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Abstract

The paper continues the series of presentations started with [17], showing a way to
extend the prediction problems to the infinite dimensional case. Stationary Γ-correlated
processes with continuous time parameter are analyzed. Various types of continuities for
Γ-correlated processes are considered, and via the attached shift group to a continuous
time parameter process a time-domain analysis and a spectral analysis are done. Using
a discretization procedure, some discrete time techniques can be applied in the study
of continuous parameter Γ-correlated processes. Also some nonstationary Γ-correlated
processes are considered and relations between the Γ-periodicity and Γ-harmonizability
of a continuous time parameter process are analyzed.
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1 Preliminaries

Let L(E) be the C∗-algebra of all linear bounded operators on a separable Hilbert space E, and
H a right L(E)-module. An action of L(E) on H is given considering Ah := hA in the sense
of the right L(E)-module. The action of L(E) on H is correlated if there exists a function (the
correlation of the action) Γ : H ×H into L(E) given by (h, g) → Γ[h, g], such that

(i) Γ[h, h] ≥ 0, Γ[h, h] = 0 implies h = 0;
(ii) Γ[g, h] = Γ[h, g]∗;
(iii) Γ[h,Ag] = Γ[h, g]A
A triplet {E,H,Γ} defined as above was called [8] a correlated action of L(E) on H.
An example of correlated action can be constructed as follows. Take H = L(E,K) – the

space of the linear bounded operators from E into K, where E and K are Hilbert spaces. An
action of L(E) on L(E,K) is given if we consider AV := V A for each A ∈ L(E) and V ∈ L(E,K).
It is easy to see that Γ[V1, V2] = V ∗

1 V2 is a correlation of the action of L(E) on L(E,K), and the
triplet {E,L(E,K),Γ} is a correlated action. In [8] was proved that for any correlated action
{E,H,Γ} there exists a Hilbert space K and an algebraic imbedding h → Vh of H into L(E,K).
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Such a way, if we consider as the state space to be a right L(E)-module H, the behaviour of a
process {ft}t∈G from H can be studied knowing the behaviour of the operatorial process {Vft}
from L(E,K). The corresponding space K is called the measuring space and E is the parameter
space. If the algebraic imbedding of H into L(E,K) is onto, then the correlated action {E,H,Γ}
is a complete correlated action.

Since in H we have not a proper orthogonal projection on a right L(E)-submodule, a Γ-
orthogonal projection was constructed, using the following Proposotion, helping to solve specific
prediction problems.

Proposition 1.1. Let H1 be a submodule in the right L(E)-module H and

(1.1) K1 =
∨

x∈H1

VxE ⊂ K.

For each h ∈ H there exists a unique element h1 ∈ H such that for each a ∈ E we have

(1.2) Vh1a ∈ K1 and Vh−h1a ∈ K⊥
1 .

Moreover, we have

(1.3) Γ[h− h1, h− h1] = inf
x∈H1

Γ[h− x, h− x],

where the infimum is taken in the set of all positive operators from L(E).

For a complete proof see e.g. [9] or [10].
Due the properties (1.2) and (1.3), if we denote the unique element h1 ∈ H by h1 = Ph, we

have P2 = P and Γ[Ph, g] = Γ[h,Pg]. Therefore P is a Γ-orthogonal projection ”on” the right
L(E)-submodule H1 of H.

To extend the finite multivariate prediction to the infinite variate case, the main investiga-
tion tools was the using of L2-bounded analytic functions instead of bounded analytic functions,
and a study of L(E)-valued semispectral measures. An L(E)-valued semispectral measure is a
map σ → F (σ) from the family B(T) of Borel subsets of the unit torus T from the complex plane
C into L(E) such that for any a ∈ E the map σ → ⟨F (σ)a, a⟩ is a positive Radon measure on T.
An L2-bounded operator valued analytic function is an analytic function Θ(λ) =

∑∞
n=0Θnλ

n

on the open unit disc D, where the operator coefficients Θn ∈ L(E,F), such that there exists
M > 0 verifying

(1.4)
∞∑
n=0

∥Θnh∥2 dt ≤ M2 ∥h∥2 (h ∈ H)

or equivalently,

(1.5) sup
0≤r<1

1

2π

2π∫
0

∥∥Θ(reit)h
∥∥2

dt ≤ M2 ∥h∥2 (h ∈ H).

An operator valued analytic function is denoted usually by a triplet {E,F,Θ(λ)}. Also
a central role in the study of infinite variate Γ-stationary processes played the generalized
Lowdenslager–Sz.-Nagy–Foiaş factorization theorem, which attach to each semispectral measure
F a maximal outer L2-bounded function, so called the maximal function of F . For detailles see
[9].
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2 Γ-correlated processes

A Γ-correlated process {ft}t∈G is a sequence in H, where G is Z, R, a locally compact group
or a hypergroup. To a process {ft}t∈G from H a correlation function is attached by

(2.1) Γf (s, t) = Γ[fs, ft].

Also, for two processes {ft}t∈G and {gt}t∈G a cross-correlation function is attached by

(2.2) Γfg(s, t) = Γ[fs, gt].

If the correlation function depends only on the difference t − s, not on s and t separately,
then the process {ft}t∈G is called Γ-stationary, otherwise the process is a nonstationary one.
Similarly, if the cross-correlation function Γfg(s, t) depends only on the difference t − s, then
{ft}t∈G and {gt}t∈G are stationary cross-correlated processes. Of course, in the Γ-stationary
case (2.1) becomes

(2.3) Γf (t) = Γ[f0, ft].

If G = Z, then {fn}n∈Z ∈ H is a discrete Γ-stationary process and an exhaustive prediction
study can be found e.g. in [9], [10]. In the continous case (G = R) some investigations for
Γ-correlated processes was done in [12].

