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Abstract. The de Branges–Rovnyak spaces are known to provide an4

alternate functional model for contractions on a Hilbert space, equiv-5

alent to the Sz.-Nagy–Foias model. The scalar de Branges–Rovnyak6

spaces H(b) have essentially different properties, according to whether7

the defining function b is or not extreme in the unit ball of H
∞. For8

b extreme the model space is just H(b), while for b nonextreme an9

additional construction is required. In the present paper we identify10

the precise class of contractions which have as a model H(b) with b11

nonextreme.12

1. Introduction13

In order to understand better operators on a Hilbert space, one often tries to14

find models for certain classes; that is, a subclass of concrete operators with15

the property that any given operator from the class is unitarily equivalent to16

an element of the subclass. The typical example is given by normal operators,17

which by the spectral theorem have multiplication operators on Lebesgue18

spaces as models.19

Going beyond normal operators, there is an extensive theory dealing20

with models for contractions. The most elaborate form is the Sz.-Nagy–Foias21

theory [21], that we will shortly describe in the next section. About the same22

time another model had been devised by de Branges and then developed23

in detail in [6,7]; its main feature was the extensive use of contractively24

included subspaces. It turned out in the end that the models are equivalent;25

an explanation of the relation can be found in [4,18]. One should also note26

that these so called de Branges–Rovnyak spaces have received new attention27

in the last years, representing an active area of research (see, for instance,28

[1,3,5,8,9,14]). There is also an upcoming book on the subject [13].29
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In the theory developed by de Branges and Rovnyak, an important start-30

ing point is provided by the so called scalar case, when the spaces involved are31

nonclosed subspaces of the Hardy space H2. These spaces are determined by32

a function b in the unit ball of H∞, and the usual notation is H(b); later their33

theory has been extensively developed [2,10–12,15–17,20], an important role34

being played by the basic monograph of Sarason [19]. It turns out that the35

study splits quite soon in two disjoint cases, according to whether b is or not36

an extreme point of the unit ball of H∞.37

From the point of view of model operators, the scalar case corresponds38

to the situation when the defect spaces of the contraction (see next section39

for precise definitions) have dimension 1. An important difference appears40

between the two situations: when b is extreme, the model space is H(b) itself,41

and the model operator the backward shift; but when b is not extreme, the42

model space contains pairs of functions, only the first one being in H(b), and43

the model operator acts in a more complicated way.44

A natural question then appears: in the nonextreme space, can one also45

view H(b) itself as a model space (and the backward shift as a model operator)46

for a certain class of contractions? The present paper answers this question47

in the affirmative: we give in Theorem 7.2 precise necessary and sufficient48

conditions for a contraction on a Hilbert space to be unitarily equivalent to49

the backward shift acting on some space H(b) with b nonextreme. However,50

we should add that the description is rather involved; moreover, different51

rather distinct functions b may lead to unitarily equivalent models.52

The current paper deals with scalar de Branges–Rovnyak spaces. As53

noted by the referee, the question may be posed also for matrix or operator54

valued functions b. As shown, for instance, in [18, Section 9], a different55

condition that replaces extremality can then be formulated, under which the56

de Branges–Rovnyak space yields a model equivalent to the general Sz.-Nagy–57

Foias model. If the condition is not satisfied, we are left with the problem of58

characterizing the completely non unitary contraction for which the backward59

shift on these spaces is a model; this will be the object of future study.60

The plan of the paper is the following. After giving the necessary pre-61

liminaries in Sect. 2, we proceed to find necessary conditions for a contraction62

T to be unitarily equivalent to the backward shift acting on some H(b) with b63

nonextreme. Two of these are rather immediate (see Sect. 3), and a third one64

is not hard to find (this is done in Sect. 4). The last decisive fourth condition65

requires more work, its discussion being the content of Sects. 5 and 6. The66

main result is stated in Sect. 7, while Sect. 8 discusses to what extent is the67

function b determined by the contraction.68

2. Preliminaries69

2.1. General Notations70

We will use the standard notations L2 for the Lebesgue space of square71

integrable functions on the unit circle T and H2 for the Hardy space, which72

may be alternately considered either as a closed subspace of L2 or a space of73
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analytic functions in the unit disc D. We will meet also their vector valued74

