=0
(Z0

k , Z
1
k , . . . , Z

T−1
k )ak =

= 1√
T

∑
k≤n

( T−1∑
j=0

Zj
kA

j0
k ak,

T−1∑
j=0

Zj
kA

j1
k ak, . . . ,

T−1∑
j=0

Zj
kA

j,T−1
k ak

)
.
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It follows that each component of the considered linear combination is of the form
∑
k≤n

T−1∑
j=0

Aji
k Z

j
kak,

i.e., belongs to KZ
n . Therefore

KZ
n ⊂ (KZ

n)
T .

Conversely, each linear combination from (KZ
n)

T has the form

Z = (Z0, Z1, . . . , ZT−1),

where

Zi =
∑
k≤n

T−1∑
j=0

Aji
k Z

j
kak,

and follows that
Z =

∑
k≤n

AkZkak ∈ KZ
n .

Therefore
(KZ

n)
T ⊂ KZ

n ,

and the equality (2.30) is proved.
To prove (2.31), let see that from the definition (2.24) of a component Zk

m, where m ≤ n,
we have

Zk
ma = WXk

m
a = (EkmVfma,E

k(m+1)Vfm+1a, . . . , E
k(m+T−1)Vfm+T−1

a)

as elements from Kf
n ×K

f
n+1 × · · · ×K

f
n+T−1. Therefore

KZ
n ⊂ Kf

n ×K
f
n+1 × · · · ×K

f
n+T−1 ⊂ KT .

Conversely, the linear combination of the form

Z =
T−1∑
j=0

E−j(m+k)Zj
ma,

where Zj
m are the components of Zm, for each m ≤ n and 0 ≤ k ≤ T − 1 has the form

Z =
T−1∑
j=0

WXj
m
E−j(m+k)a =

T−1∑
j=0

(Vfm+l
Ej(m+l−j(m+k)a)T−1

l=0 =

=
T−1∑
j=0

(Vfm+l
Ej(l−k)a)T−1

l=0 = (Vfm+la

T−1∑
j=0

Ej(l−k))T−1
l=0 = (Vfm+la · Tδlk)T−1

l=0 .

Therefore for each 0 ≤ k ≤ T − 1 we have that

{0} × · · · × {0} ×K
f
n+k × {0} × · · · × {0} ⊂ KZ

n ,

and consequently
Kf

n ×K
f
n+1 × · · · ×K

f
n+T−1 ⊂ KZ

n .

This complete the proof.
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In the following we suppose that the L(E)T×T -valued semispectral measure attached to the
ΓT -correlation function of the process {Zn} satisfies a Harnack type boundedness condition i.e.,
c−1dt ≤ F ≤ cdt. Then the inversable maximal function matrix

(2.32) Θ(λ) =
(
Θij(λ)

)T−1

i,j=0

has a bounded inverse

(2.33) Ω(λ) =
(
Ωij(λ)

)T−1

i,j=0

and the predictable part of Zn+1 can be obtained as

(2.34) Ẑn+1 =
∞∑
k=0

AkZn−k,

where the Wiener filter for prediction

(2.35) Ak =
(
Aij

k

)T−1

i,j=0

is given in terms of the coefficients of its maximal function in a similar way as in the discrete
one-parameter case.

Theorem 2.6. If {fn}n∈Z is a periodically Γ-correlated process and the predictible part of the
attached stationary ΓT -correlated process {Zn}n∈Z is given by (2.34) and (2.35), then the pre-
dictible part of {fn}n∈Z can be found as

(2.36) f̂n+1 =
∞∑
k=0

Ckfn−k, where Ck =
T−1∑
j=0

1√
T
Aj0

k Ej(n−k).

Proof. Let consider the predictible part

Ẑn+1 = (Ẑ0
n+1, Ẑ

1
n+1, . . . , Ẑ

T−1
n+1 ) =

= PKZ
n
Zn+1 = PKZ

n
(Z0

n+1, Z
1
n+1, . . . , Z

T−1
n+1 ).

Taking the zero component of Ẑn+1 we have

Ẑ0
n+1 = PKZ

n
Z0

n+1 = PKZ
n
(Vfn+1 , Vfn+2 , . . . , Vfn+T

) =

= (P
K

f
n
Vfn+1 , . . . , PK

f
n+T−1

Vfn+T
).

On the other way, using (2.34)

Ẑn+1 =
∞∑
k=0

AkZn−k =
∞∑
k=0

Aij
k

1√
T
(Z0

n−k, Z
1
n−k, . . . , Z

T−1
n−k ) =

= 1√
T

∞∑
k=0

( T−1∑
j=0

Zj
n−kA

j0
k ,

T−1∑
j=0

Zj
n−kA

j1
k , . . . ,

T−1∑
j=0

Zj
n−kA

j,T−1
k

)
=
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=
(

1√
T

∞∑
k=0

T−1∑
j=0

Zj
n−kA

j0
k , . . . , 1√

T

∞∑
k=0

T−1∑
j=0

Zj
n−kA

j,T−1
k

)
=

=
(
Ẑ0

n+1, Ẑ
1
n+1, . . . , Ẑ

T−1
n+1

)
.