For a Γ-correlated process (not necessary stationary) the past-present at the moment t is
the right L(E)-submodule

(2.4) H
f
t =

{∑
k

Akfk; Ak ∈ L(E), k ≤ t
}
,

the future is

(2.5) H̃
f
t =

{∑
k

Akfk; Ak ∈ L(E), k > t
}
,

the remote past

(2.6) H
f
−∞ =

∩
t

H
f
t ;

and the time domain is

Hf
∞ =

{∑
k

Akfk; Ak ∈ L(E), k ∈ R
}
.

By the embedding h → Vh of H into L(E,K), for the corresponding past, remote past, and
the future from H will correspond the closed subspaces of K given by

(2.7) K
f
t =

∨
j≤t

VfjE,

(2.8) K
f
−∞ =

∩
t

K
f
t ,
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(2.9) K̃
f
t =

∨
j>t

VfjE,

respectively, and the time domain becomes

Kf
∞ =

∨
j∈R

VfjE.

In this paper we are mainly interested in the study of processes {ft}t∈R in the context of a
complete correlated action {E,H,Γ}.

A process {ft}t∈R is said to be norm, strongly, or weakly continuous, if t → Vft is norm,
strongly, or weakly continuous in L(E,K). The process {ft}t∈R is bounded if there is a positive
constant M > 0 such that ∥Vft∥ ≤ M for t ∈ R.

To a process {ft}t∈R an operatorial valued correlation function Γ(s, t) is attached by (2.1),
and for any a, b ∈ E a scalar correlation function Γ̃ab(s, t) : R× R → C is defined by

(2.10) Γ̃ab(s, t) = ⟨Γ(s, t)a, b⟩E .

Proposition 2.1. The process {ft}t∈R ∈ H is strongly continuous if and only if far any a, b ∈ E

the scalar correlation function Γ̃ab(s, t) is continuous.

Proof. We have only to see that∣∣∣Γ̃ab(s+ u, t+ v)− Γ̃ab(s, t)
∣∣∣ = |⟨Γ[fs+u, ft+v]a, b⟩E − ⟨Γ[fs, ft]a, b⟩E| ≤

≤ |⟨Γ[fs+u − fs, ft+v]a, b⟩E|+ |⟨Γ[fs, ft+v − ft]a, b⟩E| ≤

≤ [∥Γ[fs+t − fs, ft+v]a∥+ ∥Γ[fs, ft+v − ft]a∥] ∥b∥ =

= [
∥∥V ∗

fs+t−fsVft+va
∥∥+

∥∥V ∗
fsVft+v−fta

∥∥] ∥b∥ ≤

≤ [
∥∥(Vfs+u − Vfs)

∗Vft+va
∥∥+ ∥Vfs∥

∥∥Vft+va− Vfta
∥∥] ∥b∥ → 0

as u, v → 0.
Conversely, if Γ̃ab(s, t) is a continuous function on R×R for any a, b ∈ E, then for any u ∈ R

we have ∥∥Vft+ua− Vfta
∥∥2

K
=

⟨
Vft+ua− Vfta, Vft+ua− Vfta

⟩
K
=

=
⟨
Vft+ua, Vft+ua

⟩
−

⟨
Vft+ua, Vfta

⟩
−
⟨
VVft

a, Vft+ua
⟩
+ ⟨Vfta, Vfta⟩ =

=
⟨
V ∗
ft+u

Vft+ua, a
⟩
−

⟨
V ∗
ftVft+ua, a

⟩
−
⟨
V ∗
ft+u

Vfta, a
⟩
+
⟨
V ∗
ftVfta, a

⟩
=

= ⟨Γ(t+ u, t+ u)a, a⟩ − ⟨Γ(t, t+ u)a, a⟩ − ⟨Γ(t+ u, t)a, a⟩+ ⟨Γ(t, t)a, a⟩ =

= Γ̃aa(t+ u, t+ u)− Γ̃aa(t, t+ u)− Γ̃aa(t+ u, t) + Γ̃aa(t, t) → 0

as u converges to zero.

Proposition 2.2. If {ft}t∈R is a weakly continuous process, then for any a, b ∈ E the scalar
correlation function Γ̃ab(s, t) is separately continuous on R× R.

Conversely, if {ft}t∈R is bounded and Γ̃ab(s, t) is separately continuous on R × R, then
{ft}t∈R is weakly continuous.
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Proof. Obviously we have∣∣∣Γ̃ab(s+ u, t)− Γ̃ab(s, t)
∣∣∣ = |⟨Γ(s+ u, t)a, b⟩E − ⟨Γ(s, t)a, b⟩E| =

=
⟨
V ∗
fs+u

Vfta, b
⟩
E
−

⟨
V ∗
fsVfta, b

⟩
E
=

⟨
(Vfs+u − Vfs)

∗Vfta, b
⟩
E
=

=
⟨
Vfta, (Vfs+u − Vfs)b

⟩
K
→ 0

as u → 0.
Analogously we have that for any a, b ∈ E and v ∈ R∣∣∣Γ̃ab(s, t+ v)− Γ̃ab(s, t)

∣∣∣ → 0

as v → 0.
If {ft}t∈R is bounded and for any a, b ∈ E the scalar correlation function Γ̃ab(s, t) is separately

continuous, then for s ∈ R the function Γ̃ab(·, s) is continuous, and for any y =
n∑

j=1

αjVfsj
b from

Kf
∞ the function

⟨Vf.a, y⟩K =
n∑

j=1

αj

⟨
Vf.a, Vfsj

b
⟩
=

n∑
j=1

αjΓ̃ab(·, sj)

is continuous. Choosing in Kf
∞ a sequence {kn}∞n=1, where kn =

n∑
j=1

αn,jVfsn,j
b, such that

∥kn − y∥K → 0, and taking account that Γ̃ab(·, t) is continuous, then ⟨Vf.a, y⟩K = lim
n→∞

⟨Vf.a, kn⟩K,
which is a uniform limit since {ft} is bounded. Therefore {ft} is weakly continuous.

3 The shift group

Two continuous parameter Γ-stationary processes {ft} and {gt} are cross-correlated if Γ[ft, gs]
depends only on the difference s− t. The cross-correlation function is given by

(3.1) Γfg(t) = Γ[fs, gs+t].

