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0. Introduction

Starting with the celebrated Naimark’s dilation theorems in [22] and [23], a powerful 
dilation theory for operator valued maps was obtained through results of B. Sz.-Nagy [32], 
W.F. Stinespring [30], and their generalisations to VH-spaces (Vector Hilbert spaces) by 
R.M. Loynes [17], or to Hilbert C∗-modules by G.G. Kasparov [15]. Taking into account 
the diversity of dilation theorems for operator valued maps, there is a natural question, 
whether one can unify all, or the most, of these dilation theorems, under one theorem. 
An attempt to approach this question was made in [11] by using the notion of VH-space 
over an admissible space, introduced by R.M. Loynes [17,18]. As a second step in this 
enterprise, an investigation at the “ground level”, that is, a non-topological approach, 
makes perfect sense. In addition, an impetus to pursue this way was given to us by the 
recent investigation on closely related problems, e.g. non-topological theory for operator 
spaces and operator systems, cf. [27,5,26,6].

The aim of this article is to present a general non-topological approach to dilation the-
ory based on positive semidefinite kernels that are invariant under actions of ∗-semigroups 
and with values adjointable operators on VE-spaces (Vector Euclidean spaces) over or-
dered ∗-spaces. More precisely, we show that at the level of conjunction of order with 
∗-spaces or ∗-algebras and operator valued maps, one can obtain a reasonable dilation 
theory that contains the fabric of most of the more or less topological versions of classi-
cal dilation theorems. In addition, we integrate into non-topological dilation theory, on 
equal foot, the reproducing kernel technique and show that almost each dilation theorem 
is equivalent to a realisation as a reproducing kernel space with additional properties. 
Our approach is based on ideas already present under different topological versions of 
dilation theorems in [24,7,17,3,4,21,8–10,31,12,11] and, probably, many others.

We briefly describe the contents of this article. In Section 1 we fix some terminology 
and facts on ordered ∗-spaces, ordered ∗-algebras, VE-spaces over ordered ∗-spaces, and 
VE-modules over ordered ∗-algebras. On these basic objects, one can build the ordered 
∗-algebras of adjointable operators on VE-spaces or VE-modules. We provide many ex-
amples that illustrate the richness of this theory, even at the non-topological level.

Then, in Section 2, we consider the main object of investigation which refers to pos-
itive semidefinite kernels with values adjointable operators on VE-spaces. We make a 
preparation by showing that, although analogs of Schwarz Inequality is missing at this 
level of generality, some basic results can be obtained by different techniques. In order 
to achieve a sufficient generality that allows to recover known dilation theorems for both 
∗-semigroups (B. Sz.-Nagy) and ∗-algebras (Stinespring), in view of [11], we consider 
positive semidefinite kernels that are invariant under actions of ∗-semigroups and that 
have values adjointable operators on VE-spaces. In Lemma 2.1, we show that, for a 
2-positive kernel, if boundedness in the sense of Loynes is assumed for all the operators 
on the diagonal, then the entire kernel is made up by bounded operators. In this way we 
explain how the investigation of this article is situated with respect to that in [11]. We 
briefly show the connection between linearisations and reproducing kernel spaces at this 
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level of generality. It is this stage when we are able to state and prove the main result, 
Theorem 2.8 that, basically, shows that this kind of kernels produce ∗-representations 
on “dilated” VE-spaces that linearise the kernel or, equivalently, on reproducing kernel 
VE-spaces that can be explicitly described.

Finally, in Section 3, as consequences of Theorem 2.8, we show how non-topological
versions of most of the known dilation theorems [32,30,17,15,14] can be obtained. On the 
other hand, in order to unify the known dilation theorems in topological versions, one 
needs certain topological structures on ordered ∗-spaces and VE-spaces, that lead closely 
to the VH-spaces over admissible spaces, as considered in [17]. This way was followed, 
to a certain extent, in [11] but, in order to obtain a sufficiently large generality allowing 
to cover most of the known topological dilation theory, one needs more flexibility by 
moving beyond bounded operators. We will consider this in subsequent articles.

1. Preliminaries

In this section we briefly review most of the definitions and some basic facts on VE-
spaces over ordered ∗-spaces, inspired by cf. R.M. Loynes, [17–19]. We slightly modify 
some definitions in order to match the requirements of this investigation, notably by 
separating the non-topological from the topological cases and by adhering to the con-
vention, that is very popular in Hilbert C∗-modules, to let gramians be linear in the 
second variable and conjugate linear in the first variable, for consistency.

1.1. Ordered ∗-spaces

A complex vector space Z is called ordered ∗-space, cf. [27], if:

(a1) Z has an involution ∗, that is, a map Z � z �→ z∗ ∈ Z that is conjugate linear
((sx + ty)∗ = sx∗ + ty∗ for all s, t ∈ C and all x, y ∈ Z) and involutive ((z∗)∗ = z

for all z ∈ Z).
(a2) In Z there is a cone Z+ (sx + ty ∈ Z+ for all numbers s, t ≥ 0 and all x, y ∈ Z+), 

that is strict (Z+∩−Z+ = {0}), and consisting of self-adjoint elements only (z∗ = z

for all z ∈ Z+). This cone is used to define a partial order on the real vector space 
of all selfadjoint elements in Z: z1 ≥ z2 if z1 − z2 ∈ Z+.

Recall that a ∗-algebra A is a complex algebra onto which there is defined an involution
A � a �→ a∗ ∈ A, that is, (λa + μb)∗ = λa∗ + μb∗, (ab)∗ = b∗a∗, and (a∗)∗ = a, for all 
a, b ∈ A and all λ, μ ∈ C.

An ordered ∗-algebra A is a ∗-algebra such that it is an ordered ∗-space, more precisely, 
it has the following property.

(osa1) There exists a strict cone A+ in A such that for any a ∈ A+ we have a = a∗.



364 S. Ay, A. Gheondea / Linear Algebra and its Applications 486 (2015) 361–388
Clearly, any ordered ∗-algebra is an ordered ∗-space. In particular, given a ∈ A, we 
denote a ≥ 0 if a ∈ A+ and, for a = a∗ ∈ A and b = b∗ ∈ A, we denote a ≥ b if a −b ≥ 0.

Remark 1.1. In analogy with the case of C∗-algebras, given a ∗-algebra A, one defines 
an element a ∈ A to be ∗-positive if a =

∑n
k=1 a

∗
kak for some natural number n and 

some elements a1, . . . , an ∈ A. The collection of all ∗-positive elements in a ∗-algebra is 
a cone, but it may fail to be strict and hence, associated is only a quasi-order, e.g. see [5]
for a recent investigation. Thus, our definition of an ordered ∗-algebra specifies a strict 
cone A+ and, in general, it does not refer to the cone of ∗-positive elements as defined 
above, except special cases as, for example, pre C∗-algebras or pre locally C∗-algebras.

Examples 1.2. (1) Any C∗-algebra, e.g. see [2], A is an ordered ∗-algebra and any 
∗-subspace S of a C∗-algebra A, with the positive cone S+ = A+ ∩ S and all other 
operations (addition, multiplication with scalars, and involution) inherited from A, is a 
∗-space.

(2) Any pre-C∗-algebra is an ordered ∗-algebra. Any ∗-subspace S of a pre-C∗-algebra 
A is an ordered ∗-space, with the positive cone S+ = A+ ∩ S and all other operations 
inherited from A.

(3) Any locally C∗-algebra, see [13,28], is an ordered ∗-algebra. In particular, any 
∗-subspace S of a locally C∗-algebra A, with the cone S+ = A+ ∩ S and all other 
operations inherited from A, is an ordered ∗-space.

(4) Any locally pre-C∗-algebra is an ordered ∗-algebra. Any ∗-subspace S of a locally 
pre-C∗-algebra is an ordered ∗-space, with S+ = A+∩S and all other operations inherited 
from A.

(5) Let V be a complex vector space and let V ′ be its conjugate dual space. On the 
vector space L(V, V ′) of all linear operators T : V → V ′, a natural notion of positive 
operator can be defined: T is positive if (Tv)(v) ≥ 0 for all v ∈ V . Let L+(V, V ′) be the 
collection of all positive operators and note that it is a strict cone. The involution ∗ in 
L(V, V ′) is defined in the following way: for any T ∈ L(V, V ′), T ∗ = T ′|V , that is, the 
restriction to V of the dual operator T ′ : V ′′ → V ′. With respect to the cone L+(V, V ′)
and the involution ∗ just defined, L(V, V ′) becomes an ordered ∗-space. See A. Weron 
[33], as well as D. Gaşpar and P. Gaşpar [8].