variants L2(E) and H2(E), with E a Hilbert space. Multiplication with eit on75

L2 will be denoted by Z and its restriction to H2 by S; for their analogues76

in the vector valued spaces we will use bold letters Z and S respectively (the77

space E can be deduced from the context). The action of these operators on78

the Fourier coefficients of a function explains why Z is also called the bilateral79

shift and S the unilateral shift.80

The Hardy algebra H∞ of all bounded analytic functions in D acts by81

multiplication on H2; the corresponding operator valued objects are analytic82

functions in D with values in L(E1, E2) (the linear bounded operators); they83

map H2(E1) into H2(E2). In fact, we will only meet contractive analytic84

functions Θ : D → L(E1, E2), whose values are contractions from E1 to E2.85

Such a function can be decomposed as86

Θ(λ) =

(
Θ0(λ) 0

0 W

)
: E ′

1 ⊕ E ′′
1 → E ′

2 ⊕ E ′′
2 ,87

where Ei = E ′
i ⊕ E ′′

i (i = 1, 2), W is a unitary constant, and Θ0 is pure, that88

is, it has no constant unitary part; Θ0 is called the pure part of Θ.89

2.2. The Sz.-Nagy–Foias Model and Related Questions90

If H is a Hilbert space, we denote by L(H) the algebra of all bounded op-91

erators acting on H. Let then T ∈ L(H) be a contraction, that is, ‖T‖ ≤ 1.92

We define DT = (I − T ∗T )1/2 and DT = DT H. Obviously T is unitary if93

and only if DT = DT ∗ = {0}. For a general contraction, there exists a unique94

decomposition H = Hu ⊕Hc, where Hu and Hc are invariant with respect to95

T (and hence reducing), T |Hu is unitary, while T |Hc is completely nonunitary96

(c.n.u.); that is, it has no reducing space on which it is unitary.97

A dilation T̂ of T is an operator acting on a space Ĥ ⊃ H, such that98

PH T̂n|H = Tn for all n ≥ 0. Such a dilation is minimal if
∨

n≥0 T̂nH = Ĥ.99

Any dilation T̂ of T “contains” a minimal one: it suffices to restrict T̂ to its100

invariant subspace spanned by H.101

The Sz.-Nagy dilation theorem states that any contraction has a min-102

imal isometric dilation, which is unique up to a unitary equivalence that is103

the identity on H; a similar result is true for minimal unitary dilations.104

The structure of unitary operators can be rather well described by means105

of the spectral theorem. On the other hand, for a c.n.u. contraction a structure106

description is given by the “model” theory of Sz.-Nagy and Foias [21] that107

we describe below. A central role is played by the notion of characteristic108

function. The characteristic function of a completely nonunitary contraction109

T ∈ L(H) is the contractive valued analytic function Θ(λ) : DT → DT ∗ ,110

defined by111

Θ(λ) = −T + λDT ∗(I − λT ∗)−1DT |DT , λ ∈ D.112

The main result states that T is unitarily equivalent with its model SΘ ∈113

L(KΘ), defined as follows:114
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KΘ = (H2(DT ∗) ⊕ (I − Θ∗Θ)1/2L2(DT ))115

⊖{Θh ⊕ (I − Θ∗Θ)1/2h : h ∈ H2(DT )},116

SΘ = PKΘ
(S ⊕ Z)|KΘ.117

Also, KΘ is invariant with respect to S
∗ ⊕ Z

∗, and so S
∗
Θ = S

∗ ⊕ Z
∗|KΘ.118

An important particular case is obtained when dimDT = dimDT ∗ = 1,119

and the characteristic function is a scalar inner function θ. The model space120

is then Kθ = H2 ⊖θH2, and we will call Sθ ∈ L(Kθ) a scalar model operator.121

Two operator valued analytic functions Θ,Θ′ defined in D are said to122

coincide if there are unitaries τ, τ ′ such that Θ′ = τΘτ ′. Then two com-123

pletely nonunitary contractions are unitarily equivalent if and only if their124

characteristic functions coincide.125

We will use the relation between invariant subspaces and characteristic126

functions developed in the general case in [21, Chapter VII]; since we do127

not need the general theory, we single out in Lemma 2.1 below the precise128

consequences that we will need. In short, if H ′ ⊂ H is an invariant subspace129

with respect to T , the decomposition of T with respect to H ′ ⊕ H ′⊥ being130

T =

(
T1 X
0 T2

)
,131

there is an associated factorization of the characteristic function Θ such that132