Proposition 3.1. For any Γ-stationary process {ft} there exists a unique group of unitary
operators (U f

t )t∈R on Kf
∞ such that

(3.2) Vft = U f
t Vf0 .

Two continuous parameter Γ-stationary processes {ft} and {gt} are stationatily cross-correlated
if and only if there exists a group of unitary operators (Wt)t∈R on

Kfg
∞ = Kf

∞

∨
Kg

∞

such that
Wt|Kf

∞ = U f
t and Wt|Kg

∞ = U g
t .
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The proof runs parallel to that in the discrete case [14] and is omitted.
The group of unitary operators (U f

t )t∈R is called the shift group of the process {ft}, and
(Wt)t∈R is the extended shift group of the cross-correlated processes {ft} and {gt}. As in the
discrete case, let us denote

Vf = Vf0 ∈ L(E,K).

Then for any a ∈ E we have

Vfa = P
K

f
∞
Vfa+ (I − P

K
f
∞
)Vfa = V1a+ V2a.

By (3.2) it follows that UtV2a is the part of Vfta orthogonal to Kf
∞ for t ∈ R, and

M =
∨
t

UtV2E

is a subspace in Kf
∞ orthogonal to K

f
t . Hence M is orthogonal to K

f
−∞. If

N = Kf
∞ ⊖ (Kf

−∞ ⊕M),

then

(3.3) Kf
∞ = K

f
−∞ ⊕M⊕N.

When only one term of (3.3) is different from {0}, then the process is pure, Namely, if

(3.4) Kf
∞ = K

f
−∞,

then {ft} is a purely deterministic process. If we have

(3.5) Kf
∞ = M,

then {ft} is a purely discrete innovation process , and if

(3.6) Kf
∞ = N,

then the process {ft} is a purely continuous innovation, or evanescent.
The Γ-stationary process {ft}t∈R is called continuous, if the corresponding shift group

(U f
t )t∈R is a continuous one parameter group of unitary operators on Kf

∞ for t converging
to zero. When no confusion is made, for simplicity, the shift group is denoted with (Ut).

It is obvious that in the continuous case for any a ∈ E we have

Vfta ∈ K
f
t ,

and the form of the past-present subspace becomes

K
f
t =

∨
s≤0

UsVfE,

also M = {0}, which implies that

(3.7) Kf
∞ = K

f
−∞ ⊕N.

In this paper we consider a Γ-stationary process {ft}t∈R to be continuous, and using the
results from the discrete case, a study is made.
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4 Time-domain analysis

If U is the cogenerator of the shift group, then U is a unitary operator on Kf
∞. Putting

(4.1) Vf ′
n
= UnVf ,

we obtain a discrete parameter Γ-stationary process {f ′
n}n∈Z which has U as the shift operator.

The process {f ′
n}n∈Z obtained as above is called the discrete process associated with {ft}t∈R.

Theorem 4.1. Let {ft}t∈R be a continuous Γ-stationary process and {f ′
n}n∈Z be the associated

discrete parameter process. Then

(4.2) K
f ′

0 = K
f
0 , Kf ′

∞ = Kf
∞ and K

f ′

−∞ = K
f
−∞.

Proof. Generally the proof follows [5]. There exists the following expressions of Ut in term of
its cogenerator U .

(4.3) U±t = e−itI + lim
n→∞

n∑
k=1

(1/k!)(−nt/n+ 1)k[(I + A±n)
k − I],

where

A±n =
2n

n+ 1

∞∑
j=1

(n− 1/n+ 1)j−1U±j, n ≥ 0.

Conversely, U in terms of Ut can be expressed as

(4.4) U±n = I + 2

∫ ∞

0

L′
n(2t)e

−tU±tdt, n ≥ 0,

where Ln(t) are the Laguerre polynomials

Ln(t) =
n∑

k=1

(−1)k/k!

(
n
k

)
tk, n ≥ 0.

From (4.3) and (4.4) it follows that Ut can be seen as a strong limit of U and conversely. It
follows that for any subset A ⊂ Kf

∞ one has

(4.5)
∞∨
n=0

U±nA =
∨
t≥0

U±tA.

If A = V E, then K
f ′

0 = K
f
0 and

Kf ′

∞ = K
f ′

0

∨( ∞∨
n=0

UnVfE
)
= K

f
0

∨(∨
t≥0

UtVfE
)
= Kf

∞.

Also, taking A = K
f
−∞ it results that for any k ≥ 0

UkK
f
−∞ ⊂

∞∨
0

UnK
f
−∞ =

∨
t≥0

UtK
f
−∞ = K

f
−∞.
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It follows that for any k ≥ 0 we have

K
f
−∞ ⊆ U±kK

f
−∞ ⊆ U±kK

f
0 = U±kK

f ′

0 = K
f ′

−k.

Hence
K

f
−∞ ⊆

∩
k≥0

K
f ′

−k =
∩
k≤0

K
f ′

k = K
f ′

−∞.

To obtain the converse inclusion, for any t ≥ 0 we have

UtK
f ′

−∞ ⊆
∨
s≥0

UsK
f ′

−∞ =
∞∨
n=0

UnK
f ′

−∞ = K
f
−∞.

It follows that
K

f ′

−∞ ⊆ U−tK
f ′

−∞ ⊆ U−tK
f ′

0 ⊆ U−tK
f
0 = K

f
−t.

Hence
K

f ′

−∞ ⊆
∩
t≤0

K
f
t = K

f
−∞.

Therefore K
f ′

−∞ = K
f
−∞ and the proof is finished.

As an obvious consequence we obtain that the continuous Γ-stationary process {ft} is de-
terministic if and only if the associated discrete parameter process is a deterministic one.

