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SOME GEOMETRICAL ASPECTS OF THE Γ-CORRELATED
PROCESSES

ILIE VALUSESCU

Abstract. Some geometrical aspects of the Γ-correlated processes are analyzed, starting

from the properties of a Γ-orthogonal projection, which is not a proper one. Geometrical
results are generalized to Γ-correlated case, especially the problem of the angle between

the past and the future of some Γ-correlated processes. In the periodically Γ-correlated

case it is proved that the positivity of the angle is preserved by its stationary dilation
process. The generalized Friedrichs angle and other geometrical concepts are used in

analysing some properties of periodically Γ-correlated processes.

1. Preliminaries

A Γ-correlated process is a sequence (ft)t∈G in a right L(E)-module H endowed with a
correlation of the action of L(E). The set G is Z, R, or more generally a locally compact
abelian group, and by L(E) is denoted the C∗-algebra of all linear bounded operators on a
separable Hilbert space E . In this paper mainly the discrete case G = Z is considered.

By an action of L(E) on H we mean the map L(E)×H into H given by Ah := hA in the
sense of the right L(E)-module H. We are writting Ah instead of hA to respect the classical
notations from the scalar case. A correlation of the action of L(E) on H is a map Γ from
H×H into L(E) having the properties:

(i) Γ[h, h] ≥ 0, and Γ[h, h] = 0 implies h = 0;
(ii) Γ[h, g]∗ = Γ[g, h];
(iii) Γ[h,Ag] = Γ[h, g]A.
In many proofs it is very useful the formula

Γ
[∑

i

Aihi,
∑

j

Bjgj

]
=
∑
i,j

A∗i Γ[hi, gj ]Bj

obtained by (ii) and (iii) for finite sums of actions of L(E) on H.
A triplet {E ,H,Γ} defined as above was called [12, 13] a correlated action of L(E) on H.
By the fact that generally in H we have no topology, the prediction subsets, such as past

and present, future, etc., can not be seen as closed subspaces, therefore the powerful tool of
the orthogonal projection can not be directly used.

An example of correlated action can be constructed as follows. Take as the right L(E)-
module H = L(E ,K) – the space of the linear bounded operators from E into K, where E
and K are Hilbert spaces. An action of L(E) on L(E ,K) is given if we consider AV := V A
for each A ∈ L(E) and V ∈ L(E ,K). It is easy to see that Γ[V1, V2] = V ∗1 V2 is a correlation
of the action of L(E) on L(E ,K), and the triplet {E ,L(E ,K),Γ} is a correlated action (the
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operator model). It was proved [12] that any abstract correlated action {E ,H,Γ} can be
embedded into the operator model. Namely, there exists an algebraic embedding h → Vh

of H into L(E ,K), where K is obtained as the Aronsjain reproducing kernel Hilbert space
given by a positive definite kernel obtained from the correlation Γ. The generators of K
are elements of the form γ(a,h) : E × H → C, where γ(a,h)(b, g) = 〈Γ[g, h]a, b〉E and the
embedding h→ Vh is given by Vha = γ(a,b).

Due to such an embedding of any correlated action {E ,H,Γ} into the operator model,
prediction problems can be formulated and solved using operator techniques. In the par-
ticular case when the embedding h → Vh is onto, the correlated action {E ,H,Γ} is caled a
complete correlated action. In this paper most of properties are analysed in the complete
correlated case.

2. Some geometrical aspects

A first geometrical aspect is the existence of a Γ-orthogonal projection ”on” a right L(E)-
submodule H1 of H.

Proposition 2.1. Let H1 be a submodule in the right L(E)-module H and

K1 =
∨

x∈H1

VxE ⊂ K. (2.1)

For each h ∈ H there exists a unique element h1 ∈ H such that for each a ∈ E we have

Vh1a ∈ K1 and Vh−h1a ∈ K⊥1 . (2.2)

Moreover, we have
Γ[h− h1, h− h1] = inf

x∈H1
Γ[h− x, h− x], (2.3)

where the infimum is taken in the set of all positive operators from L(E).