Θ = Θ2Θ1, (2.1)133

where the characteristic function of Ti is the pure part of Θi. Such factor-134

izations satisfy a supplementary condition of regularity (see [21, Theorem135

VII.1.1]); conversely, any factorization that satisfies this condition is obtained136

in this way from an invariant subspace.137

Lemma 2.1. Suppose T ∈ L(H), H ′ ⊂ H is invariant to T , and denote138

T ′ = T |H ′.139

1. If T has inner characteristic function
(

φ1

φ2

)
and T ′ has scalar characteris-140

tic function θ, then θ is a common inner divisor of φ1 and φ2. Conversely,141

if θ is a common inner divisor of φ1 and φ2, then there exists H ′ ⊂ H,142

invariant to T , such that the characteristic function of T ′ := T |H ′ is θ.143

2. If T has scalar characteristic function Θ and T ′ is an isometry, then T ′
144

is a shift of multiplicity 1.145

Proof. We give just a sketch of the proof, based on the results in [21].146

(1) If Θ =
(

φ1

φ2

)
, it follows from (2.1) that Θ1 is a column of scalars, and147

thus it has to be actually the scalar function θ (there is no room for a148

constant unitary). Therefore149

(
φ1

φ2

)
=

(
ψ1

ψ2

)
θ, (2.2)150

whence θ is a common inner divisor for φ1 and φ2.151
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Conversely, if θ is a common inner divisor for φ1 and φ2, then (2.1)152

is true for some ψi; also, the factorization (2.1) is regular, since all func-153

tions are inner [21, Proposition VII.3.3]. Therefore θ is the characteristic154

function of a restriction of T to an invariant subspace.155

(2) This part follows immediately from the description of all factorizations156

of scalar characteristic functions given in [21, Proposition VII.3.5].157

158

�159

2.3. de Branges–Rovnyak Spaces160

Suppose b ∈ H∞, ‖b‖∞ ≤ 1, and b is nonextreme; ∆ = (1 − |b|2)1/2, a is the161

outer function that satisfies |a| = ∆. S is the unilateral shift on H2, Z the162

bilateral shift on L2. We use the notation f̃(z) = f(z̄).163

Denote by Tb the Toeplitz operator with symbol b. The de Branges–164

Rovnyak space H(b) is defined to be the range of (I − TbT
∗
b)

1/2, with the165

norm given by166

‖(g‖H(b) = inf{‖f‖2 : (I − TbT
∗
b)

1/2f = g}.167

In particular, if ker(I − TbT
∗
b)

1/2 = {0}, then168

‖(I − TbT
∗
b)

1/2f‖H(b) = ‖f‖2. (2.3)169

In the sequel we will suppose that b is nonextreme. Since TbT
∗
b ≤ T

∗
bTb,170

we have, for each f ∈ H2,171

‖(I − TbT
∗
b)

1/2f‖2
2 = ‖f‖2

2 − ‖T∗
bf‖2

2 ≥ ‖f‖2
2 − ‖Tbf‖2

2.172

But, if b is nonextreme, then |b| < 1 a.e., whence, for f �≡ 0, ‖Tbf‖2 < ‖f‖2.173

Therefore ker(I − TbT
∗
b)

1/2 = {0} and (2.3) is satisfied.174

It is proved in [19, II-7] that H(b) is invariant with respect to S∗, which175

acts as a contraction on H(b). This contraction is denoted by Xb; it will be176

the main character in the sequel, but only in disguise.177

Some spaces that will appear in the sequel are:178

Kb = (H2 ⊕ ∆H2) ⊖ {bh ⊕ ∆h : h ∈ H2},179

K̃b = (H2 ⊕ L2) ⊖ {bh ⊕ ∆h : h ∈ H2},180

Jb = K̃b ⊖ Kb = {0} ⊕ (L2 ⊖ ∆H2),181

Yb = PKb
(S∗ ⊕ Z∗)|Kb,182

Yb = S∗ ⊕ Z∗|K̃b.183

A basic reason why we introduce them is the next lemma.184

Lemma 2.2. The orthogonal projection onto the first coordinate is a unitary185

operator from Kb onto H(b), that intertwines Yb with Xb.186

Proof. The lemma is almost completely proved in [19, IV-7]. It is shown187

therein that the operator188

B =

(
Tb

−Ta

)
189

is an isometry from H2 to H2 ⊕ H2, and that the projection Q onto the190

first coordinate is a unitary from KB = (H2 ⊕ H2) ⊖ BH2 onto H(b), which191
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intertwines the restriction of S∗ ⊕ S∗ to this subspace with X. On the other192