Let {g′n} be the maximal white noise contained in the discrete process {f ′
n} associated to

{ft}, and f ′
n = u′

n + v′n be the Wold decomposition of {f ′
n}. Then we have

(4.6) Kf ′

n = Kg′

n ⊕K
f ′

−∞

and
Kf ′

∞ = Kg′

∞ ⊕K
f ′

−∞,

where Kg′
∞ = M coincides with the innovation space of {f ′

n}.
Suppose that {ft} is not deterministic and put

(4.7) Vgt = UtVg′ (t ∈ R),

where Vg′ = Vg′0
. The continuous Γ-stationary process {gt} defined by (4.7) has as a shift group

(Ut) and associated discrete parameter process {g′n} - the maximal white noise contained in
{f ′

n}. Let us consider the following subspaces of Kf
t

(4.8) Nt = K
f
t ⊖K

f
−∞.

From (4.2) and (4.6), taking t = 0 in (4.8) we have

(4.9) N0 = K
f
0 ⊖K

f
−∞ = K

f ′

0 ⊖K
f ′

−∞ = K
g′

0 = K
g
0.

Using again (4.5) it follows that

Nt = UtN0 = UtK
g
0 =

∨
s≤0

Ut+sVgE =
∨
s≤t

UsVgE = K
g
t .

Summing up we have
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Proposition 4.2. Let {ft} be a nondeterministic Γ-stationary process with the shift group (Ut)
and {f ′

n} the associated discrete parameter process. Then

Vgt = UtVg

gives rise to a continuous Γ-stationary process {gt} which is stationarly cross-correlated with
{ft} and has the past and present given by

(4.10) K
g
t = K

f
t ⊖K

f
−∞.

Proposition 4.3. For the continuous Γ-stationary process {gt} one has

(4.11) PK
g
s
Vgt = es−tVgs (s < t ∈ R)

and the corresponding correlation function is given by

(4.12) Γg(t) = e−|t|Γg(0) (t ∈ R).

Proof. Let us consider t ≥ 0. Then by (4.3) we have

Vgt = e−tVg′ + lim
n→∞

∞∑
k=1

(1/k!)(−nt/n+ 1)k[(I + An)
k − I]Vg′ .

Since Vg′j
= U jVg′ is a white noise process it follows that

Vgt = e−tVg′ + ηt,

where ηta is orthogonal to Vg′a, Vg′−1
a, . . . . It follows that ηta is orthogonal on K

g′

0 . Hence

e−tVg′ = PK
g
0
Vgt (t ≥ 0),

and so it follows that (using the fact that Vg′ = Vg)

(4.13) e−tVgs = PK
g
s
Vgs+t (s ∈ R, t ≥ 0)

Taking s+ t = τ it follows that
PK

g
s
Vgτ = es−τVgs .

Now, for any a ∈ E, from (4.13) we have(
Γg(t)a, a

)
=

(
Γ[gs, gs+t]a, a

)
=

(
V ∗
gsVgs+ta, a

)
=

(
Vgs+ta, Vgsa

)
=

=
(
PK

g
s
Vgs+ta, Vgsa

)
=

(
e−tV ∗

g a, a
)
=

(
e−tΓg(0)a, a

)
.

Therefore we have for any t ≥ 0
Γg(t) = e−tΓg(0)

For t ≤ 0 one proceeds analogously and it follows that

Γg(t) = e−|t|Γg(0) (t ∈ R)

and the proof is finished.
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By the continuous Γ-stationary process {gt} obtained from the maximal white noise con-
tained in the associated discrete process of {ft}, one constructs a process {ξt} as follows

(4.14) Vξt =
1√
2
[Vgt − Vg +

∫ 2π

0

Vgsds] (t ∈ R).

This process has Γ-orthogonal increments which will play the role of the differential innovation
of the continuous Γ-stationary process {ft}. Firstly let us remark that ξ0 = 0 and for any real
a and b we have

(4.15) Vξb−ξa = 1√
2
[Vgb − Vga +

∫ b

a

Vgsds].

Proposition 4.4. Let {ξt} be the process defined by (4.14). Then
(i) {ξt} has increments which are stationary under the group (Ut), i.e.

UtVξb−ξa = Vξb+t
− Vξa+t (a, b, t ∈ R).

(ii) {ξt} has Γ-orthogonal increments, i.e., if −∞ < a < b ≤ c < d < +∞, then Γ[ξb −
ξa, ξd − ξc] = 0 .

(iii) For any real a, b one has

Γ[ξb − ξa, ξb − ξa] = |b− a|Γg(0)

.
(iv) If −∞ < a < c < b < d < +∞, then

Γ[ξb − ξa, ξd − ξc] = Γ[ξb − ξc, ξb − ξc] = (b− c)Γg(0).

Proof. The assertion (i) follows from (4.15). To prove (ii) the form of the correlation function
and (4.15) are used. If < a < b ≤ c < d then

2Γ[ξb − ξa, ξd − ξc] = Γ
[
Vgb−ga +

∫ b

a

Vgsds, Vgd−gc +

∫ d

c

Vgtdt
]
=

=
[(
eb−d − eb−c +

∫ d

c

eb−tdt
)
−

(
ea−d − ea−c +

∫ d

c

ea−tdt
)
+

+

∫ b

a

(
es−d − es−c +

∫ d

a

es−tdt
)
ds

]
Γg(0) = 0.

This followed by the fact that each expression in (· · · ) is zero. Hence {ξt} is a process with
Γ-orthogonal increments.

For (iii), suppose firstly that 0 = a < b. Using again (4.12) we obtain

2Γ[ξb − ξ0, ξb − ξ0] = Γ
[
Vgb−g0 +

∫ b

0

Vgsds, Vg0−g0 +

∫ b

0

Vgtdt
]
=

= Γg(0)
[
1− e−b +

∫ b

0

et−bdt− e−b + 1−
∫ b

0

e−tdt+

+

∫ b

0

(
es−b − e−s +

∫ b

0

e−|t−s|dt
)
ds

]
=
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=
[
2(1− e−b) +

∫ b

0

( ∫ s

0

et−sdt+

∫ b

s

es−tdt
)
ds

]
Γg(0) =

=
[
2(1− e−b) + 2b+ 2(e−b − 1)

]
Γg(0) = 2bΓg(0),

i.e. it results that
Γ[ξb − ξa, ξb − ξa] = bΓg(0).