A complete proof can be found in [12]. This result assure that if we put

PH1h = h1, (2.4)

then we can interpret the endomorphism PH1 of H as a Γ-orthogonal projection ”on” H1,
since we have P2

H1
= PH1 and Γ[PH1h, g] = Γ[h,PH1g].

As a geometrical aspect, let us remark that the unique element h1 obtained by the Γ-
orthogonal projection of h ∈ H can belongs not necessary to H1, but, due to (2.3) it is close
enough to be considered as the best estimation.

The previous result can be generalized to an ”orthogonal projection” from HT - the
cartesian product of T copies of H on a submodule M of HT , as follows. Firstly, the
embedding of HT into L(E ,KT ) is defined by

WXa = (Vx1a, . . . , VxT
a) (2.5)

for a ∈ E and X = (x1, . . . , xT ) ∈ HT , and then the extended ”orthogonal projection” PMX
it follows with respect to an appropriate correlation [15], considering KT

1 =
∨

X∈M
WXE in

KT .
The action of L(E) on HT is given by acting on the components, which is a particular

case of the matrix action of L(E)T×T on HT in the sense of the right multiplication.
A Γ-correlated process (ft) ⊂ H is stationary if Γ[fs, ft] depends only on t − s and not

by s and t separately. For a Γ-correlated process (not necessary stationary) the past-present
at the moment t = n is the right L(E)-submodule

Hf
n =

{∑
k

Akfk; Ak ∈ L(E), k ≤ n
}
, (2.6)
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the future is

H̃f
n =

{∑
k

Akfk; Ak ∈ L(E), k > n
}
, (2.7)

and the time domain is

Hf
∞ =

{∑
k

Akfk; Ak ∈ L(E), k ∈ Z
}
.

By the embedding h→ Vh of H into L(E ,K), for the corresponding past and future from
H will correspond the closed subspaces of K given by

Kf
n =

∨
j≤n

Vfj
E , (2.8)

K̃f
n =

∨
j>n

Vfj
E , (2.9)

respectively, and the time domain becomes

Kf
∞ =

∨
j≤n

Vfj
E .

Various processes can be considered in the right L(E)-module, or L(E)T×T -module HT ,
and appropriate past and future constructed. Also, various correlations can be done. For
the study of periodically correlated processes, the following correlations are of interest. For
X = (x1, . . . , xT ) and Y = (y1, . . . , yT ) from HT , taking into account the right action of
L(E), respectively of L(E)T×T on HT , it is simply to see that Γ1 : HT × HT → L(E) and
ΓT : HT ×HT → L(E)T×T defined, respectively, by

Γ1[X,Y ] =
T∑

k=1

Γ[xk, yk] (2.10)

and the matriceal one
ΓT [X,Y ] =

(
Γ[xi, yj ]

)
i,j∈{1,2,...,T}

(2.11)

are correlations on HT .
Remember that a process (ft) is periodically Γ-correlated if there exists a positive T such

that Γ[fs+T , ft+T ] = Γ[fs, ft].
For a Γ-correlated process (ft), if we take sequences of consecutive T terms

Xn =
(
fn, fn+1, . . . , fn+T−1

)
, (2.12)

then (Xn) is a stationary Γ1-correlated process in HT . Taking consecutive blocks of length
T

XT
n =

(
fnT , fnT+1, . . . , fnT+T−1

)
, (2.13)

then (XT
n ) is a stationary ΓT -correlated process in HT .

From prediction point of view and the study of periodically Γ-correlated processes, the
following result [15] was proved.