It follows that

Ẑ0
n+1 =

1√
T

∞∑
k=0

T−1∑
j=0

Zj
n−kA

j0
k = 1√

T

∞∑
k=0

T−1∑
j=0

Aj0
k Zj

n−k =

=
∞∑
k=0

T−1∑
j=0

1√
T
Aj0

k WXj
n−k

=
∞∑
k=0

T−1∑
j=0

1√
T
Aj0

k

(
Ej(n−k+sVfn−k+s

)T−1

s=0
=

=
( ∞∑

k=0

T−1∑
j=0

1√
T
Aj0

k Ej(n−k+sVfn−k+s

)T−1

s=0
.

Therefore

VP
H

f
n
fn+1 = P

K
f
n
Vfn+1 =

∞∑
k=0

T−1∑
j=0

1√
T
Aj0

k Ej(n−kVfn−k
,

where P
H

f
n
is the “Γ-orthogonal projection” on the submodule Hf

n of H.
So, the corresponding operatorial Wiener filter for the prediction of a periodically Γ-correlated

process from H is given by (2.36).

As a remark, in the periodic case the prediction error

(2.37) ∆(n) = Γ[fn+1 − f̂n+1, fn+1 − f̂n+1]

will be a periodic function, not an operator like in the stationary case. Therefore we have

(2.38) ∆(n) =
T−1∑
k=0

∆k exp(2πijk/T )

and conversely, the coefficients ∆k can be obtained by

(2.39) ∆k =
1

T

T−1∑
j=0

∆(j) exp(−2πijk/T ).

The following theorem gives a characterization of the prediction error for a periodically
Γ-correlated process {fn} in terms of the coefficients of the maximal function of the attached
ΓT -correlated process {Zn}.

Theorem 2.7. The prediction error ∆(n) of a periodically Γ-correlated process {fn} has the
form

(2.40) ∆(n) =
T−1∑
k=0

DkE
−k(n+1),
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where the operator coefficients Dk ∈ L(E) are the elements from the zero line of the prediction
error matrix of the attached stationary process {Zn}, namely

(2.41) Dk =
T−1∑
s=0

Θ∗
s0Θsk,

where Θij = Θij(0) from the maximal function (2.32) of the process {Zn}.

Proof. Let ∆ be the prediction error matrix of the stationary ΓT -correlated process {Zn} at-
tached to {fn} by (2.25). Then for each n ∈ Z

∆ = ΓT [Zn+1 − Ẑn+1,Zn+1 − Ẑn+1] =
(
∆ij

)T−1

i,j=0

where the operators ∆ij are given by

∆ij =
1
T
Γ1[Z

i
n+1 − Ẑi

n+1, Z
j
n+1 − Ẑj

n+1].

As we know, if Θ(λ) is the maximal function of a stationary process, then the prediction
error is given by

(2.42) ∆ = Θ∗(0)Θ(0)

and from (2.32), putting Θij = Θij(0) we have that

(2.43) ∆ij =
T−1∑
s=0

Θ∗
siΘsj.

On the other way, from (2.39) we have

∆k =
1
T

T−1∑
j=0

∆(j)Ekj = 1
T

T−1∑
j=0

Γ[fj+1 − f̂j+1, fj+1 − f̂j+1]E
kj =

= 1
T

T−1∑
j=0

V ∗
fj+1−f̂j+1

Vfj+1−f̂j+1
Ekj = 1

T
E−k

T−1∑
j=0

V ∗
fj+1−f̂j+1

Vfj+1−f̂j+1
Ek(j+1) =

= 1
T
E−k

T−1∑
j=0

Γ[Vfj+1−f̂j+1
, Ek(j+1)Vfj+1−f̂j+1

] =

= E−k 1
T
Γ1[Z

0
1 − Ẑ0

1 , Z
k
1 − Ẑk

1 ] = E−k∆0k = E−k
T−1∑
s=0

Θ∗
s0Θsk.

It follows from (2.38) that

∆(n) =
T−1∑
k=0

E−k

T−1∑
s=0

Θ∗
s0ΘskE

−kn =
T−1∑
k=0

DkE
−k(n+1),

where

Dk =
T−1∑
s=0

Θ∗
s0Θsk,

and the proof is finished.
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3 Some more remarks

In the remaining of this paper, some geometrical aspects are analysed, especially about the
angle between the past and the future of a Γ-correlated process. Actually, the study of the
angle between the past and the future of a process is a major problem of the prediction theory.
Starting with the studies of Helson and Szegő [4] and Helson and Sarason [6], the results
was generalized in various contexts, helping in the characterization of stationary and some
nonstationary processes. Here a generalization in the stationary Γ-correlated case as in [24] is
given, and some results for periodically case are analysed.