hand, the map W : ∆H2 → H2 defined by W (∆h) = −ah is easily seen to193

be an isometry, and it is actually unitary since a is outer. It also commutes194

with S and therefore, being unitary, with S∗. Then Q ◦ (IH2 ⊕ W ) yields the195

desired unitary operator. �196

As a consequence, we will concentrate on Yb rather than on Xb in the197

rest of this paper.198

The following result gathers some of the properties of the above spaces199

and operators. They constitute the basis for the “model theory” that will be200

investigated in the rest of the paper.201

Lemma 2.3. Suppose b �≡ 0. With the above notations, the following are true.202

1. We have dimDYb
= 2, dimDY ∗

b
= 1, and dim ker Yb = 1. Yb is unitarily203

equivalent to Xb = S∗|H(b). Its characteristic function is204

ΘYb
=

(
ã b̃

)
.205

Consequently, Yb → 0 strongly.206

2. Y
∗
b is precisely the Nagy–Foias model corresponding to the characteristic207

function b.208

3. Yb is a nonisometric dilation of Yb; that is, it satisfies for all n ∈ N the209

relation Y n
b = PKb

Y
n
b |Kb.210

4. Yb|Jb is an isometry. If X ⊂ K̃b is an invariant subspace for Yb, such211

that Yb|X is an isometry, then X ⊂ Jb. In particular, Yb|Jb is a maximal212

isometry contained in Yb, and Yb has no isometric restriction.213

Proof. (1) The claimed properties of Yb are proved explicitely in [19, IV-7]214

for Xb. The only exception is the dimension of kerYb. Since Yb(DYb
) ⊂215

DY ∗
b
, it has a nonzero kernel. If f ⊕ g ∈ ker Yb, then S∗f = 0, whence216

f = c (constant). If we had two linearly independent vectors in kerYb,217

some linear combination would have 0 as first coordinate, and thus we218

would have 0 ⊕ g0 ∈ Kb for some g0 ∈ ∆H2, g0 �= 0. But the definition219

of Kb implies g0 ⊥ ∆h for any h ∈ H2, whence g0 = 0, which is a220

contradiction.221

(2) is an immediate consequence of the general form of the Sz.-Nagy–Foias222

model, while (3) follows easily from the fact that Jb is invariant with223

respect to Yb.224

(4) It is immediate that Yb|Jb is an isometry, since it is unitarily equivalent225

to a restriction of Z∗. Then, if X has the stated properties, take f⊕g ∈ X .226

We have227

‖S∗nf‖2 + ‖Z∗ng‖2 = ‖Yn
b (f ⊕ g)‖2 = ‖f ⊕ g‖2 = ‖f‖2 + ‖g‖2

228

for any n. Since Z∗ is unitary and S∗f → 0, this implies f = 0, whence229

X ⊂ Jb. �230

It should be kept in mind that, according to Lemma 2.3(2), the model231

operators in the de Branges–Rovnyak and Sz.Nagy–Foias approaches are mu-232

tual adjoints.233
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3. A Functional Reformulation234

As noted in the introduction, we intend to find necessary and sufficient con-235

ditions for a c.n.u. contraction T ∈ L(H) to be unitarily equivalent to Yb236

for some nonextreme function b ∈ H∞, ‖b‖ ≤ 1. Some necessary conditions237

follow already from Lemma 2.3(1): we must have238

(C1) dimDT = 2, dimDT ∗ = dim kerT = 1;239

(C2) Tn → 0 strongly.240

We will see later that (C1) and (C2) are not sufficient, but first we will use241

them in order to give an alternate formulation of the problem.242

A general c.n.u. contraction T with dimDT = 2,dim DT ∗ = 1 has as243

characteristic function an arbitrary pure contractive analytic function ΘT :244

D → L(C2, C)245

ΘT =
(
φ1 φ2

)
. (3.1)246

In this case the purity condition (which means that ΘT has no constant247

unitary part) is equivalent to the fact that ΘT does not coincide with the248

constant function249

(
0 κ

)
,250

where κ ∈ C, |κ| = 1. Moreover, the condition Tn → 0 strongly is known to251

be equivalent to the identity |φ1|2 + |φ2|2 = 1 (one says that ΘT is ∗-inner).252