Proposition 2.2. Let (fn)n∈Z be a Γ-correlated process in H, T ≥ 2, (Xn) and (XT
n )

defined by (2.12) and (2.13). The following are equivalent:
(i) {fn} is periodically Γ-correlated in H, with the period T ;
(ii) {Xn} is stationary Γ1-correlated in HT ;
(iii) {XT

n } is stationary ΓT -correlated in HT .
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Between other strong geometrical aspects, such as the Wold decomposition of a Γ-
correlated process, the dilation of a nonstationary process to a stationary one is very useful
for prediction resons. A nonstatioary Γ-correlated process (ft) in H has a stationary dila-
tion if there exists a larger right module H and a stationary process (gt) in H such that
ft = PH

H gt. It is easy to see that each periodically Γ-correlated process (ft) ⊂ H has a
stationary Γ1-correlated dilation (Xn) ⊂ HT given by (2.12).

The geometrical property of a process to have a stationary dilation permits us to use some
stationary techniques in the study of some nonstationary processes. This is the case at least
for the processes very close to the stationary processes, such as periodically, harmonizable,
or uniformly bounded linearly stationary processes.

A nice geometrical aspect is the fact that in the discrete case (G = Z) each periodically
Γ-correlated process with the period T is Γ-harmonizable and its spectral distribution is
an L(E)-valued semispectral measure supported on 2T − 1 equidistant stright line segments
parallel to the diagonal of the square [0, 2π] × [0, 2π]. Unfortunately this nice property is
not generally valid when G = R, even under some continuity conditions. The stationarity is
characterized by the fact that the support is reduced to the diagonal.

3. The angle between past and future

One of the prediction problem is the study of the angle between the past and the future
of a process. Starting with the studies of Helson and Szegő [7] and Helson and Sarason [8],
the results was generalized in various contexts, helping in the characterization of stationary
and some nonstationary processes. Here a generalization in the stationary Γ-correlated case
is obtained, and some results for periodically case are analyzed.

Actually the notions of the angles between two subspaces of a Hilbert space arise in [4]
and [3], starting from the general definition of the scalar product of two vectors into the
form 〈h, g〉 = ‖h‖ ‖g‖ · cosα. The angle (sometimes called the Dixmier angle) between two
subspaces M and N of a Hilbert space K is given by its cosine

ρ(M,N ) := sup
{
|〈h, g〉| ; h ∈M∩BK, g ∈ N ∩BK

}
. (3.1)

where BK is the unit ball of K.
In the context of a complete correlated action {E ,H,Γ} the cosine between the submodules

M and N of the right L(E)-module H is given by

ρ(M,N ) = sup
{
|〈Γ[g, h]a, b〉| ; ‖Γ[h, h]a‖ ≤ 1, ‖Γ[g, g]b‖ ≤ 1

}
,

where h ∈M, g ∈ N , a, b ∈ E .
We say that M and N have a positive angle if ρ(M,N ) < 1, or equivalently, if there

exists ρ < 1 such that for any h ∈M, g ∈ N , a, b ∈ E
|〈Γ[g, h]a, b〉E | ≤ ρ ‖Vha‖ ‖Vgb‖ . (3.2)

In the study of prediction problems we are interested in the case when the angle between
past and future is positive, i.e., when ρ(n) = ρ(Hf

n, H̃f
n) < 1, which will give the possibility

of finding the predictor.
A nice geometrical aspect of stationary Γ-correlated process is the fact that the angle

between the past and future is constant.

Proposition 3.1. If (fn) is a stationary Γ-correlated process in H, then the angle between
the past and future does not depends on the choosing of the present time t = n.