From (i), for a < b one has

Γ[ξb − ξa, ξb − ξa] = Γ[UaVξb−a−ξ0 , UaVξb−a−ξ0 =

= Γ[ξb−a − ξ0, ξb−a − ξ0] = (b− a)Γg(0).

Results for a > b follows analogously, and (iii) is verified.
If −∞ < a < c < b < d < +∞ then, taking account of the Γ-orthogonal increments we

have
Γ[ξb − ξa, ξd − ξc] = Γ[ξb − ξc + ξc − ξa, ξd − ξb + ξb − ξc] =

= Γ[ξb − ξc, ξd − ξb] + Γ[ξb − ξc, ξb − ξc] + Γ[ξc − ξa, ξd − ξb]+

+Γ[ξc − ξa, ξb − ξc] = Γ[ξb − ξc, ξb − ξc] = (b− c)Γg(0),

and the proof is finished.

By (4.14) we have an expression for ξt in terms of the continuous process {gt} corresponding
to the maximal white noise contained in the associated discrete process of {ft}. In the next
Proposition an inverse is obtained.

Proposition 4.5. For any a ∈ E we have

(4.16) Vgta =
√
2
(
Vξta−

∫ t

−∞
es−tVξsads

)
=

√
2

∫ t

−∞
es−tdVξsa.

Proof. From the strong continuity of the group (Ut) and the definition of {gt} it follows that
t → Vξt is an operator valued continuous function, and, consequently, for any a ∈ E, t → Vξta is

a continuous function. Hence for −∞ < α < β ≤ t, the Rieman integral
∫ β

α
es−tVξsads exists.

By the fact that∥∥∥∥∫ β

α

es−tVξsads

∥∥∥∥ ≤
∫ β

α

es−t ∥Vξsa∥ ds =
∫ β

α

es−t
√
(Γ[ξs, ξs]a, a)ds ≤

≤ Γg(0)
1/2 ∥a∥

∫ β

α

es−t
√
sds,

it follows that the integral
∫ t

−∞ es−tVξsdt is convergent. If we take t = 0, then

√
2

∫ 0

−∞
esVξ0−ξsads = −

∫ 0

−∞
es
(
Vgs−g0a+

∫ s

0

Vgτadτ
)
ds

= Vg0a−
∫ 0

−∞
esVgsads+ Vg0a+

∫ 0

−∞

∫ 0

s

esVgτadτds =
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= Vg0a−
∫ 0

−∞
esVgsads+

∫ 0

−∞

∫ 0

−∞
esVgτadsdτ =

= Vg0a−
∫ 0

−∞
esVgsads+

∫ 0

−∞

(∫ 0

−∞
esds

)
Vgτadτ =

= Vg0a−
∫ 0

−∞
esVgsads+

∫ 0

−∞
eτVgτadτ = Vg0a.

Therefore

(4.17) Vg0a =
√
2

∫ 0

−∞
es(Vξ0 − Vξs)ads.

Applying Ut in (4.17) it follows that

Vgta =
√
2
(∫ 0

−∞
esVξtads−

∫ 0

−∞
esVξs+tads

)
=

=
√
2
(
Vξta−

∫ 0

−∞
esVξs+tads

)
=

√
2
(
Vξta−

∫ t

−∞
es−tVξsads

)
.

This way, the first part of (4.16) is proved. The second part it follows by integrating by
parts. ∫ t

−∞
es−tdVξsa =

[
es−tVξs

]s=t

s→−∞ −
∫ t

−∞
Vξsads(e

s−t) =

= Vξta−
∫ t

−∞
es−tVξsads,

and the proof is finished.

As a remark, for any complex valued function c ∈ L2(−∞,+∞), the integral
∫ +∞
−∞ c(s)dVξsa

exists. This yelds an expression for the past and present of the continuous process {gt} in terms
of the orthogonal increments.

Proposition 4.6. For any real t, the past and present Kg
t of the Γ-stationary process {gt} is

the set of all integrals of the form
∫ +∞
−∞ c(s)dVξsa, where a ∈ E and c ∈ L2(−∞, t], i.e.,

(4.18) K
g
t =

∨
σ,τ≤t

Vξσ−ξτE.

Proof. Let Kt be the set of all the integrals of the above form. By Proposition 4.5 it follows
that for any a ∈ E and −∞ < τ ≤ t < +∞ we have

Vgτa =
√
2

∫ τ

−∞
es−τdVξsa =

∫ τ

−∞
c(s)dVξsa,

where c(s) =
√
2es−τ on (−∞, τ ] and c(s) = 0 on (τ, t]. Because c is from L2(−∞, t] it follows

that Vgτ ∈ K
ξ
t . Therefore

K
g
t =

∨
τ≤t

VgτE ⊆ K
ξ
t .
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Conversely, let us consider the elements of the form

(4.19) k =

∫ t

−∞
c(s)dVξsa,

where c ∈ L2(−∞, t] and a ∈ E. Let us take first step functions, i.e.,

c(s) =
n∑

k=1

ckxJk(s),

where Jk = [αk, βk] ⊂ (−∞, t]. Then

k =
n∑

k=1

ck
(
Vξβ(k)a− Vξα(k)

a
)
,

and from (4.15) it follows that k ∈ K
g
t . Now, let c ∈ L2(−∞, t] where c = limn→∞ c(n), and c(n)

are step functions. it follows that

k = lim
n→∞

∫ t

−∞
c(n)(s)dVξsa

and, sinceKg
t is closed, it follows that k ∈ K

g
t . ThereforeK

ξ
t ⊆ K

g
t , and the proof is finished.

From the above results one may assert the following Wold decomposition type theorem for
continuous stationary processes in a complete correlated action {E,H,Γ}.