(6) Let X be a nonempty set and denote by K(X) the collection of all complex valued 
kernels on X, that is, K(X) = {k | k : X × X → C}, considered as a complex vector 
space with the operations of addition and multiplication of scalars defined elementwise. 
An involution ∗ can be defined on K(X) as follows: k∗(x, y) = k(y, x), for all x, y ∈ X

and all k ∈ K(X). The cone K(X)+ consists on all positive semidefinite kernels, that is, 
those kernels k ∈ K(X) with the property that, for any n ∈ N and any x1, . . . , xn ∈ X, 
the complex matrix [k(xi, xj)]ni,j=1 is positive semidefinite.

On K(X) a multiplication can be defined elementwise: if k, l ∈ K(X) then (kl)(x, y) =
k(x, y)l(x, y) for all x, y ∈ X. With respect to this multiplication and the other operations 
described before, K(X) is an ordered ∗-algebra.
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Using the notion of Schur product, e.g. see [25], it can be proven that the ordered 
∗-algebra K(X) has the following property: if k, l ∈ K(X) are positive semidefinite ker-
nels, then kl is positive semidefinite. However, this is a case that illustrates Remark 1.1: 
it is not true, in general, that kernels of type k∗k are positive semidefinite.

(7) Let A and B be two ordered ∗-spaces. In addition, we assume that the specified 
strict cone A+ linearly generates A. On L(A, B), the vector space of all linear maps 
ϕ : A → B, we define an involution: ϕ∗(a) = ϕ(a∗)∗, for all a ∈ A. A linear map 
ϕ ∈ L(A, B) is called positive if ϕ(A+) ⊆ B+. It is easy to see that L(A, B)+, the 
collection of all positive maps from L(A, B), is a cone, and that it is strict because A+

linearly generates A. In addition, any ϕ ∈ L(A, B)+ is selfadjoint, again due to the fact 
that A+ linearly generates A. Consequently, L(A, B) has a natural structure of ordered 
∗-space.

(8) Let {Zα}α∈A be a family of ordered ∗-spaces such that, for each α ∈ A, Z+
α is the 

specified strict cone of positive elements in Zα. On the product space Z =
∏

α∈A Zα let 
Z+ =

∏
α∈A Z+

α and observe that Z+ is a strict cone. Letting the involution ∗ on Z be 
defined elementwise, it follows that Z+ consists on selfadjoint elements only. In this way, 
Z is an ordered ∗-space.

(9) Let Z be an ordered ∗-space with the specified strict cone Z+. A subspace J of 
Z is called an order ideal if it is selfadjoint, that is, J = J∗ = {z∗ | z ∈ J}, and solid, 
that is, for any z ∈ J ∩ Z+ and any y ∈ Z+ such that y ≤ z it follows y ∈ J . Then, on 
the quotient vector space Z/J , an involution ∗ can be defined by: (z + J)∗ = z∗ + J , for 
z ∈ Z. Also, letting (Z/J)+ = {z + J | z ∈ Z+}, it follows that (Z/J)+ is a strict cone 
in Z/J consisting of selfadjoint elements only and, hence, Z/J is an ordered ∗-space. See 
[27].

1.2. Vector Euclidean spaces and their linear operators

Given a complex linear space E and an ordered ∗-space space Z, a Z-gramian, also 
called a Z-valued inner product, is a mapping E × E � (x, y) �→ [x, y] ∈ Z subject to the 
following properties:

(ve1) [x, x] ≥ 0 for all x ∈ E , and [x, x] = 0 if and only if x = 0.
(ve2) [x, y] = [y, x]∗ for all x, y ∈ E .
(ve3) [x, αy1 + βy2] = α[x, y1] + β[x, y2] for all α, β ∈ C and all x1, x2 ∈ E .

A complex linear space E onto which a Z-gramian [·, ·] is specified, for a certain ordered 
∗-space Z, is called a VE-space (Vector Euclidean space) over Z, cf. [17].

Remark 1.3. In any VE-space E over an ordered ∗-space Z, the familiar polarisation 
formula
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4[x, y] =
3∑

k=0

ik[(x + iky, x + iky], x, y ∈ E , (1.1)

holds, which shows that the Z-valued inner product is perfectly defined by the Z-valued 
quadratic map E � x �→ [x, x] ∈ Z.

Actually, the formula (1.1) is more general: given a pairing [·, ·] : E × E → Z, where E
is some vector space and Z is a ∗-space, and assuming that [·, ·] satisfies only the axioms 
(ve2) and (ve3), then (1.1) is still valid.

The concept of VE-spaces isomorphism is also naturally defined: this is just a linear 
bijection U : E → F , for two VE-spaces over the same ordered ∗-space Z, which is 
isometric, that is, [Ux, Uy]F = [x, y]E for all x, y ∈ E .

In general VE-spaces, an analog of the Schwarz Inequality may not hold but some of 
its consequences can be proven using slightly different techniques. One such method is 
provided by the following lemma.

Lemma 1.4. (See Loynes [17].) Let Z be an ordered ∗-space, E a complex vector space 
and [·, ·] : E × E → Z a positive semidefinite sesquilinear map, that is, [·, ·] is linear in 
the second variable, conjugate linear in the first variable, and [x, x] ≥ 0 for all x ∈ E. If 
f ∈ E is such that [f, f ] = 0, then [f, f ′] = [f ′, f ] = 0 for all f ′ ∈ E.

Given two VE-spaces E and F , over the same ordered ∗-space Z, one can consider the 
vector space L(E , F) of all linear operators T : E → F . A linear operator T ∈ L(E , F) is 
called adjointable if there exists T ∗ ∈ L(F , E) such that

[Te, f ]F = [e, T ∗f ]E , e ∈ E , f ∈ F . (1.2)

The operator T ∗, if it exists, is uniquely determined by T and called its adjoint. Since 
an analog of the Riesz Representation Theorem for VE-spaces may not exist, in general, 
there may be not so many adjointable operators. Denote by L∗(E , F) the vector space of 
all adjointable operators from L(E , F). Note that L∗(E) = L∗(E , E) is a ∗-algebra with 
respect to the involution ∗ determined by the operation of taking the adjoint.

An operator A ∈ L(E) is called selfadjoint if [Ae, f ] = [e, Af ], for all e, f ∈ E . Clearly, 
any selfadjoint operator A is adjointable and A = A∗. By the polarisation formula (1.1), 
A is selfadjoint if and only if [Ae, e] = [e, Ae], e ∈ E . An operator A ∈ L(E) is positive if

[Ae, e] ≥ 0, e ∈ E . (1.3)

Since the cone Z+ consists of selfadjoint elements only, any positive operator is selfad-
joint and hence adjointable. On the other hand, note that any VE-space isomorphism is 
adjointable and hence, it makes sense to call it unitary.

Examples 1.5. (1) If E is some VE-space over an ordered ∗-space Z, then L∗(E) is an 
ordered ∗-algebra, where the cone of positive elements is defined by (1.3). Note that this 
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cone is strict. In connection with Remark 1.1, note that any operator A ∈ L∗(E) that 
can be represented A =

∑N
j=1 A

∗
jAj is positive, but the converse, in general, is not true.

(2) Let {Eα}α∈A be a family of VE-spaces such that, for each α ∈ A, Eα is a VE-
space over the ordered ∗-space Zα. Consider the ordered ∗-space Z =

∏
α∈A Zα as in 

Example 1.2. Consider the vector space E =
∏

α∈A Eα on which we define

[(eα)α∈A, (fα)α∈A] = ([eα, fα])α∈A ∈ Z, (eα)α∈A, (fα)α∈A ∈ E .

Then E is a VE-space over Z.
(3) Let H be a pre-Hilbert space having an orthonormal basis and E a VE-space over 

the ordered ∗-space Z. On the algebraic tensor product H⊗ E define a gramian by

[h⊗ e, l ⊗ f ]H⊗E = 〈h, l〉H[e, f ]E ∈ Z, h, l ∈ H, e, f ∈ E ,

and then extend it to H⊗ E by linearity. By a standard but rather long argument, e.g. 
similar to [16, p. 6], it can be proven that, in this way, H⊗ E becomes a VE-space over 
Z as well.