Proof. Indeed, for a, b ∈ E , at the moment t = n we have

ρ(n) = sup
{
|〈Γ[g, h]a, b〉| ;h ∈ Hf

n, g ∈ H̃f
n

}
=
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= sup
{ ∣∣∣∣∣
〈

Γ[
∑

k>n

Akfk,
∑

p≤n

Apfp]a, b

〉∣∣∣∣∣ ; Ak, Ap ∈ L(E)
}

=

= sup
{ ∣∣∣∣∣ ∑p≤n

∑
k>n

〈A∗kΓ[fk, fp]Apa, b〉

∣∣∣∣∣ ; Ak, Ap ∈ L(E)
}

=

= sup
{ ∣∣∣∣∣ ∑p≤n

∑
k>n

〈A∗kΓ[fk+m, fp+m]Apa, b〉

∣∣∣∣∣ ; Ak, Ap ∈ L(E)
}

=

= sup
{ ∣∣∣∣∣ ∑

s≤n+m

∑
j>n+m

〈
A∗j−mΓ[fj , fs]Aj−sa, b

〉∣∣∣∣∣ ; Ak ∈ L(E)
}

=

= sup
{ ∣∣∣∣∣ ∑

s≤n+m

∑
j>n+m

〈
B∗j Γ[fj , fs]Bsa, b

〉∣∣∣∣∣ ; Bj , Bs ∈ L(E)
}

=

= sup
{
|〈Γ[g, h]a, b〉| ;h ∈ Hf

n+m, g ∈ H̃
f
n+m

}
= ρ(n+m)

for any m ∈ Z. �

In this paper only the one step ahead future is considered (2.7), but analogously the
p-step ahead future can be constructed as

H̃f
n,p =

{∑
k

Akfk; Ak ∈ L(E), k ≥ n+ p
}
,

the corresponding subspace from the time domain Kf
∞ ⊂ K being

K̃f
n,p =

∨
j≥n+p

VfjE ,

and the p-step prediction is done using informations from the past Hf
n, obtained with the

action of L(E) on (ft) from H till the moment t = n.
Similarly the angle ρ(n, p) between the past Hf

n and the p-step ahead future H̃f
n,p can be

considered and the fact that ρ(n) < 1 is equivalent with ρ(n, p) < 1 can be proved, giving
the possibility to find the p-step ahead predictor.

Generalizing to stationary Γ-correlated case a result of [7] we have

Proposition 3.2. Let (fn) be a stationary Γ-correlated process in H. The angle between
past and future of (fn) is positive if and only if there exists a finite constant C which depends
only by (fn) such that for each element of the form

∑
Vfn

an from the time domain Kf
∞ and

for each −∞ ≤ n1 ≤ n2 <∞ we have∥∥∥∥∥
n2∑

k=n1

Vfk
ak

∥∥∥∥∥ ≤ C ∥∥∥∑Vfk
ak

∥∥∥ , (3.3)

where in the second term the sum has finitely many non-zero elements.

Proof. It is known [7] that for two subspaces M and N from a Hilbert space we have
ρ(M,N ) < 1 if and only if there exists a finite constant C such that ‖x‖ ≤ C ‖x+ y‖ for
x and y generators in M and N , respectively. Therefore for any sum of the form

∑
Vfn

an

from the time domain Kf
∞, taking into account that ρ(Hf

n, H̃f
n) < 1, we have∥∥∥∥∥∥

∑
k≤n

Vfk
ak

∥∥∥∥∥∥ ≤ C
∥∥∥∥∥∥
∑
k≤n

Vfk
ak +

∑
k>n

Vfk
ak

∥∥∥∥∥∥ = C
∥∥∥∑Vfk

ak

∥∥∥ ,
where

∑
Vfk

ak has finitely many non-zero elements. Since (fn) is stationary Γ-correlated,
for any m ∈ Z we have
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∥∥∥∥∥∥
∑
k≤m

Vfk
ak

∥∥∥∥∥∥
2

K

=

〈∑
k≤m

Vfk
ak,

∑
p≤m

Vfp
ap

〉
=
∑

k,p≤m

〈
V ∗fp

Vfk
ak, ap

〉
E

=

=
∑

k,p≤m

〈Γ[fp, fk]ak, ap〉 =
∑

k,p≤m

〈
Γ[fp−(m−n), fk−(m−n)]ak, ap

〉
=

=
∑

i,j≤n

〈Γ[fj , fi]ai, aj〉 =

∥∥∥∥∥∥
∑
k≤n

Vfk
ak

∥∥∥∥∥∥
2

K

≤ C2
∥∥∥∑Vfk

ak

∥∥∥2

K
.