Theorem 3.1. If T is a c.n.u. contraction with characteristic function given253

by (3.1), then the following are equivalent:254

1. T is unitarily equivalent with Yb for some nonextreme b.255

2. |φ1|2 + |φ2|2 = 1 a.e., and there exist α1, α2 ∈ C with |α1|2 + |α2|2 = 1,256

such that ã := α1φ1 + α2φ2 is an outer function.257

Proof. If (1) is true, then ΘT coincides with ΘYb
. Using Lemma 2.3(1) it258

follows that there exists a constant unitary 2 × 2 matrix ( α1 α3

α2 α4
) such that259

(
ã b̃

)
=

(
φ1 φ2

) (
α1 α3

α2 α4

)
. (3.2)260

Since ã is an outer function, (2) is proved.261

Conversely, if (2) is true, then we may choose α3, α4 such that ( α1 α3

α2 α4
)262

is unitary, and (3.2) is satisfied with b̃ = α3φ1 +α4φ2. Then b̃ is a function in263

the unit ball of H∞ that is nonextreme since
∫

log(1−|b̃|2) =
∫

log |ã|2 > −∞.264

Since (3.2) and Lemma 2.3(1) say that ΘT coincides with ΘYb
, it follows that265

T is unitarily equivalent to Yb̃. �266

However, characterizing the pairs (φ1, φ2) that satisfy (2) seems an even267

more difficult problem. Moreover, such a characterization would not use di-268

rectly properties of the operator T , but rather of its characteristic function.269

That is why we seek other alternatives.270
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4. A Third Necessary Condition271

As noted above, the conditions dimDT = 2, dimDT ∗ = dim ker T = 1, and272

Tn → 0 strongly are necessary for the unitary equivalence of T with some Yb.273

They are not sufficient; a less obvious condition is given by the next lemma.274

Lemma 4.1. If T is unitarily equivalent to Yb for some nonextreme b, then:275

(C3) There is no subspace Y of H invariant with respect to T ∗, such that T ∗|Y276

is unitarily equivalent to a scalar model operator.277

Proof. Suppose T has characteristic function given by (3.1); then the char-278

acteristic function of T ∗ is the inner function Θ̃T =
(

φ̃1

φ̃2

)
. If T is unitarily279

equivalent to Yb for some nonextreme b, it follows from Theorem 3.1 that280

φ1 and φ2 must not have an inner common factor; the same is true also for281

φ̃1, φ̃2. The statement is then a consequence of Lemma 2.1(1). �282

It is easy now to give an example of an operator that satisfies (C1) and283

(C2) but not (C3): take T = S∗ ⊕ Sθ for some inner function θ.284

However, even all three conditions (C1–C3) are still not sufficient. To285

show this, it is enough, in view of Theorem 3.1 and Lemma 2.1(1), to find two286

functions φ1, φ2 ∈ H∞ with |φ1|2 + |φ2|2 = 1, such that φ1 and φ2 have no287

common inner factor and there is no linear combination of φ1 and φ2 which288

is outer. This is given in the next example.289

Example 4.2. Take φ1(z) = 1√
2
z2, φ2(z) = 1√

2
z−a
1−āz . Then obviously |φ1|2 +290

|φ2|2 = 1. We will show that at least for 0 < a < 1/8 there is no outer linear291

combination of φ1 and φ2, and thus, by Theorem 3.1, T is not unitarily292

equivalent with some Yb for b nonextreme.293

First, since φ1, φ2 themselves are not outer, it is enough to consider294

linear combinations of the type φ1 + αφ2 for some α ∈ C. If |α| < 1, then295

|αφ2(z)| < |φ1(z)| for z ∈ T, and thus Rouché’s Theorem says that φ1 + αφ2296

has the same number of zeros in D as φ1, so it cannot be outer. A similar297

argument settles the case |α| > 1.298

Let us now consider |α| = 1. The equation φ1(z) + αφ2(z) = 0 can be299

written300

z2 + αz − a
(
α +

ā

a
z3

)
= 0. (4.1)301

If |z| = 1/2, then |z2 + αz| = |z(z + α)| > 1
2 · 1

2 = 1
4 . On the other hand,302

|α + ā
az3| ≤ 1 + 1

8 < 2, and thus |a
(
α + ā

az3
)
| < 1

4 if 0 < a < 1/8. We may303

again apply Rouché’s Theorem to conclude that (4.1) has a solution in the304

disc {|z| < 1/4}, and thus neither is φ1 + αφ2 outer if |α| = 1.305

We have then to find some other necessary condition, besides (C1)–(C3).306

This requires a certain construction that will be done in the next section.307
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5. Construction of Certain Dilations308