Remark 1.6. Given a finite collection of VE-spaces E1, . . . , EN , over the same ordered 
∗-space Z, one can define naturally the VE-space E1⊕· · ·⊕EN over Z where, for ej , fj ∈
Ej , j = 1, . . . , N we define

[e1 ⊕ · · · ⊕ eN , f1 ⊕ · · · ⊕ fN ] =
N∑
j=1

[ej , fj ].

We use the notation EN for E1 ⊕ · · · ⊕ EN when E = Ej for all j = 1, . . . , N . Then 
observe that L∗(EN ) can be naturally identified with MN (E), the space of all N × N

matrices with entries in L∗(E). This identification provides a natural structure of ordered 
∗-algebra of L∗(EN ) over Z, with an even richer structure, see Remarks 3.5.

An operator A ∈ L(E , F), for two VE-spaces over the same ordered ∗-space Z, is 
called bounded if, for some μ ≥ 0,

[Ah,Ah]F ≤ μ[h, h]E , h ∈ E . (1.4)

We denote the class of bounded operators by B(E , F). For a bounded operator A ∈
B(E , F), its operator norm is denoted by ‖A‖ and it is defined by square root of the least 
μ ≥ 0 satisfying (1.4), that is,

‖A‖ = inf{√μ | μ ≥ 0, [Ah,Ah] ≤ μ[h, h], for all h ∈ H}. (1.5)
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It is easy to see that the infimum is actually a minimum and hence, that we have

[Ah,Ah] ≤ ‖A‖2[h, h], x ∈ H. (1.6)

B(E) = B(E , E) is a normed algebra with respect to the usual algebraic operations and 
the operator norm, cf. Theorem 1 in [18].

Let B∗(E , F) denote the collection of all bounded and adjointable linear operators 
A : E → F . A contraction is a linear operator T : E → F such that [Tx, Tx] ≤ [x, x] for 
all x ∈ H. By Theorem 2 in [18], if T ∈ B∗(E , F) is a contraction then T ∗ is a contraction 
as well, hence, for all T ∈ B∗(E , F) we have ‖T ∗‖ = ‖T‖.

If A ∈ B∗(E) is selfadjoint, then, by Theorem 3 in [18],

−‖A‖[h, h] ≤ [Ah, h] ≤ ‖A‖[h, h], h ∈ E . (1.7)

Moreover, if A is a linear operator in E and, for some real numbers m, M , we have

m[h, h] ≤ [Ah, h] ≤ M [h, h], h ∈ E , (1.8)

then A ∈ B∗(E) and A = A∗. If, in addition, m is the minimum and M is the maximum 
with these properties, then ‖A‖ = min{|m|, |M |}, see Theorem 3 in [18].

According to Theorem 4 in [18], the algebra B∗(E) of bounded and adjointable oper-
ators on E is a pre C∗-algebra and we have ‖A∗A‖ = ‖A‖2 for all A ∈ B∗(E).

1.3. VE-modules over ordered ∗-algebras

A VE-module E over an ordered ∗-algebra A is an ordered ∗-space over A, that is, 
(ve1)–(ve3) hold, subject to the following additional properties

(vem1) E is a right module over A, compatible with the multiplication with scalars: 
λ(ea) = (λe)a = e(λa) for all λ ∈ C, e ∈ E , and a ∈ A.

(vem2) [e, fa + gb]E = [e, f ]Ea + [e, g]Eb for all e, f, g ∈ E and all a, b ∈ A.

Given an ordered ∗-algebra A and two VE-modules E and F over A, an operator 
T ∈ L(E , F) is called a module map if

T (ea) = T (e)a, e ∈ E , a ∈ A.

Any operator T ∈ L∗(E , F) is a module map: given arbitrary e ∈ E , f ∈ F and a ∈ A
we have

[T (ea), f ]F = [ea, T ∗(f)]E = a∗[e, T ∗(f)]E = a∗[T (e), f ]F = [T (e)a, f ]F ,

hence T is a module map. See [16,20,29], for the more special case of Hilbert modules 
over C∗-algebras.
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Examples 1.7. Let E and F be two VE-spaces over the same ordered ∗-space Z.
(1) The vector space L∗(E , F) has a natural structure of VE-module over the ordered 

∗-algebra L∗(E), see Example 1.5, more precisely,

[T, S] = T ∗S, T, S ∈ L∗(E ,F). (1.9)

(2) Let S be a ∗-subspace of L∗(E , F) and define a gramian [·, ·] on S by (1.9). Let 
Z be the ∗-subspace of L∗(E) generated by all operators T ∗S, where T, S ∈ S. Z has a 
natural structure of ordered ∗-space, where positivity of T ∈ S is in the sense of (1.3). 
Thus, S is a VE-space over Z that, in general, is not a VE-module.

2. Linearisations for invariant kernels

In this section we present the main dilation theorem for kernels. We start with some 
preliminary results.

2.1. Kernels with values adjointable operators

Let X be a nonempty set and let H be a VE-space over the ordered ∗-space Z. A map 
k : X × X → L(H) is called a kernel on X and valued in L(H). In case the kernel k
has all its values in L∗(H), an adjoint kernel k∗ : X ×X → L∗(H) can be associated by 
k∗(x, y) = k(y, x)∗ for all x, y ∈ X. The kernel k is called Hermitian if k∗ = k.

Let F = F(X; H) denote the complex vector space of all functions f : X → H and 
let F0 = F0(X; H) be its subspace of those functions having finite support. A pairing 
[·, ·]F0 : F0 ×F0 → Z can be defined by

[g, h]F0 =
∑
y∈X

[g(y), h(y)]H, g, h ∈ F0. (2.1)

This pairing is clearly a Z-gramian on F0, hence (F0; [·, ·]F0) is a VE-space.
Let us observe that the sum in (2.1) makes sense even when only one of the functions 

g or h has finite support, the other can be arbitrary in F . Thus, another pairing [·, ·]k
can be defined on F0 by

[g, h]k =
∑

x,y∈X

[k(y, x)g(x), h(y)]H, g, h ∈ F0. (2.2)

In general, the pairing [·, ·]k is linear in the first variable and conjugate linear in the 
second variable. If, in addition, k = k∗ then the pairing [·, ·]k is Hermitian as well, that 
is,

[g, h]k = [h, g]∗k, g, h ∈ F0.
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A convolution operator K : F0 → F can be associated to the kernel k by

(Kg)(y) =
∑
x∈X

k(y, x)g(x), g ∈ F0, (2.3)

and it is easy to see that K is a linear operator. There is a natural relation between the 
pairing [·, ·]k and the convolution operator K given by

[g, h]k = [Kg, h]F0 , g, h ∈ F0.

Given n ∈ N, the kernel k is called n-positive if for any x1, x2, . . . , xn ∈ X and any 
h1, h2, . . . , hn ∈ H we have

n∑
i,j=1

[k(xi, xj)hj , hi]H ≥ 0. (2.4)

The kernel k is called positive semidefinite (or of positive type) if it is n-positive for 
all natural numbers n. The proof of the following lemma is the same as the proof of 
Lemma 3.1 from [11].

The third assertion in the next result makes the connection with the kernels made up 
of bounded operators only as in [11].

Lemma 2.1. Assume that the kernel k : X ×X → L∗(H) is 2-positive. Then:
(1) k is Hermitian.
(2) If, for some x ∈ X, we have k(x, x) = 0, then k(x, y) = 0 for all y ∈ X.
(3) Assume that, for x, y ∈ X the operators k(x, x) and k(y, y) are bounded. Then 

k(x, y) and k(y, x) = k(x, y)∗ are bounded and

‖k(x, y)‖2 ≤ ‖k(x, x)‖ ‖k(y, y)‖. (2.5)

In particular, if k(x, x) ∈ B∗(E) for all x ∈ X, then k(y, x) ∈ B∗(E) for all x, y ∈ X.

Proof. The proof of (1) and (2) is the same as the proof of Lemma 3.1 from [11].
(3) Assume that both operators k(x, x) and k(y, y) are bounded, see Subsection 1.2, 

hence k(x, x), k(y, y) ∈ B∗(E). If k(y, y) = 0 then, by (2), k(x, y) = 0 and k(y, x) =
k(x, y)∗ = 0, hence bounded, and the inequality (2.5) holds trivially.