Therefore ∥∥∥∥∥
n2∑

k=n1

Vfk
ak

∥∥∥∥∥ =

∥∥∥∥∥∥
∑

k≤n2

Vfk
ak −

∑
k<n1

Vfk
ak

∥∥∥∥∥∥ ≤
≤

∥∥∥∥∥∥
∑

k≤n2

Vfk
ak

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

k≤n1

Vfk
ak

∥∥∥∥∥∥ ≤ 2C
∥∥∥∑Vfk

ak

∥∥∥
and (3.3) is proved. �

Also the property of representing the elements from the time domain of a process as a
series (Schauder basis [10]) can be generalized for Γ-correlated processes.

Proposition 3.3. The angle between past and future of a stationary Γ-correlated process
(fn) is positive if and only if each element k from the time domain Kf

∞ can be uniquely

represented in the form k =
∞∑

n=−∞
kn where kn are elements from VfnE.

Proof. Using the previous Proposition, if we take Qn(
∑
Vfk

ak) = Vfn
an, then (fn) is of

positive angle if and only if Qn is a linear operator on Kf
∞, for each n ∈ Z, and

n2∑
n1

Qi are

uniformly bounded operators and

k = lim
n1,n2

n2∑
n1

Qik =
∞∑
−∞

Qik =
∞∑
−∞

kn.

To prove the unicity, if k =
∞∑
−∞

k′n with k′n ∈ Vfn
E , then by the fact that for i 6= n we

have Qik = 0, and it follows that for n ∈ Z

k′n = Qn(
∑

n

k′n) = Qnk = Qn(
∑

n

kn) = kn.

Conversely, if each k ∈ Kf
∞ admits a unique representation of the form k =

∞∑
−∞

kn with

kn ∈ Vfn
E , then the operators Tn : Kf

∞ → Vfn
E defined by Tnk = kn are well-defined,

bounded and the family of elements of the form
∥∥∥∥ p∑

n=k

Tn

∥∥∥∥ is uniformly bounded, and by

Proposition 3.2 it follows that the angle between past and future of (fn) is positive. �

We have seen that each periodically Γ-correlated process (fn)n∈Z from H has a stationary
Γ1-correlated dilation (Xn) inHT . In [15] an explicit stationary dilation is constructed which
help in obtaining the Wiener filter for prediction and the prediction-error operator function
for a periodically Γ-correlated process, in terms of the operator coefficients of its attached
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maximal function. Here we prove the following result concerning the angle of the stationary
dilation of a periodically Γ-correlated process.

Proposition 3.4. If (fn) from H is a periodically Γ-correlated process with a positive
angle between its past and future, then the angle between the past and the future of its
stationary Γ1-correlated dilation (Xn) from HT it is also positive.

Proof. Analogously as in (2.6) and (2.7), inHT the past HX
n and the future H̃X

n for a process
(Xn) ⊂ HT is constructed as linear combinations of finite actions of L(E) on (Xn) ⊂ HT . If
(fn) from H is a periodically Γ-correlated process having a positive angle between its past
and future, then at each time t = n there exists ρ(n) < 1 such that

|〈Γ[g, h]a, b〉E | ≤ ρ(n) ‖Vha‖ ‖Vgb‖

for each h ∈ Hf
n and g ∈ H̃f

n. For each element X =
∑

k≤n

AkXk from the past HX
n and

Y =
∑

p>n
BpXp from the future H̃X

n of the Γ1-correlated process (Xn) given by (2.12), and

for any a, b ∈ E we have

|〈Γ1[X,Y ]a, b〉E | =

∣∣∣∣∣∣
〈

Γ1

[∑
p>n

BpXp,
∑
k≤n

AkXk

]
a, b

〉
E

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑
p>n

∑
k≤n

〈Γ1[BpXp, AkXk]a, b〉E

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑
p>n

∑
k≤n

T−1∑
i=0

〈Γ[Bpfp+i, Akfk+i]a, b〉E

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑
p>n

∑
k≤n

T−1∑
i=0

〈
B∗pΓ[fp+i, fk+i]Aka, b

〉
E

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
T−1∑
i=0

〈
Γ
[∑

p>n

Bpfp+i,
∑
k≤n

Akfk+i

]
a, b

〉
E

∣∣∣∣∣∣ ≤
≤

T−1∑
i=0

ρi(n)