The notions of the angles between two subspaces of a Hilbert space arise in [2] and [1],
starting from the general definition of the scalar product of two vectors into the form ⟨h, g⟩ =
∥h∥ ∥g∥ · cosα. The angle (sometimes called the Dixmier angle) between two subspaces M and
N of a Hilbert space K is given by its cosine

(3.1) ρ(M,N) := sup
{
|⟨h, g⟩| ; h ∈ M ∩BK, g ∈ N ∩BK

}
.

where BK is the unit ball of K.
In the context of a complete correlated action {E,H,Γ} the cosine between the submodules

M and N of the right L(E)-module H is given by

ρ(M,N) = sup
{
|⟨Γ[g, h]a, b⟩| ; ∥Γ[h, h]a∥ ≤ 1, ∥Γ[g, g]b∥ ≤ 1

}
,

where h ∈ M, g ∈ N, a, b ∈ E.
We say that M and N have a positive angle if ρ(M,N) < 1, or equivalently, if there exists

ρ < 1 such that for any h ∈ M, g ∈ N, a, b ∈ E

(3.2) |⟨Γ[g, h]a, b⟩E| ≤ ρ ∥Vha∥ ∥Vgb∥ .

In the study of prediction problems we are interested in the case when the angle between
past and future is positive, i.e., when ρ(n) = ρ(Hf

n, H̃
f
n) < 1, which will give the possibility of

finding the predictor.
A nice geometrical aspect of stationary Γ-correlated process is the fact that the angle be-

tween the past and future is constant.
Generalizing to stationary Γ-correlated case a result of [4] we have

Proposition 3.1. Let (fn) be a stationary Γ-correlated process in H. The angle between past
and future of (fn) is positive if and only if there exists a finite constant C which depends only
by (fn) such that for each element of the form

∑
Vfnan from the time domain Kf

∞ and for each
−∞ ≤ n1 ≤ n2 < ∞ we have

(3.3)

∥∥∥∥∥
n2∑

k=n1

Vfkak

∥∥∥∥∥ ≤ C
∥∥∥∑Vfkak

∥∥∥ ,
where in the second term the sum has finitely many non-zero elements.

Proof. It is known [4] that for two subspacesM andN from a Hilbert space we have ρ(M,N) < 1
if and only if there exists a finite constant C such that ∥x∥ ≤ C ∥x+ y∥ for x and y generators
in M and N, respectively. Therefore for any sum of the form

∑
Vfnan from the time domain
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Kf
∞, taking into account that ρ(Hf

n, H̃
f
n) < 1, we have∥∥∥∥∥∑

k≤n

Vfkak

∥∥∥∥∥ ≤ C

∥∥∥∥∥∑
k≤n

Vfkak +
∑
k>n

Vfkak

∥∥∥∥∥ = C
∥∥∥∑Vfkak

∥∥∥ ,
where

∑
Vfkak has finitely many non-zero elements. Since (fn) is stationary Γ-correlated, for

any m ∈ Z we have∥∥∥∥∥∑
k≤m

Vfkak

∥∥∥∥∥
2

K

=

⟨∑
k≤m

Vfkak,
∑
p≤m

Vfpap

⟩
=

∑
k,p≤m

⟨
V ∗
fpVfkak, ap

⟩
E
=

=
∑

k,p≤m

⟨Γ[fp, fk]ak, ap⟩ =
∑

k,p≤m

⟨
Γ[fp−(m−n), fk−(m−n)]ak, ap

⟩
=

=
∑
i,j≤n

⟨Γ[fj, fi]ai, aj⟩ =

∥∥∥∥∥∑
k≤n

Vfkak

∥∥∥∥∥
2

K

≤ C2
∥∥∥∑Vfkak

∥∥∥2

K
.

Therefore ∥∥∥∥∥
n2∑

k=n1

Vfkak

∥∥∥∥∥ =

∥∥∥∥∥∑
k≤n2

Vfkak −
∑
k<n1

Vfkak

∥∥∥∥∥ ≤

≤

∥∥∥∥∥∑
k≤n2

Vfkak

∥∥∥∥∥+

∥∥∥∥∥∑
k≤n1

Vfkak

∥∥∥∥∥ ≤ 2C
∥∥∥∑Vfkak

∥∥∥
and (3.3) is proved.

Based on the previous result, the property of representing the elements from the time domain
of a process as a series (Schauder basis) was generalized for Γ-correlated processes [24] as follows

Proposition 3.2. The angle between past and future of a stationary Γ-correlated process (fn)
is positive if and only if each element k from the time domain Kf

∞ can be uniquely represented

in the form k =
∞∑

n=−∞
kn where kn are elements from VfnE.