Assume that k(y, y) �= 0, hence ‖k(y, y)‖ > 0. Since k is 2-positive, for any h, g ∈ H
we have

[k(x, x)h, h] + [k(x, y)g, h] + [k(y, x)h, g] + [k(y, y)g, g] ≥ 0. (2.6)

We let g = −k(x, y)∗h/‖k(y, y)‖ in (2.6), take into account (1.8) and get
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2
‖k(y, y)‖ [k(y, x)h,k(y, x)h] ≤ [k(x, x)h, h] + 1

‖k(y, y)‖2 [k(y, y)k(y, x)h,k(y, x)h]

≤ [k(x, x)h, h] + ‖k(y, y)‖
‖k(y, y)‖2 [k(y, x)h,k(y, x)h]

= [k(x, x)h, h] + 1
‖k(y, y)‖ [k(y, x)h,k(y, x)h],

hence

[k(y, x)h,k(y, x)h] ≤ ‖k(y, y)‖[k(x, x)h, h] ≤ ‖k(x, x)‖ ‖k(y, y)‖[h, h],

which proves that k(y, x) is a bounded operator and the inequality (2.5). �
Example 2.2. This example is a generalisation of Example 1.2.(6). Let X be a nonempty 
set, E be a VE-space over the ordered ∗-space Z. Let K(X; E) be the vector space of 
all kernels k : X ×X → L∗(E), and let K(X; E)+ be the set of all positive semidefinite 
kernels. Then K(X; E)+ is a cone and, by Lemma 2.1, it consists only of selfadjoint 
elements. If k ∈ (K(X; E)+ ∩ −K(X; E)+), we obtain [k(x, x)h, h]E = 0 for all x ∈ X

and h ∈ E by strictness of the cone of Z. Since k(x, x) is a positive operator, hence 
selfadjoint, by means of the analog of the polarisation formula (1.1), see the second part 
of Remark 1.3, it follows that k(x, x) = 0 for any x ∈ X. Then, by Lemma 2.1 again, 
k(x, y) = 0 for all x, y ∈ X, i.e. k = 0. Therefore K(X; E) is an ordered ∗-space with 
cone K(X; E)+. A multiplication can be defined on K(X; E): for k, l ∈ K(X; E) we let 
(kl)(x, y) = k(x, y)l(x, y) for all x, y ∈ X. With respect to this multiplication, K(X; E)
is an ordered ∗-algebra.

Given an L∗(H)-valued kernel k on a nonempty set X, for some VE-space H on an 
ordered ∗-space Z, a VE-space linearisation or, equivalently, a VE-space Kolmogorov 
decomposition of k is, by definition, a pair (K; V ), subject to the following conditions:

(kd1) K is a VE-space over the same ordered ∗-space Z.
(kd2) V : X → L∗(H, K) satisfies k(x, y) = V (x)∗V (y) for all x, y ∈ X.

The VE-space linearisation (K; V ) is called minimal if

(kd3) LinV (X)H = K.

Two VE-space linearisations (V ; K) and (V ′; K′) of the same kernel k are called unitary 
equivalent if there exists a unitary operator U : K → K′ such that UV (x) = V ′(x) for all 
x ∈ X.

The uniqueness of a minimal VE-space linearisation (K; V ) of a positive semidefinite 
kernel k, modulo unitary equivalence, follows in the usual way: if (K′; V ′) is another min-
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imal VE-space linearisation of k, for arbitrary x1, . . . , xm, y1, . . . , yn ∈ X and arbitrary 
h1, . . . , hm, g1, . . . , gn ∈ H, we have

[
m∑
j=1

V (xj)hj ,
n∑

i=1
V (yi)gi]K =

m∑
j=1

n∑
i=1

[V (xj)hj , V (yi)gi]K

=
n∑

i=1

m∑
j=1

[k(yi, xj)hj , gi]K

=
m∑
j=1

n∑
i=1

[V ′(xj)hj , V
′(yi)gi]K′

= [
m∑
j=1

V ′(xj)hj ,
n∑

i=1
V ′(yi)gi]E′ ,

hence U : LinV (X) → LinV ′(X) defined by

m∑
j=1

V (xj)hj �→
m∑
j=1

V ′(xj)hj (2.7)

is a correctly everywhere defined linear operator, isometric and onto. Thus, U is a VE-
space isomorphism U : K → K′ and UV (x) = V ′(x) for all x ∈ X, by construction.

2.2. Reproducing kernel VE-spaces

Let H be a VE-space over the ordered ∗-space Z, and let X be a nonempty set. 
A VE-space R, over the same ordered ∗-space Z, is called an H-reproducing kernel 
VE-space on X if there exists a Hermitian kernel k : X × X → L∗(H) such that the 
following axioms are satisfied:

(rk1) R is a subspace of F(X; H), with all algebraic operations.
(rk2) For all x ∈ X and all h ∈ H, the H-valued function kxh = k(·, x)h ∈ R.
(rk3) For all f ∈ R we have [f(x), h]H = [f, kxh]R, for all x ∈ X and h ∈ H.

As a consequence of (rk2), Lin{kxh | x ∈ X, h ∈ H} ⊆ R. The reproducing kernel 
VE-space R is called minimal if the following property holds as well:

(rk4) Lin{kxh | x ∈ X, h ∈ H} = R.

Observe that if R is an H-reproducing kernel VE-space on X, with kernel k, then 
k is positive semidefinite and uniquely determined by R hence we can talk about the
H-reproducing kernel k corresponding to R. On the other hand, a minimal reproducing 
kernel VE-space R is uniquely determined by its reproducing kernel k.
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The classical reproducing kernel Hilbert spaces, e.g. see [1], are characterised, within 
the Hilbert function spaces, by the continuity of the evaluation functionals. In the fol-
lowing, we generalise this by showing that, in the absence of an analogue of the Riesz 
Representation Theorem, it is the adjointability which makes the difference. Letting H
be a VE-space over an ordered ∗-space Z, for X a nonempty set, an evaluation oper-
ator Ex : F(X; H) → H can be defined for each x ∈ X by letting Exf = f(x) for all 
f ∈ F(X; H). Clearly, Ex is linear.

Proposition 2.3. Let X be a nonempty set, H a VE-space over an ordered ∗-space Z, 
and let R ⊆ F(X; H), with all algebraic operations, be a VE-space over Z. Then R is 
an H-reproducing kernel VE-space if and only if, for all x ∈ X, the restriction of the 
evaluation operator Ex to R is adjointable as a linear operator R → H.

Proof. Assume first that R is an H-reproducing kernel VE-space on X and let k be its 
reproducing kernel. For any h ∈ H and any f ∈ R

[Exf, h]H = [f(x), h]H = [f,kxh]R. (2.8)

Since kx ∈ L(H, R), it follows that Ex is adjointable and, in addition, E∗
x = kx, for all 

x ∈ X.
Conversely, assume that, for all x ∈ X, the evaluation operator Ex ∈ L∗(R, H). 

Equation (2.8) shows that, in order to show that R is a reproducing kernel VE-space, 
we should define the kernel k in the following way:

k(y, x)h = (E∗
xh)(y), x, y ∈ X, h ∈ H. (2.9)

It is clear that k(y, x) : H → H is a linear operator and observe that kxh = E∗
xh for all 

x ∈ X and all h ∈ H. The reproducing property (rk3) holds:

[f(x), h]H = [Exf, h]H = [f,E∗
xh]R = [f,kxh]R, f ∈ R, h ∈ H, x ∈ X.

The axioms (rk1) and (rk2) are clearly satisfied, so it only remains to prove that k is a 
Hermitian kernel. To see this, fix x, y ∈ X and h, l ∈ H. Then

[k(y, x)h, l]H = [(kxh)(y), l]H = [kxh,kyl]R

= [kyl,kxh]∗R = [k(x, y)l, h]∗R = [h,k(x, y)l]R.

Therefore, k(y, x) is adjointable and k(y, x)∗ = k(x, y), hence k is a Hermitian kernel. 
We have proven that k is the reproducing kernel of R. �

There is a very close connection between VE-space linearisations and reproducing 
kernel VE-spaces.
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Proposition 2.4. Let X be a nonempty set, H a VE-space over an ordered ∗-space Z, and 
let k : X ×X → L∗(H) be a Hermitian kernel.

(1) Any H-reproducing kernel VE-space R with kernel k is a VE-space linearisation 
(R; V ) of k, with V (x) = kx for all x ∈ X.

(2) For any minimal VE-space linearisation (K; V ) of k, letting

R = {V (·)∗f | f ∈ K}, (2.10)

we obtain the minimal H-reproducing kernel VE-space with reproducing kernel k.