∥∥∥∥∥∥
∑
k≤n

Akfk+ia

∥∥∥∥∥∥
∥∥∥∥∥∑

p>n

Bpfp+ib

∥∥∥∥∥ ≤
≤ ρ(n)

T−1∑
i=0

∥∥∥∥∥∥
∑
k≤n

Akfk+ia

∥∥∥∥∥∥
∥∥∥∥∥∑

p>n

Bpfp+ib

∥∥∥∥∥ ≤
≤ ρ(n)

( T−1∑
i=0

∥∥∥∥∥∥
∑
k≤n

Akfk+ia

∥∥∥∥∥∥
2 )1/2( T−1∑

i=0

∥∥∥∥∥∑
p>n

Bpfp+ib

∥∥∥∥∥
2 )1/2

=

= ρ

∥∥∥∥∥∥
∑
k≤n

AkWXk
a

∥∥∥∥∥∥
∥∥∥∥∥∑

p>n

BpWXpb

∥∥∥∥∥ = ρ ‖WXa‖ ‖WY b‖ ,

where ρ(n) is the maximum of ρi(n) < 1; i = 0, 1, . . . , T − 1, and we used the embedding
X → WX of HT into L(E ,KT ) and the fact that ρ(n) = ρ for stationary Γ1-correlated
proces (Xn). Therefore |〈Γ1[X,Y ]a, b〉E | ≤ ρ ‖WXa‖ ‖WY b‖ for each X ∈ HX

n , Y ∈ H̃X
n ,
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and the angle between the past and the future of the stationary Γ1-correlated dilation (Xn)
is positive. �

A measure of the positive angle between the past and future is given by the operator
B ∈ L(K) defined by [5]

B = P−P+P−, (3.4)

where P− is the projection on the past and P+ is the projection on the future of a given
process. More or less explicitly, in various situations this operator was used [9, 6, 11, 14, 2].

Another angle between two subspaces M1 and M2 of a Hilbert space K is the Friedrichs
angle [4] defined to be the angle in [0, π/2] whose cosine is given by

c(M1,M2) := sup{|〈k1, k2〉| ; ki ∈Mi ∩M⊥ ∩BK, i ∈ {1, 2}}, (3.5)

where M = M1 ∩M2 and BK is the unit ball of K.
By (3.2) and (3.5) it follows that c(M1,M2) ≤ ρ(M1,M2). Obviously we have c(M1,M2) =

ρ(M1 ∩M⊥,M2 ∩M⊥), and of course c(M1,M2) = c(M⊥1 ,M
⊥
2 ). Various properties of the

angles between subspaces in a Hilbert space can be found in [2]. Here some properties of the
Friedrichs angle and the generalized Friedrichs angle [1] are used in the case of periodically
correlated processes in a complete correlated action {E ,H,Γ}.

If we take (Xn) ⊂ HT the stationary Γ1-correlated dilation of a periodically Γ-correlated
process (fn) ⊂ H, then the Friedrichs angle between the past and the future of (Xn) is given
by

c(KX
n , K̃

X
n ) = sup{|〈X,Y 〉| ;X ∈ KX

n ∩M⊥ ∩B1, Y ∈ K̃X
n ∩M⊥ ∩B1},

where M = KX
n ∩ K̃X

n , B1 is the unit ball in KT , and KX
n and K̃X

n are the images of the
past, respectively of the future from KT by the embedding X →WX of HT into L(E ,KT )

KX
n =

∨
k≤n

WXk
E , K̃X

n =
∨
j>n

WXj
E . (3.6)

Even the angle between the past and the future of the stationary process (Xn) ⊂ HT is
constant, the angles between various pasts of the components ofXn = (fn, fn+1, . . . , fn+T−1)
are variable and can be characterized by the generalized Friedrichs angle between several
subspaces. To do this, let us first remember the following characterization of the Friedrichs
angle for two subspaces [1].