Theorem 4.7. Let {ft} be a Γ-stationary continuous process and {g′n} be the maximal white
noise contained in the discrete time process {f ′

n} associated with {ft}. Let {gt} be the continuous
Γ-stationary process corresponding to {g′n} by Vgt = UtVg′ and {ξt} the process with Γ-orthogonal
increments defined by (4.14). Then {ft} admits a unique decomposition of the form

(4.20) ft = ut + vt,

where {ut} is a moving average, i.e.,

(4.21) Vut =

∫ ∞

0

c(s)dVξt−s

with c ∈ L2[0,∞) and Ku
t =

∨
s≤t

VusE = K
g
t , t ∈ (−∞,+∞), and {vt} is a deterministic process

with Kv
t = K

f
−∞.

Proof. We have only to put

(4.22) ut = PH
g
t
ft

and

(4.23) vt =
(
I − PH

g
t

)
ft,

where PH
g
t
is the Γ-orthogonal projection on the right L(E)-submodule H

g
t from H.

The requested properties it follows by the above results and the uniqueness can be proved
similar as in Theorem 6.8 of [5].
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Let us remark that {ut} and {vt} have the same shift groups, namely the shift group of
{ft}.

Finally, between the Wold decomposition for the discrete case and the continuous case there
exists the following correspondence.

Proposition 4.8. The moving average part {u′
n} and the deterministic part {v′n} of the Wold

decomposition for the discrete process {f ′
n} associated with the Γ-stationary continuous process

{ft} are the discrete processes associated with the moving average part {ut} and the determin-
istic part {vt}, respectively, in the Wold decomposition of the continuous process {ft}.

Proof. From the fact that Kf
−∞ = K

f ′

−∞ and Vf ′ = Vf , it follows that

Vv0 = P
K

f
−∞

Vf = P
K

f ′
−∞

Vf ′ = Vv′0
,

hence v0 = v′0. Consequently we have also

Vu0 = Vf − Vv0 = Vf ′ − Vv′0
= Vu′

0
,

and thus we have the desired result.

5 Spectral analysis

In the remaining of this chapter, some spectral properties of a continuous stationary processes
in complete correlated action {E,H,Γ} are analysed.

Let {ft} be a Γ-stationary process with (Ut) the shift group and U the cogenerator on Kf
∞.

From Stone’s Theorem, there exists a unique L(Kf
∞)-valued spectral measure E on the real

line such that

(5.1) Ut =

∫ +∞

−∞
e−itxdE(x).

If Γf is the correlation function of the process {ft}, then for every a ∈ E we have(
Γf (t)a, a

)
=

(
Γ[f0, ft]a, a

)
=

(
Γf [Vf , UtVf ]a, a

)
=

(
V ∗
f UtVfa, a

)
=

=
(
UtVfa, Vfa

)
=

∫ +∞

−∞
e−itxd

(
E(x)Vfa, Vfa

)
=

∫ +∞

−∞
e−itxd

(
V ∗
f E(x)Vfa, a

)
.

Hence if we take

(5.2) F = V ∗
f EVf

then F is an L(E)-valued semispectral measure on the real line which has as a spectral dilation
[Kf

∞, Vf , E]. Moreover,

(5.3) Γf (t) =

∫ +∞

−∞
eitxdF (x).

The semispectral measure obtained as above is called the spectral distribution of the process
{ft}.
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By means of the mapping of the real line onto the unit circle given by

(5.4) eiθ = (x− i)(x+ i)−1

(or equivalently, θ = −2 arctan x), to the semispectral measure F on R corresponds a semispec-
tral measure F1 on T which is the spectral distribution of the discrete parameter process {f ′

n}
associated with {ft}. Indeed, let Γf ′(n) be the correlation function of {f ′

n} and F ′ the corre-
sponding spectral distribution. If [Kf ′

∞, Vf ′ , E ′] is the spectral dilation of E ′, then the unitary
operator U on Kf ′

∞ given by

U =

∫ 2π

0

e−iθdE ′(θ)

is the shift operator of the process {f ′
n}. As we know U is the cogenerator of the shift group

associated with {ft}, which is defined (see e.g. [11]) by

U = (H − iI)(H + iI)−1,

where H = −iA and A = lim
t→0

1
t
[Ut − I] is the infinitesimal generator of one parameter group of

unitary operators (Ut). Taking into account that H =
∫ +∞
−∞ xdE(x) it follows that∫ 2π

0

e−iθdE1(θ) =

∫ +∞

−∞
(x− i)(x+ i)dE(x) = U.

From the uniqueness of the spectral representation of unitary operators, the desired result
follows.

Let L2
R(E) be the space of the square integrable functions from the real axis into E, and

H2
∆(E) be the space of all analytic functions on the upper half plane ∆ with values in E such

that

(5.5) sup
y>0

∫ +∞

−∞
∥f(x+ iy)∥2 dx < ∞.

It is known [11] that the space L2(E) is transformed onto L2
R(E), if for any g in L2(E) we

associate f in L2
R(E) by

(5.6) f(x) = (x+ i)−1g(x− i/x+ i).

In a similar way a correspondence between H2(E) and H2
∆(E) is realized.

Let E and F be Hilbert spaces. As in the disc case we define an L2-bounded analytic function
{E,F, S(z)} on ∆ by

(5.7) sup
y>0

1

π

∫ +∞

−∞
∥S(x+ iy)a∥2 dx ≤ M2 ∥a∥2 .

Via the above identification there exists a one-to-one correspondence between the L2-bounded
analytic function Θ(λ) on the unit disc D and the L2-bounded analytic function S(z) on the
half plane ∆. The L2-bounded function S(z) corresponding to the maximal function of the
associated discrete process {f ′

n} is called the maximal function of the continuous process {ft}.
Due to the one-to-one correspondence between the spectral distribution of {ft} and its

associated discrete process {f ′
n}, if we denote by FS the semispectral measure corresponding to

F , then we assert the following
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Theorem 5.1. Let {ft} be a continuous Γ-stationary process, F its spectral distribution, and
{E,F, S(z)} the attached maximal function. If ft = ut + vt is the corresponding Wold decom-
position, then

(i) FS is the spectral distribution of the purely nondeterministic process {ut}.
(ii) The process {ft} is nondeterministic if there exists a positive function h ∈ L1(dx/1+x2)

such that h ≤ ha, where ha is the derivative of d(F (x)a, a) with respect to dx/1 + x2 and

(5.8)

∫ +∞

−∞

log h(x)

1 + x2
dx > −∞.