Proof. (2)⇒(1). Let (K; π; V ) be a minimal VE-space linearisation of the kernel k on X. 
Let R be the set of all functions X � x �→ V (x)∗f ∈ H, in particular R ⊆ F(X; H), 
and we endow R with the algebraic operations inherited from the complex vector space 
F(X; H).

The correspondence

K � f �→ Uf = V (·)∗f ∈ R (2.11)

is bijective. By the definition of R, this correspondence is surjective. In order to verify 
that it is injective as well, let f, g ∈ K be such that V ∗(·)f = V ∗(·)g. Then, for all x ∈ X

and all h ∈ H we have

[V (x)∗f, h]H = [V (x)∗g, h]H,

equivalently,

[f − g, V (x)h]K = 0, x ∈ X, h ∈ H.

By the minimality of the VE-space linearisation (K; V ) it follows that g = f . Thus, U is 
a bijection.

Clearly, the bijective map U defined at (2.11) is linear, hence a linear isomorphism of 
complex vector spaces K → R. On R we introduce a Z-valued pairing

[Uf,Ug]R = [V (·)∗f, V (·)∗g]R = [f, g]K, f, g ∈ K. (2.12)

Then (R; [·, ·]R) is a VE-space over Z since, by (2.12), we transported the Z-gramian 
from K to R or, in other words, we have defined on R the Z-gramian that makes the 
linear isomorphism U a unitary operator between the VE-spaces K and R.

We show that (R; [·, ·]R) is an H-reproducing kernel VE-space with corresponding 
reproducing kernel k. By definition, R ⊆ F(X; H). On the other hand, since

kx(y)h = k(y, x)h = V (y)∗V (x)h, for all x, y ∈ X and all h ∈ H,
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taking into account that V (x)h ∈ K, by (2.10) it follows that kx ∈ R for all x ∈ X. 
Further, for all f ∈ R, x ∈ X, and h ∈ H, we have

[f,kxh]R = [V (·)∗g,kxh]R = [V (·)∗g, V (·)∗V (x)h]R

= [g, V (x)h]K = [V (x)∗g, h]H = [f(x), h]H,

where g ∈ K is the unique vector such that V (x)∗g = f(x), which shows that R satisfies 
the reproducing axiom as well.

(1)⇒(2). Assume that (R; [·, ·]R) is an H-reproducing kernel VE-space on X, with 
reproducing kernel k. We let K = R and define

V (x)h = kxh, x ∈ X, h ∈ H. (2.13)

Note that V (x) : H → K is linear for all x ∈ X.
We show that V (x) ∈ L∗(H, K) for all x ∈ X. To see this, first note that, by the 

reproducing property,

[f, V (x)h]K = [f,kxh]R = [f(x), h]H, x ∈ X, h ∈ H. (2.14)

Let us then, for fixed x ∈ X, consider the linear operator W (x) : R = K → H defined 
by W (x)f = f(x) for all f ∈ R = K. From (2.14) we conclude that V (x) is adjointable 
and V (x)∗ = W (x) for all x ∈ X.

Finally, by the reproducing axiom, for all x, y ∈ X and all h, g ∈ H we have

[V (y)∗V (x)h, g]H = [V (x)h, V (y)g]R = [kxh,kyg]R = [k(y, x)h, g]H,

hence V (y)∗V (x) = k(y, x) for all x, y ∈ X. Thus, (K; V ) is a VE-space linearisation 
of k (actually, a minimal one). �
Remark 2.5. The proof of Proposition 2.4 provides an explicit correspondence between 
the class of minimal VE-space linearisations of k, identified by unitary equivalence, and 
the minimal H-reproducing kernel VE-space associated to k.

2.3. ∗-representations on VE-spaces associated to invariant kernels

Let a (multiplicative) semigroup Γ act on X, denoted by ξ · x, for all ξ ∈ Γ and all 
x ∈ X. By definition, we have

α · (β · x) = (αβ) · x for all α, β ∈ Γ and all x ∈ X. (2.15)

Equivalently, this means that we have a semigroup morphism Γ � ξ �→ ξ· ∈ G(X), where 
G(X) denotes the semigroup, with respect to composition, of all maps X → X. In case 



376 S. Ay, A. Gheondea / Linear Algebra and its Applications 486 (2015) 361–388
the semigroup Γ has a unit ε, the action is called unital if ε · x = x for all x ∈ X, 
equivalently, ε· = IdX .

We assume further that Γ is a ∗-semigroup, that is, there is an involution ∗ on Γ; this 
means that (ξη)∗ = η∗ξ∗ and (ξ∗)∗ = ξ for all ξ, η ∈ Γ. Note that, in case Γ has a unit ε
then ε∗ = ε.

Given a VE-space H we are interested in those Hermitian kernels k : X×X → L∗(H)
that are invariant under the action of Γ on X, that is,

k(y, ξ · x) = k(ξ∗ · y, x) for all x, y ∈ X and all ξ ∈ Γ. (2.16)

A triple (K; π; V ) is called an invariant VE-space linearisation of the kernel k and the 
action of Γ on X, shortly a Γ-invariant VE-space linearisation of k, if:

(ikd1) (K; V ) is a VE-space linearisation of the kernel k.
(ikd2) π : Γ → L∗(K) is a ∗-representation, that is, a multiplicative ∗-morphism.
(ikd3) V and π are related by the formula: V (ξ · x) = π(ξ)V (x), for all x ∈ X, ξ ∈ Γ.

Remarks 2.6. (1) Let (K; π; V ) be a Γ-invariant VE-space linearisation of the kernel k. 
Since (K; V ) is a VE-space linearisation and taking into account the axiom (ikd3), we 
have

k(y, ξ · x) = V (y)∗V (ξ · x) = V (y)∗π(ξ)V (x)

= (π(ξ∗)V (y))∗V (x) = k(ξ∗ · y, x), x, y ∈ X, ξ ∈ Γ, (2.17)

hence k is invariant under the action of Γ on X.
(2) Observe that, if the action of Γ on X is unital then, for a Γ-invariant VE-space 

linearisation (K; π; V ), the two conditions k(x, y) = V (x)∗V (y), x, y ∈ X, and V (ξ ·x) =
π(ξ)V (x), ξ ∈ Γ and x ∈ X, can be equivalently combined into two slightly different 
conditions, namely, π unital and k(x, ξ · y) = V (x)∗π(ξ)V (y), ξ ∈ Γ and x, y ∈ X.

If, in addition to the axioms (ikd1)–(ikd3), the triple (K; π; V ) has the property

(ikd4) LinV (X)H = K,

that is, the VE-space linearisation (K; V ) is minimal, then (K; π; V ) is called a minimal 
Γ-invariant VE-space linearisation of k and the action of Γ on X.

Minimal invariant VE-space linearisations have a built-in linearity property; the proof 
is the same with that of Proposition 4.1 in [11].

Proposition 2.7. Assume that, given a VE-space adjointable operator valued kernel k, 
invariant under the action of the ∗-semigroup Γ on X, for some fixed α, β, γ ∈ Γ we have 
k(y, α · x) + k(y, β · x) = k(y, γ · x) for all x, y ∈ X. Then, for any minimal invariant 
VE-space linearisation (K; π; V ) of k, the representation satisfies π(α) + π(β) = π(γ).
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Two Γ-invariant VE-space linearisations (K; π; V ) and (K′; π′; V ′), of the same Hermi-
tian kernel k, are called unitary equivalent if there exists a unitary operator U : K → K′

such that Uπ(ξ) = π′(ξ)U for all ξ ∈ Γ, and UV (x) = V ′(x) for all x ∈ X. Let us note 
that, in case both of these invariant VE-space linearisations are minimal, then this is 
equivalent with the requirement that the VE-space linearisations (K; V ) and (K′; V ′) are 
unitary equivalent.

The main result of this article is the following theorem. It is stated in terms of both 
linearisations and reproducing kernels and the proof points out essentially a reproducing 
kernel and operator range construction.

Theorem 2.8. Let Γ be a ∗-semigroup that acts on the nonempty set X and let k : X×X →
L∗(H) be a kernel, for some VE-space H over an ordered ∗-space Z. The following 
assertions are equivalent:

(1) k is positive semidefinite, in the sense of (2.4), and invariant under the action of Γ
on X, that is, (2.16) holds.

(2) k has a Γ-invariant VE-space linearisation (K; π; V ).
(3) k admits an H-reproducing kernel VE-space R and there exists a ∗-representation 

ρ : Γ → L∗(R) such that ρ(ξ)kxh = kξ·xh for all ξ ∈ Γ, x ∈ X, h ∈ H.