Proposition 3.5. If M1 and M2 are closed subspaces of K, then the angle between M1

and M2 is given by

ρ(M1,M2) = sup
{ 2Re 〈m1,m2〉
‖m1‖2 + ‖m2‖2

; mj ∈Mj , (m1,m2) 6= (0, 0)
}

and the Friedrichs angle is

c(M1,M2) = sup
{ 2Re 〈m1,m2〉
‖m1‖2 + ‖m2‖2

; mj ∈Mj ∩M⊥, (m1,m2) 6= (0, 0)
}
.

Then the Friedrichs angle to several subspaces (M1,M2, . . . ,MT ) is defined [1] by

c(M1, . . . ,MT ) = sup
{ 2
T − 1

∑
j<k Re 〈mj ,mk〉∑T

i=1 ‖mi‖2
}

(3.7)

for mj ∈Mj ∩M⊥,
∑T

i=1 ‖mi‖2 6= 0.
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In the case of a periodically Γ-correlated process (fn), since M =
T−1⋂
i=0

Kn+i = Kf
n, we

have the Friedrichs angle associated to (Kf
n,K

f
n+1, . . . ,K

f
n+T−1), corresponding to Xn =

(fn, fn+1, . . . , fn+T−1), defined by its cosine (or Friedrichs number):

c(Kf
n,K

f
n+1, . . . ,K

f
n+T−1) = sup

{ 2
T − 1

∑
j<pRe 〈kj , kp〉∑T−1

i=0 ‖ki‖2
}

(3.8)

for ki ∈ Kf
n+i ∩ (Kf

n)⊥,
∑T−1

i=0 ‖ki‖2 6= 0.
Analoguously, generalizing the angle ρ between two subspaces to T subspaces, a so called

Dixmier number is obtained

ρ(Kf
n,K

f
n+1, . . . ,K

f
n+T−1) = sup

{ 2
T − 1

∑
j<pRe 〈kj , kp〉∑T−1

i=0 ‖ki‖2
}
, (3.9)

for ki ∈ Kf
n+i,

∑T−1
i=0 ‖ki‖2 6= 0.

Other definitions [1] of apparently geometric concepts which can help in the study of the
geometry of some nonstationary processes are the following.

The configurant constant :

κ(Kf
n,K

f
n+1, . . . ,K

f
n+T−1) = sup

{ 1
T

∥∥∥∑T−1
j=0 kj

∥∥∥2

∑T−1
i=0 ‖ki‖2

}
, (3.10)

for ki ∈ Kf
n+i ∩ (Kf

n)⊥,
∑T−1

i=0 ‖ki‖2 6= 0.
The non-reduced configurant constant :

κ0(Kf
n,K

f
n+1, . . . ,K

f
n+T−1) = sup

{ 1
T

∥∥∥∑T−1
j=0 kj

∥∥∥2

∑T−1
i=0 ‖ki‖2

}
, (3.11)

for ki ∈ Kf
n+i,

∑T−1
i=0 ‖ki‖2 6= 0.

The inclination of Kf
n,K

f
n+1, . . . ,K

f
n+T−1:

l(Kf
n,K

f
n+1, . . . ,K

f
n+T−1) = inf

{max0≤j≤T−1 dist(k,Kf
n+j)

dist(k,Kf
n)

}
, (3.12)

for k /∈ Kf
n.