We have seen that each periodically Γ-correlated process (fn)n∈Z from H has a stationary
Γ1-correlated dilation (Xn) in HT and an explicit stationary dilation can be constructed to help
in obtaining the Wiener filter for prediction and the prediction-error operator function for a
periodically Γ-correlated process, in terms of the operator coefficients of its attached maximal
function. This stationary dilation preserves the positivity of the angle between the past and
the future of the considered periodically Γ-correlated process.

Proposition 3.3. If (fn) from H is a periodically Γ-correlated process with a positive angle
between its past and future, then the angle between the past and the future of its stationary
Γ1-correlated dilation (Xn) from HT it is also positive.

Proof. If (fn) from H is a periodically Γ-correlated process having a positive angle between its
past and future, then at each time t = n there exists ρ(n) < 1 such that

|⟨Γ[g, h]a, b⟩E| ≤ ρ(n) ∥Vha∥ ∥Vgb∥
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for each h ∈ Hf
n and g ∈ H̃f

n. For each element X =
∑
k≤n

AkXk from the past HX
n and

Y =
∑
p>n

BpXp from the future H̃X
n of the Γ1-correlated process (Xn) given by (2.9), and for

any a, b ∈ E we have

|⟨Γ1[X, Y ]a, b⟩E| =

∣∣∣∣∣∣
⟨
Γ1

[∑
p>n

BpXp,
∑
k≤n

AkXk

]
a, b

⟩
E

∣∣∣∣∣∣ =
=

∣∣∣∣∣∑
p>n

∑
k≤n

⟨Γ1[BpXp, AkXk]a, b⟩E

∣∣∣∣∣ =
=

∣∣∣∣∣∑
p>n

∑
k≤n

T−1∑
i=0

⟨Γ[Bpfp+i, Akfk+i]a, b⟩E

∣∣∣∣∣ =
=

∣∣∣∣∣∑
p>n

∑
k≤n

T−1∑
i=0

⟨
B∗

pΓ[fp+i, fk+i]Aka, b
⟩
E

∣∣∣∣∣ =
=

∣∣∣∣∣∣
T−1∑
i=0

⟨
Γ
[∑

p>n

Bpfp+i,
∑
k≤n

Akfk+i

]
a, b

⟩
E

∣∣∣∣∣∣ ≤
≤

T−1∑
i=0

ρi(n)

∥∥∥∥∥∑
k≤n

Akfk+ia

∥∥∥∥∥
∥∥∥∥∥∑
p>n

Bpfp+ib

∥∥∥∥∥ ≤

≤ ρ(n)
T−1∑
i=0

∥∥∥∥∥∑
k≤n

Akfk+ia

∥∥∥∥∥
∥∥∥∥∥∑
p>n

Bpfp+ib

∥∥∥∥∥ ≤

≤ ρ(n)
( T−1∑

i=0

∥∥∥∥∥∑
k≤n

Akfk+ia

∥∥∥∥∥
2 )1/2( T−1∑

i=0

∥∥∥∥∥∑
p>n

Bpfp+ib

∥∥∥∥∥
2 )1/2

=

= ρ

∥∥∥∥∥∑
k≤n

AkWXk
a

∥∥∥∥∥
∥∥∥∥∥∑
p>n

BpWXpb

∥∥∥∥∥ = ρ ∥WXa∥ ∥WY b∥ ,

where ρ(n) is the maximum of ρi(n) < 1; i = 0, 1, . . . , T − 1, and we used the embedding
X → WX of HT into L(E,KT ) and the fact that ρ(n) = ρ for stationary Γ1-correlated proces
(Xn). Therefore |⟨Γ1[X, Y ]a, b⟩E| ≤ ρ ∥WXa∥ ∥WY b∥ for each X ∈ HX

n , Y ∈ H̃X
n , and the angle

between the past and the future of the stationary Γ1-correlated dilation (Xn) is positive.

Another angle between two subspaces M1 and M2 of a Hilbert space K is the Friedrichs
angle [2] defined to be the angle in [0, π/2] whose cosine is given by

(3.4) c(M1,M2) := sup{|⟨k1, k2⟩| ; ki ∈ Mi ∩M⊥ ∩BK, i ∈ {1, 2}},

where M = M1 ∩M2 and BK is the unit ball of K.
By (3.1) and (3.4) it follows that c(M1,M2) ≤ ρ(M1,M2). Obviously we have c(M1,M2) =

ρ(M1 ∩ M⊥,M2 ∩ M⊥), and of course c(M1,M2) = c(M⊥
1 ,M

⊥
2 ). More geometrical aspects

and generalizations of the angles between the past and the present of periodically Γ-correlated
processes can be found in [24].
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