In addition, in case any of the assertions (1), (2), or (3) holds, then a minimal 
Γ-invariant VE-space linearisation can be constructed, any minimal Γ-invariant VE-
space linearisation is unique up to unitary equivalence, a pair (R; ρ) as in assertion (3) 
with R minimal can be always obtained and, in this case, it is uniquely determined by k
as well.

Proof. (1)⇒(2). Assuming that k is positive semidefinite, by Lemma 2.1.(1) it follows 
that k is Hermitian, that is, k(x, y)∗ = k(y, x) for all x, y ∈ X. We consider the convo-
lution operator K defined at (2.3) and let G = G(X; H) be its range, more precisely,

G = {f ∈ F | f = Kg for some g ∈ F0}

= {f ∈ F | f(y) =
∑
x∈X

k(y, x)g(x) for some g ∈ F0 and all x ∈ X}. (2.18)

A pairing [·, ·]G : G × G → Z can be defined by

[e, f ]G = [Kg, h]F0 =
∑
y∈X

[e(y), h(y)]H

=
∑

x,y∈X

[k(y, x)g(x), h(y)]H, (2.19)

where f = Kh and e = Kg for some g, h ∈ F0. We observe that
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[e, f ]G =
∑
y∈X

[e(y), h(y)]H =
∑

x,y∈X

[k(y, x)g(x), h(y)]H

=
∑

x,y∈X

[g(x),k(x, y)h(y)]H =
∑
x∈X

[g(x), f(x)]H,

which shows that the definition in (2.19) is correct, that is, independent of g and h such 
that e = Kg and f = Kh.

We claim that [·, ·]G is a Z-valued gramian, that is, it satisfies all the requirements 
(ve1)–(ve3). The only fact that needs a proof is [f, f ]G = 0 implies f = 0 and this follows 
by Lemma 1.4.

Thus, (G; [·, ·]G) is a VE-space that we denote by K. For each x ∈ X we define 
V (x) : H → G by

V (x)h = Khx, h ∈ H, (2.20)

where hx = δxh ∈ F0 is the function that takes the value h at x and is null elsewhere. 
Equivalently,

(V (x)h)(y) = (Khx)(y) =
∑
z∈X

k(y, z)(hx)(z) = k(y, x)h, y ∈ X. (2.21)

Note that V (x) is an operator from the VE-space H to the VE-space G = K and it 
remains to show that V (x) is adjointable for all x ∈ X. To see this, let us fix x ∈ X and 
take h ∈ H and f ∈ G arbitrary. Then,

[V (x)h, f ]G =
∑
y∈X

[(hx)(y), f(y)]H = [h, f(x)]H, (2.22)

which shows that V (x) is adjointable and that its adjoint V (x)∗ is the operator G � f �→
f(x) ∈ H of evaluation at x.

On the other hand, for any x, y ∈ X, by (2.21), we have

V (y)∗V (x)h = (V (x)h)(y) = k(y, x)h, h ∈ H,

hence (V ; K) is a VE-space linearisation of k. We prove that it is minimal as well. To 
see this, note that a typical element in the linear span of V (X)H is, for arbitrary n ∈ N, 
x1, . . . , xn ∈ X, and h1, . . . , hn ∈ H,

n∑
j=1

V (xj)hj =
n∑

j=1
Khj,xj

=
n∑

j=1

∑
y∈X

k(·, y)hj,xj
(y) =

n∑
j=1

k(·, xj)hj ,
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and then take into account that G is the range of the convolution operator K defined 
at (2.3). The uniqueness of the minimal VE-space linearisation (V ; K) just constructed 
follows as in (2.7).

For each ξ ∈ Γ we let π(ξ) : F → F be defined by

(π(ξ)f)(y) = f(ξ∗ · y), y ∈ X, ξ ∈ Γ. (2.23)

We prove that π(ξ) leaves G invariant. To see this, let f ∈ G, that is, f = Kg for some 
g ∈ F0 or, even more explicitly, by (2.18),

f(y) =
∑
x∈X

k(y, x)g(x), y ∈ X. (2.24)

Then,

f(ξ∗ · y) =
∑
x∈X

k(ξ∗ · y, x)g(x)

=
∑
x∈X

k(y, ξ · x)g(x) =
∑
z∈X

k(y, z)gξ(z), (2.25)

where,

gξ(z) =

⎧⎨
⎩

0, if ξ · x = z has no solution x ∈ supp g,∑
ξ·x=z

g(x), otherwise. (2.26)

Since gξ ∈ F0, it follows that π(ξ) leaves G invariant. In the following we denote by the 
same symbol π(ξ) the map π(ξ) : G → G.

We prove that π is a representation of the semigroup Γ on the complex vector space G, 
that is,

π(αβ)f = π(α)π(β)f, α, β ∈ Γ, f ∈ G. (2.27)

To see this, let f ∈ G be fixed and denote h = π(β)f , that is, h(y) = f(β∗ · y) for 
all y ∈ X. Then π(α)π(β)f = π(α)h, that is, (π(α)h)(y) = h(α∗ · y) = h(β∗α∗ · y) =
h((αβ)∗ · y) = (π(αβ))(y), for all y ∈ X, which proves (2.27)

We show that π is actually a ∗-representation, that is,

[π(ξ)f, f ′]G = [f, π(ξ∗)f ′]G , f, f ′ ∈ G. (2.28)

To see this, let f = Kg and f ′ = Kg′ for some g, g′ ∈ F0. Then, recalling (2.19) and 
(2.25),
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[π(ξ)f, f ′]G =
∑
y∈X

[f(ξ∗y), g′(y)]H =
∑

x,y∈X

[k(ξ∗ · y, x)g(x), g′(y)]H

=
∑

x,y∈X

[k(y, ξ · x)g(x), g′(y)]H =
∑

x,y∈X

[g(x),k(ξ · x, y)g′(y)]H

=
∑
x∈X

[g(x), f ′(ξ · x)]H = [f, π(ξ∗)f ′]H,

and hence the formula (2.28) is proven.
In order to show that the axiom (ikd3) holds as well, we use (2.21). Thus, for all ξ ∈ Γ, 

x, y ∈ X, h ∈ H, and taking into account that k is invariant under the action of Γ on X, 
we have

(V (ξ · x)h)(y) = k(y, ξ · x)h = k(ξ∗ · y, x)h

= (V (x)h)(ξ∗ · y) = (π(ξ)V (x)h)(y), (2.29)

which proves (ikd3). Thus, (K; π; V ), here constructed, is a Γ-invariant VE-space lin-
earisation of the Hermitian kernel k. Note that (K; π; V ) is minimal, that is, the axiom 
(ikd4) holds, since the VE-space linearisation (K; V ) is minimal.

Let (K′; π′; V ′) be another minimal invariant VE-space linearisation of K. We consider 
the unitary operator U : K → K′ defined as in (2.7) and we already know that UV (x) =
V ′(x) for all x ∈ X. Since, for any ξ ∈ Γ, x ∈ X, and h ∈ H, we have

Uπ(ξ)V (x)h = UV (ξ · x)h = V ′(ξ · x)h = π′(ξ)V ′(x)h = π′(ξ)UV (x)h,

and taking into account the minimality, it follows that Uπ(ξ) = π′(ξ)U for all ξ ∈ Γ.
(2)⇒(1). Let (K; π; V ) be a Γ-invariant VE-space linearisation of k. Then

n∑
j,i=1

[k(xi, xj)hj , hi]H =
n∑

j,i=1
[V (xi)∗V (xj)hj , hi]H

= [
n∑

j=1
V (xj)hj ,

n∑
j=1

V (xj)hj ]H ≥ 0,

for all n ∈ N, x1, . . . , xn ∈ X, and h1, . . . , hn ∈ H, hence k is positive semidefinite. It 
was shown in (2.17) that k is invariant under the action of Γ on X.

(2)⇒(3). This follows from Proposition 2.4 with the following observation: with no-
tation as in the proof of that proposition, for all x, y ∈ X and h ∈ H we have

kξ·x(y)h = k(y, ξ · x)h = V (y)∗V (ξ · x)h = V (y)∗π(ξ)V (x)h,

hence, letting ρ(ξ) = Uπ(ξ)U−1, where U : K → R is the unitary operator defined as in 
(2.11), we obtain a ∗-representation of Γ on the VH-space R such that kξ·x = ρ(ξ)kx for 
all ξ ∈ Γ and x ∈ X.
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(3)⇒(2). Let ρ : Γ → L∗(R) is a ∗-representation such that kξ·x = ρ(ξ)kx for all ξ ∈ Γ
and x ∈ X. Again, we use Proposition 2.4. Letting π = ρ, it is then easy to see that 
(R; π; V ) is a Γ-invariant VE-space linearisation of the kernel k. �
Remarks 2.9. (1) Given k : X ×X → L∗(H) a positive semidefinite kernel, as a conse-
quence of Theorem 2.8 we can denote, without any ambiguity, by Rk the unique minimal 
H-reproducing kernel VE-space on X associated to k.