The condition becomes necessary if the maximal function of the associated process has a scalar
multiple.

Proof. The proof is obtained via the above identification between L2(E) and L2
R(E). Concernind

the last sentence, let δ(λ) be the scalar multiple of the maximal function {E,F,Θ(λ)} of the
associated discrete process. Then by the definition of scalar multiple, there exists a contractive
analitic function {F,E,Ω(λ)} such that

Ω(λ)Θ(λ) = δ(λ)IE and Θ(λ)Ω(λ) = δ(λ)IF,

and
|δ(λ)|2 ∥a∥2 = ∥Ω(λ)Θ(λ)a∥2 ≤ ∥Θ(λ)a∥2 .

Taking h = |δ(λ)|2, a simple calculus show that 0 ≤ h ≤ ha and (5.8) follows.

6 Periodicity and harmonizability

Let {ft}t∈R be a periodically Γ-correlated process, i.e. a process in the complete correlated
action {E,H,Γ}, whose correlation function Γf (s, t) given by (2.1) satisfies the periodicity
condition

(6.1) Γf (s+ T, t+ T ) = Γf (s, t) (s, t ∈ R)

for a positive real number T . The smallest T > 0 satisfying (6.1) is the period of the process
{ft}t∈R.

Analoguously with the scalar case [1] the notion of an almost-periodically Γ-correlated pro-
cess {ft}t∈R can be introduced under the condition that its correlation function Γf (s, t) is
uniformly continuous, and is an almost-periodic function with respect to T in the sense of
Bohr, but in this note we are concerned mainly on the periodic case.

As in the discrete case, to the continuous parameter process {ft}t∈R, beside the correlation
function Γf (s, t), for any t ∈ R the covariance function is defined by

(6.2) B(s, t) = Γf (s+ t, s) (s ∈ R),

and of course we have conversely

(6.3) Γf (s, t) = B(t, s− t) (s,∈ R).

Since B(s, t) is an operator valued periodic function in s with the same period T as {ft}t∈R,
there exists the following Fourier representation

(6.4) B(s, t) =
∑
k∈Z

Bk(t) exp
(2πiks

T

)
,
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where the L(E)-valued coefficients Bk(t) are given by

(6.5) Bk(t) =
1

T

∫ T

0

B(s, t) exp
(−2πiks

T

)
ds (t ∈ R, k ∈ Z).

Following the Gladyshev’s results [1] the following extension to the complete correlated case
{E,H,Γ} can be obtained.

Theorem 6.1. A norm continuous operator valued function B(s, t) which satisfies condition
(6.1) for every t, s ∈ R is the covariance function of some continuous periodically Γ-correlated
process with the same period T > 0 if and only if the L(E)-valued functions Bjk, (j, k ∈ Z), are
positive definite, i.e.,

(6.6)
n∑

p,q=1

⟨
A∗

pBkpkq(tp − tq)Aqa, a
⟩
E
≥ 0 (a ∈ E),

for any n ≥ 1, k1, . . . , kn ∈ Z, t1, . . . , tn ∈ R, and A1, . . . , An ∈ L(E), where

(6.7) Bjk(t) = Bk−j(t) exp
(2πijt

T

)
.

Proof. Let us remark that the correlation function and the covariance function of an arbitrary Γ-
correlated process {ft}t∈R are positive definite functions. Indeed, for any n ≥ 1, a1, . . . , an ∈ E,
t1, . . . , tn ∈ R, and A1, . . . , An ∈ L(E) we have, taking account that for a finite system of
elements {ak} ⊂ E there exists a system of operators Sk ∈ L(E) such that ak = Ska,

n∑
p,q=1

⟨
A∗

pΓ(tp, tq)Aqaq, ap
⟩
E
=

n∑
p,q=1

⟨
A∗

pΓ[ftp , ftq ]Aqaq, ap
⟩
E
=

=
n∑

p,q=1

⟨
Γ[Apftp , Aqftq ]aq, ap

⟩
E
=

n∑
p,q=1

⟨
Γ[Apftp , Aqftq ]Sqa, Spa

⟩
E
=

=

⟨
Γ[

n∑
p=1

SpApftp ,

n∑
q=1

SqAqftq ]a, a

⟩
E

= ⟨Γ[h, h]a, a⟩E =

= ⟨V ∗
h Vha, a⟩E = ∥Vha∥2K ≥ 0.

Taking into account (6.2) it follows that (6.6) is verified.
Conversely, if (6.6) is verified, then if we put

Bn(s, t) =
1

n

n−1∑
m=0

m∑
k=−m

Bk(t) exp
(2ks

T

)
satisfies that

k∑
p,q=1

⟨
A∗

pBn(tq − tp)Aqa, a
⟩
E
≥ 0

for any k ≥ 1. Since Bn(s, t) converges to B(s, t), it follows that B(s, t) also verifies the
above inequality, and, consequently is the covariance function of some periodically Γ-correlated
process.
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In the discrete periodically Γ-correlated case [15], similarly with the scalar case, was proved
that any periodically Γ-correlated process {fn}n∈Z is Γ-harmonizable [13] i.e., there exists an
L(E)-valued semispectral measure (bimeasure) K on T2 such that

(6.8) Γ[fm, fn] =

∫∫
T2

χ(t)mχ(s)−nK(dt, ds),

where χn = e−2πint.
Moreover, the support of the L(E)-valued semispectral bimeasure attached to a discrete

periodically Γ-correlated process with the period T ≥ 1 is concentrated on 2T − 1 equidistant
stright line segments v = u−2kπk/T , k ∈ {0,±1, . . . .± (T −1)} parallel to the diagonal of the
square [0, 2π]× [0, 2π]. Obvious if T = 1 then the Γ-harmonizable process {fn}n∈Z is stationary
Γ-correlated and the support is concentrated only on the diagonal of the square.