Proposition 3.6. For a periodically Γ-correlated process (fn)n∈Z from H, the configu-
ration constant κ of the past spaces associated to its stationary Γ1-correlated dilation (Xn)
from HT is given by

κ(Kf
n,K

f
n+1, . . . ,K

f
n+T−1) = sup

{ 1
T
‖G(k0, . . . , kT−1)‖

}
, (3.13)

for kj ∈ Kn+j ∩ (Kf
n)⊥, ‖kj‖ = 1, j = 0, 1, . . . , T − 1, where the matrix G is given by

G(k0, . . . , kT−1) =
(
〈ki, kj〉K

)T−1

i,j=0

and
〈ki, kj〉K = 〈ΓT [Yi, Yj ]b, c〉ET , (3.14)

Yi = (0, fn+1, . . . , fn+i, 0, . . . , 0) ⊂ HT , while b and c are vectors from ET .
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Proof. The characterization (3.13) of the configurant constant κ it follows by Proposition3.4
from [1], taking into account that

⋂
iK

f
n+i = Kf

n. To prove (3.14), let us consider the

generators kj from Kn+j ∩ (Kf
n)⊥, kj =

j∑
k=0

∑
r
ArVfn+k

ar, j = 0, 1, . . . , T − 1, where Ar ∈

L(E), ar ∈ E , and the sums
∑
r

have finite non-zero terms. Then, taking into account the

action of L(E) on H and the definition (2.11) of the ΓT -correlation on HT , we have

〈ki, kj〉K =

〈
i∑

k=0

∑
r

ArVfn+k
ar,

j∑
p=0

∑
s

AsVfn+p
as

〉
=

=

〈
i∑

k=0

∑
r

Vfn+k
Arar,

j∑
p=0

∑
s

Vfn+p
Asas

〉
=

=
i∑

k=0

j∑
p=0

〈
V ∗fn+p

Vfn+k

∑
r

Arar,
∑

s

Asas

〉
=

=
i∑

k=0

j∑
p=0

〈Γ[fn+p, fn+k]bk, cp〉 =

=
T∑

k=0

T∑
p=0

〈Γ[fn+p, fn+k]bk, cp〉 = 〈ΓT [Yp, Yk]b, c〉ET

�

Considering C the cartesian product of Kf
n,K

f
n+1, . . . ,K

f
n+T−1 and D the diagonal of

KT , D = {(k, . . . , k); k ∈ K}, in a similar way as in [1] can be proved the following
characterization of the configurant constant and of the inclination of the past subspaces
Kf

n,K
f
n+1, . . . ,K

f
n+T−1 associated to the Γ1-correlated dilation (Xn) of a periodically Γ-

correlated process (fn).

Proposition 3.7. For T ≥ 2 we have
(i) ρ(Kf

n,K
f
n+1, . . . ,K

f
n+T−1) = ρ(C,D)2,

(ii) c(Kf
n,K

f
n+1, . . . ,K

f
n+T−1) = c(C,D)2,

(iii) 1− l(Kf
n, . . . ,K

f
n+T−1) ≤ c(C,D) ≤ 1− 1

2T l(K
f
n, . . . ,K

f
n+T−1)2.

Thus the inclination of the sequence of attached pasts subspaces Kf
n,K

f
n+1, . . . ,K

f
n+T−1

is zero if and only if its Friedrichs angle is 1.
As previously was mentioned, in this paper the case G = Z was considered, but nice

specific geometrical aspects arise in various other cases. So, in the case when G is Z2 = Z×Z,
the double sequence (fm,n)(m,n)∈Z2 from H is a Γ-correlated process, with an appropriate
correlation, which is stationary if Γ[fm,n, fr,s] depends only on the differences m − r and
n − s. Here a lot of geometrical aspects arise if we consider the vertical (horizontal) pasts
and futures and also the vertical (horizontal) angles between various pasts and futures of
the process. The geometry becomes more interesting in the case of the periodicity of the
process (fm,n) considering the period T = (T1, T2), but this will be done into another paper,
requiring a separately specific study.
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