(2) The construction in the proof of (1)⇒(2) in Theorem 2.8 is essentially a minimal 
H-reproducing kernel VE-space one. More precisely, we first note that, for arbitrary 
f ∈ F(X; H), f = Kg with g ∈ F0(X; H), we have

f =
∑
x∈X

k(y, x)g(x) =
∑
x∈X

kx(y)g(x), (2.30)

hence G(X; H) = Lin{kxh | x ∈ X, h ∈ H}. Then, for arbitrary f ∈ G we have

[f,kxh]K = [f,kxh]G = [f,Khx]G =
∑
y∈X

[f(y), (hx)(y)]H

= [f(x), h]H = [f,kxh]R(K), x ∈ X, h ∈ H,

hence [·, ·]K = [·, ·]R(K) on G(X; H) = Lin{kxh | x ∈ X, h ∈ H}, that coincides with 
both K and R(K). Therefore, we can take K = R(K) = G(X; H) to be a VE-space, with 
the advantage that it consists entirely of H-valued functions on X.

This idea was used in [11] as well and the source of inspiration is [32].

3. Results that Theorem 2.8 unifies

In this section we obtain, as consequences of the main result, different versions of 
known dilation theorems in non-topological versions.

3.1. Positive semidefinite maps on ∗-semigroups

Given a VE-space H over an ordered ∗-space Z and a ∗-semigroup Γ, a map ϕ : Γ →
L∗(H) is called positive semidefinite or of positive type if, for all n ∈ N, ξ1, . . . , ξn ∈ Γ
and h1, . . . , hn ∈ H, we have

n∑
i,j=1

[ϕ(ξ∗i ξj)hj , hi]H ≥ 0. (3.1)

Given a map ϕ : Γ → L∗(H) we consider the kernel k : Γ × Γ → L∗(H) defined by

k(α, β) = ϕ(α∗β), α, β ∈ Γ, (3.2)
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and observe that ϕ is positive semidefinite, in the sense of (3.1), if and only if k is positive 
semidefinite, in the sense of (2.4).

On the other hand, considering the action of Γ on itself by left multiplication, the 
kernel k, as defined at (3.2), is Γ-invariant, in the sense of (2.16). Indeed,

k(ξ, α · ζ) = ϕ(ξ∗αζ) = ϕ((α∗ξ)∗ζ) = k(α∗ · ξ, ζ), α, ξ, ζ ∈ Γ.

Therefore, the following corollary is a direct consequence of Theorem 2.8.

Corollary 3.1. Let ϕ : Γ → L∗(H) be a map, for some ∗-semigroup Γ and some VE-space 
H over an ordered ∗-space Z. The following assertions are equivalent:

(1) The map ϕ is positive semidefinite.
(2) There exists a VE-space K over Z, a map V : Γ → L∗(H, K), and a ∗-representation 

π : Γ → L∗(K), such that:
(i) ϕ(ξ∗ζ) = V (ξ)∗V (ζ) for all ξ, ζ ∈ Γ.
(ii) V (ξζ) = π(ξ)V (ζ) for all ξ, ζ ∈ Γ.

In addition, if this happens, then the triple (K; π; V ) can always be chosen minimal, in 
the sense that K is the linear span of the set V (Γ)H, and any two minimal triples as 
before are unique, modulo unitary equivalence.

(3) There exist an H-reproducing kernel VE-space R on Γ and a ∗-representation ρ : Γ →
L∗(R) such that:
(i) R has the reproducing kernel Γ × Γ � (ξ, ζ) �→ ϕ(ξ∗ζ) ∈ L∗(H).
(ii) ρ(α)ϕ(·ξ)h = ϕ(·αξ)h for all α, ξ ∈ Γ and h ∈ H.

In addition, the reproducing kernel VE-space R as in (3) can be always constructed 
minimal and in this case it is uniquely determined by ϕ.

As can be observed from condition (2).(i) in Corollary 3.1, we do not have a represen-
tation of ϕ on the whole ∗-semigroup Γ but only on its ∗-subsemigroup {ξ∗ζ | ξ, ζ ∈ Γ}, 
which may be strictly smaller than Γ. This situation can be remedied, for example, in 
case the ∗-semigroup Γ has a unit, when the previous corollary takes a form similar with 
B. Sz.-Nagy Theorem, cf. [32].

Corollary 3.2. Assume that the ∗-semigroup Γ has a unit ε. Let ϕ : Γ → L∗(H) be a map, 
for some VE-space H over an ordered ∗-space Z. The following assertions are equivalent:

(1) The map ϕ is positive semidefinite.
(2) There exist a VE-space K over Z, a linear operator W ∈ L∗(H, K), and a unital 

∗-representation π : Γ → L∗(K), such that:

ϕ(α) = W ∗π(α)W, α ∈ Γ. (3.3)
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In addition, if this happens, then the triple (K; π; V ) can always be chosen minimal, in 
the sense that K is the linear span of the set π(Γ)WH, and any two minimal triples as 
before are unique, modulo unitary equivalence.

3.2. Positive semidefinite linear maps

Given a ∗-algebra A, a linear map ϕ : A → L∗(H), for some VE-space H over 
an ordered ∗-space Z, is called positive semidefinite if for all a1, . . . , an ∈ A and all 
h1, . . . , hn ∈ H we have

n∑
i,j=1

[ϕ(a∗i aj)hj , hi]H ≥ 0, (3.4)

where the inequality is understood in Z with respect to the given cone Z+ and the 
underlying partial order, see Subsection 1.1. Observe that for a Hermitian linear map 
ϕ : A → L∗(H) one can define a Hermitian kernel kϕ : A ×A → L∗(H) by letting

kϕ(a, b) = ϕ(a∗b), a, b ∈ A.

Also, observe that the ∗-algebra A can be viewed as a multiplicative ∗-semigroup and, 
letting A act on itself by multiplication, the kernel kϕ is invariant under this action. 
With this notation, another consequence of Theorem 2.8 is the following:

Corollary 3.3. Let ϕ : A → L∗(H) be a linear map, for some ∗-algebra A and some 
VE-space H over an ordered ∗-space Z. The following assertions are equivalent:

(1) The map ϕ is positive semidefinite.
(2) There exist a VE-space K over the ordered ∗-space Z, a linear map V : A →

L∗(H, K), and a ∗-representation π : A → L∗(K), such that:
(i) ϕ(a∗b) = V (a)∗V (b) for all a, b ∈ A.
(ii) V (ab) = π(a)V (b) for all a, b ∈ A.

In addition, if this happens, then the triple (K; π; V ) can always be chosen minimal, in 
the sense that K is the linear span of the set V (A)H, and any two minimal triples as 
before are unique, modulo unitary equivalence.

(3) There exist an H-reproducing kernel VE-space R on A and a ∗-representation 
ρ : A → L∗(R) such that:
(i) R has the reproducing kernel A ×A � (a, b) �→ ϕ(a∗b) ∈ L∗(H).
(ii) ρ(a)ϕ(·b)h = ϕ(·ab)h for all a, b ∈ A and h ∈ H.

In addition, the reproducing kernel VE-space R as in (3) can be always constructed 
minimal and in this case it is uniquely determined by ϕ.
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In case the ∗-algebra has a unit, the previous corollary yields a Stinespring type 
Representation Theorem, cf. [30], or its generalisations [11]. More precisely, letting e
denote the unit of the ∗-algebra A and with the notation as in Corollary 3.3.(2), letting 
W = V (e), we have

Corollary 3.4. Let A be a unital ∗-algebra A and ϕ : A → L∗(H) a linear map, for some 
VE-space H over an ordered ∗-space Z. The following assertions are equivalent:

(i) ϕ is positive semidefinite.
(ii) There exist K a VE-space over the same ordered ∗-space Z, a ∗-representation 

π : A → L∗(K), and W ∈ L∗(H, K) such that

ϕ(a) = W ∗π(a)W a ∈ A. (3.5)

In addition, if this happens, then the triple (K; π; W ) can always be chosen minimal, in 
the sense that K is the linear span of the set π(A)WH, and any two minimal triples as 
before are unique, modulo unitary equivalence.