In the continuous parameter case, this nice property is no longer valid even in the scalar
case (see [1]). Only on supplementary conditions, some particular periodically Γ-correlated
processes with continuous time will become Γ-harmonizable, and similarly, the support of the
bimeasure will be on parallel equidistant stright lines in the plane.

A process {ft}t∈R is strongly Γ-harmonizable if the correlation function Γf (s, t) can be
expressed as

(6.9) Γf (s, t) =

∫∫
R2

ei(su−tv)K(du, dv) (s, t ∈ R),

for some positive definite L(E)-valued semispectral bimeasure K of bounded variation.
A process {ft}t∈R is weakly Γ-harmonizable if its correlation function can be expressed in

the form (6.9) for some L(E)-valued semispectral bimeasure K of finite variation.
Similarly as in [3], in the supplementary condition of strongly harmonizability can be proved

the following

Proposition 6.2. Let {ft}t∈R be a strongly Γ-harmonizable process in the complete correlated
action {E,H,Γ}. Then {ft}t∈R is periodically Γ-correlated processes with period T if and only
if the support of K is in the set ∆, where

(6.10) ∆ = {(u, v) ∈ R2; v = u− 2πk/T, k ∈ Z}.

Proof. For any s, t ∈ R, since eiT (u−v) = 1 for (u, v) ∈ ∆ we have

Γf (s+ T, t+ T ) =

∫∫
∆

ei[(s+T )u−(t+T )v]K(du, dv) =

=

∫∫
∆

ei(su−tv)eiT (u−v)K(du, dv) =

∫∫
∆

ei(su−tv)K(du, dv) =

=

∫∫
R2

ei(su−tv)K(du, dv) = Γf (s, t),

therefore {ft}t∈R is a periodically Γ-correlated process with period T .
Conversely, if {ft}t∈R is periodically Γ-correlated with period T , then for any N ≥ 1 and

s, t ∈ R we have

Γf (s, t) =
1

2N + 1

N∑
k=−N

Γf (s+ kT, t+ kT ) =
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=
1

2N + 1

N∑
k=−N

∫∫
R2

ei[(s+kT )u−(t+kT )v]K(du, dv) =

=

∫∫
R2

sin[(N + 1
2
)T (u− v)]

2(N + 1
2
) sin T (u−v)

2

ei(su−tv)K(du, dv).

Since the fraction under the last integral has the property that take the value 1 on ∆, is bounded
and continuous on R and converges pointwise to 1 as N → ∞, by the bounded convergence
theorem we have that

Γf (s, t) =

∫∫
∆

ei(su−tv)K(du, dv),

which implies that the support of K is in the set ∆.

The previous Proposition is valid in the weakly Γ-harmonizable case, too, and similarly [6]
can be proved the following

Proposition 6.3. Let {ft}t∈R be a weakly Γ-harmonizable process in the complete correlated
action {E,H,Γ}. Then {ft}t∈R is periodically Γ-correlated processes with period T if and only
if the support of K is in the set ∆ given by (6.10).

It is known that in the discrete case, any periodically Γ-correlated process is Γ-harmonizable
and, moreover, to each periodically Γ-correlated process we can attach a stationary Γ-correlated
process, helping us in solving most of the prediction problems by a ”stationarization procedure”.
In the continuous case, this fact can not be done so simply, but at least in the strongly Γ-
harmonizable case a stationarization can be done as follows.

Proposition 6.4. Let {ft}t∈R be a strongly Γ-harmonizable process. If {ft}t∈R is also periodi-
cally Γ-correlated processes with period T > 0, then it can be represented into the form

(6.11) Vft =
∑
k∈Z

exp
(2πikt

T

)
Vgk(t) (t ∈ R),

where {gk(t)}k∈Z is a family of stationary Γ-cross-correlated processes given by

(6.12) Vgk(t) =

∫ 2π
T

0

eituξ
(
du+ 2π

T

)
(t ∈ R),

ξ being an L(E,K)-valued semispectral measure on R.

Proof. Let σk =
[
2π
T
, 2π(k+1)

T

)
for k ∈ Z. It follows that {σk; k ∈ Z} is a countable partition

of R. The process {ft}t∈R being a strongly Γ-harmonizable one, Γf (s, t) is given by (6.9) with
the L(E)-valued semispectral bimeasure K on R2. If we consider the corresponding Naimark
spectral dilation [K,W,E] of K, then, up to a unitary equivalence, the semispectral measure
ξ(σ) = E(σ, ·)W is a representing measure of {ft}t∈R, that is

(6.13) Vft =

∫
R
eituξ(du).

For k ∈ Z let us consider the semispectral measures ξk obtained by ξk(σ) = ξ(σ ∩ σk),
σ ∈ B(R), and the process {hk(t)} defined by

(6.14) Vhk(t) =

∫
σk

eituξ(du) =

∫
R
eituξk(du).
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It follows that Vft =
∑

k∈Z Vhk(t) and

Vhk(t) =

∫ 2π(k+1)
T

2πk
T

eituξ(du) = exp
(
2πikt
T

) ∫ 2π
T

0

eituξ(du+ 2πk
T
) = exp

(
2πikt
T

)
Vgk(t).

Therefore (6.11) is obtained. Since {ft}t∈R is a periodically Γ-correlated too, using the discrete
case of Gladyshev’s theorem in the complete correlated case {E,H,Γ} [15] it follows that

Γjk(s, t) = Γ[gj(s), gk(t)] =

∫ 2π
T

0

ei(t−s)uFk−j(du+ 2πj
T
),

that is {gk(t)}k∈Z is a family of stationary Γ-cross-correlated processes attached to {ft}t∈R as
above.

Taking into account the existence of the stationary dilation in this case, using the Γ-
orthogonal projection on a right L(E)-submodule given by the Proposition 1.1, the predictable
part can be obtained.
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