Remarks 3.5. (1) In dilation theory, one encounters also the notion of completely positive, 
e.g. see [25]. In our setting, we can consider a linear map ϕ : V → L∗(E), where V is a 
∗-space and E is some VE-space over an ordered ∗-space Z. For each n one can consider 
the ∗-space Mn(V) of all n × n matrices with entries in V. Then the n-th amplification 
map ϕn : Mn(V) → Mn(L∗(E)) = L∗(En) is defined by

ϕn([ai,j ]ni,j=1) = [ϕ(ai,j)]ni,j=1, [ai,j ]ni,j=1 ∈ Mn(V). (3.6)

Basically, ϕ would be called completely positive if ϕn is “positive” for all n, where “posi-
tive” should mean that, whenever [ai,j]ni,j=1 is “positive” in Mn(V) then ϕn([ai,j ]ni,j=1) is 
positive in Mn(L∗(E)). Since positivity in Mn(L∗(E)) is perfectly defined, see Remark 1.6, 
the only problem is to define positivity in Mn(V). One of the possible approaches, e.g. 
see [6], is to assume V be a matrix quasi ordered ∗-space, that is, there exists {Cn}n≥1 a 
matrix quasi ordering of V, in the following sense

(mo1) For each n ∈ N, Cn is a cone on Mn(V).
(mo2) For each m, n ∈ N and each m ×n matrix with complex entries, we have T ∗CmT ⊆

Cn, where multiplication is the usual matrix multiplication.

In the special case when (mo1) is changed such that for each n ∈ N, the cone Cn is strict, 
one has the concept of matrix ordering and, respectively, of matrix ordered ∗-space, e.g. 
see [26]. For example, L∗(E) has a natural structure of matrix ordered ∗-algebra, see 
Remark 1.6. Observe that, in the latter case, each Mn(V) is an ordered ∗-space hence, in 
this case, the concept of completely positive map ϕ : V → L∗(E) makes perfectly sense. 
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In the former case, that of matrix quasi ordered ∗-space V, the concept of completely 
positive map ϕ makes sense as well.

(2) Assuming that instead of V we have a ∗-algebra A and that the concept of a 
completely positive map ϕ : A → L∗(E) is defined, a natural question is what is the 
relation of this concept with that of positive semidefinite map ϕ. By inspection, it can 
be observed that, in order to relate the two concepts, the matrix (quasi) ordering on A
should be related with that of ∗-positivity, see Remark 1.1. More precisely, observe first 
that ∗-positivity provides in a natural way a matrix quasi ordering of A. Then, one can 
prove that if ϕ is completely positive, with definition as in item (1) and with respect to 
the ∗-positivity, then ϕ is positive semidefinite, with definition as in (3.4). The converse 
is even more problematic, depending on whether any ∗-positive matrix [ai,j]ni,j=1 can be 
represented as a sum of matrices a∗a, where a is a special matrix with only one non-null 
row. This special situation happens for C∗-algebras [30], or even for locally C∗-algebras 
[13], but it may fail even for pre C∗-algebras, in general.

3.3. Linear maps with values adjointable operators on VE-modules

Given an ordered ∗-algebra A and a VE-module E over A, an E-reproducing kernel 
VE-module over A is just an E-reproducing kernel VE-space over A, with definition as 
in Subsection 2.1, which is also a VE-module over A.

Proposition 3.6. Let Γ be a ∗-semigroup that acts on the nonempty set X and let k : X×
X → L∗(H) be a kernel, for some VE-module H over an ordered ∗-algebra A. The 
following assertions are equivalent:

(1) k is positive semidefinite, in the sense of (2.4), and invariant under the action of Γ
on X, that is, (2.16) holds.

(2) k has a Γ-invariant VE-module (over A) linearisation (K; π; V ).
(3) k admits an H-reproducing kernel VE-module R and there exists a ∗-representation 

ρ : Γ → L∗(R) such that ρ(ξ)kxh = kξ·xh for all ξ ∈ Γ, x ∈ X, h ∈ H.

In addition, in case any of the assertions (1), (2), or (3) holds, then a minimal 
Γ-invariant VE-module linearisation can be constructed, any minimal Γ-invariant VE-
module linearisation is unique up to unitary equivalence, a pair (R; ρ) as in assertion
(3) with R minimal can be always obtained and, in this case, it is uniquely determined 
by k as well.

Proof. We use the notation as in the proof of Theorem 2.8. We actually prove only 
the implication (1)⇒(2) since, as observed in Remark 2.9, that construction provides a 
Γ-invariant reproducing kernel VE-space linearisation, while the other implications are 
not much different.
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(1)⇒(2). We first observe that, since H is a module over A, the space F(X; H) has 
a natural structure of right module over A, more precisely, for any f ∈ F(X; H) and 
a ∈ A

(fa)(x) = f(x)a, x ∈ X.

In particular, the space F0(X; H) is a submodule of F(X; H). On the other hand, by 
assumption, for each x, y ∈ X, k(x, y) ∈ L∗(H), hence k(x, y) is a module map. These 
imply that the convolution operator K : F0(X; H) → F(X; H) defined as in (2.3) is a 
module map. Indeed, for any f ∈ F0(X; H), a ∈ A, and y ∈ X,

((Kf)a)(x) =
∑
x∈X

k(y, x)f(x)a = K(fa)(x).

Then, the space G(X; H) which, with the definition as in (2.18), is the range of the 
convolution operator K, is a module over A as well.

We show that, when endowed with the A valued gramian [·, ·]G defined as in (2.19), 
we have

[e, fa]G = [e, f ]G a, e, f ∈ G(X;H), a ∈ A. (3.7)

To see this, let e = Kg and f = Kh for some g, h ∈ F0(X; H). Then,

[e, fa]G = [Kg, ha]F0 =
∑
y∈X

[e(y), h(y)a]H =
∑
y∈X

[e(y), h(y)]Ha = [Kg, h]F0a = [e, f ]Ga.

From (3.7) and the proof of the implication (1)⇒(2) in Theorem 2.8, it follows that 
K = G(X; H) is a VE-module over the ordered ∗-algebra A and hence, the triple (K; π; V )
is a minimal Γ-invariant VE-module linearisation of k. �
Corollary 3.7. Let ϕ : B → L∗(H) be a linear map, for some ∗-algebra B and some 
VE-module H over an ordered ∗-algebra A. The following assertions are equivalent:

(1) The map ϕ is positive semidefinite.
(2) There exist a VE-module K over the ordered ∗-algebra A, a linear map V : B →

L∗(H, K), and a ∗-representation π : B → L∗(K), such that:
(i) ϕ(a∗b) = V (a)∗V (b) for all a, b ∈ B.
(ii) V (ab) = π(a)V (b) for all a, b ∈ B.

In addition, if this happens, then the triple (K; π; V ) can always be chosen minimal, in 
the sense that K is the linear span of the set V (B)H, and any two minimal triples as 
before are unique, modulo unitary equivalence.
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(3) There exist an H-reproducing kernel VE-module R on A and a ∗-representation 
ρ : B → L∗(R) such that:
(i) R has the reproducing kernel B × B � (a, b) �→ ϕ(a∗b) ∈ L∗(H).
(ii) ρ(a)ϕ(·b)h = ϕ(·ab)h for all a, b ∈ B and h ∈ H.

In addition, the reproducing kernel VE-module R as in (3) can be always constructed 
minimal and in this case it is uniquely determined by ϕ.

In case the ∗-algebra B is unital, Corollary 3.7 takes a form that reveals the fact that 
it is actually a non-topological version of Kasparov’s Theorem [15] and its generalisa-
tion [14].

Corollary 3.8. Let B be a unital ∗-algebra and ϕ : B → L∗(H) a linear map, for some 
VE-module H over an ordered ∗-algebra A. The following assertions are equivalent:

(i) ϕ is positive semidefinite.
(ii) There exist a VE-module K over A, a ∗-representation π : B → L∗(K), and W ∈

L∗(H, K) such that

ϕ(b) = W ∗π(b)W, b ∈ B. (3.8)

In addition, if this happens, then the triple (K; π; W ) can always be chosen minimal, in 
the sense that K is the linear span of the set π(A)WH, and any two minimal triples as 
before are unique, modulo unitary equivalence.
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