We start with an elementary lemma, whose proof we omit.309

Lemma 5.1. Suppose 0 < α < 1, ξ = (ξ1, ξ2) with |ξ1|2+ |ξ2|2 = 1, and denote310

A :=

(
α 0

aξ̄1 aξ̄2

)
311

Then312

a = aξ :=

(
1 − α2

1 − α2|ξ2|2
)1/2

, (5.1)313

is the only value of a for which A is a contraction with dimDA = dimDA∗ =314

1. If we denote then by eξ a unit vector in ker(I − A∗A) (therefore ‖Aeξ‖ =315

‖eξ‖), then eξ is determined up to a unimodular constant; moreover, for any316

η ∈ C
2 with ‖η‖ = 1, there exists ξ = (ξ1, ξ2), |ξ1|2 + |ξ2|2 = 1 such that317

eξ = η.318

Note that for a < aξ the defects have dimension 2, while for a > aξ A319

is no more a contraction. Also, we may take eξ = ξ if and only if ξ is one of320

the standard basis vectors.321

To go beyond the conditions in Sect. 4, we consider a construction that322

stems from the fact that Yb is a nonisometric dilation of Yb. We have then323

to discuss a certain general construction of nonisometric dilations. Suppose324

then that T is a contraction acting on the Hilbert space H with dimDT =325

2, dimDT ∗ = dim ker T = 1.326

We are interested in dilations T̃ of T with the property that dimDT̃ =327

dimDT̃ ∗ = 1. These may be described in the following manner. For clarity328

of notation, we will denote by Td and Tu the restrictions Td = T : DT →329

DT ∗ , Tu = T : D⊥
T → D⊥

T ∗ ; note that Tu is unitary and Td is a strict contrac-330

tion.331

Take a vector ξ ∈ DT , with ‖ξ‖ = 1, and consider, for 0 < a ≤ 1, the332

operator333

Aξ :=

(
Td

aξ ⊗ ξ

)
: DT → DT ∗ ⊕ C.334

The operator Td is a strict contraction with kernel of dimension 1. If we335

choose in DT a basis formed by the eigenvectors of T ∗
d Td, then the matrix of336

Td is (α 0) for some 0 < α < 1, and thus Aξ is precisely the A in Lemma 5.1.337

Consequently, dimDAξ
= dimDA∗

ξ
= 1. Remember that eξ is a normalized338

vector in ker(I − A∗
ξAξ) ∩ DT ; this notation will be used consistently in the339

sequel of the paper.340

Consider then the space341

Kξ = H ⊕ C ⊕ C ⊕ · · ·342
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on which acts the operator343

Tξ :=

⎛

⎜⎜⎜⎜⎜⎝

T 0 0 0 . . .
aξ ⊗ ξ 0 0 0 . . .

0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎠
. (5.2)344

Lemma 5.2. 1. With the above notations, Tξ is a minimal contractive di-345

lation of T satisfying dimDTξ
= dimDT ∗

ξ
= 1.346

2. Suppose T̂ ∈ L(Ĥ) is a dilation of T , such that dimDT̂ = 1 and T̂ |Ĥ⊖H347

is a pure isometry of multiplicity 1. Then T̂ is unitarily equivalent to348

some Tξ as above.349

Proof. (1) Let us denote Iξ = Kξ ⊖ H. With respect to the two decompo-350

sitions351

Kξ = D⊥
T ⊕ DT ⊕ C ⊕ C ⊕ · · · = D⊥

T ∗ ⊕ DT ∗ ⊕ C ⊕ C ⊕ · · ·352

Tξ has the matrix353

Tξ :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Tu 0 0 0 . . .
0 Td 0 0 . . .
0 aξ ⊗ ξ 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (5.3)354

which means that, if in the range space we consider together the second355

and the third space (DT ∗ ⊕ C), the matrix of Tξ is diagonalized, and356

we have357

Tξ = Tu ⊕ Aξ ⊕ 1 ⊕ 1 ⊕ · · · .358

Since all operators except the second are unitary, Tξ is a contraction359

and the dimensions of its defects are the same as those of Aξ, that is 1.360

Moreover, Tξ is a minimal dilation of T .361

(2) Suppose T̂ is a dilation of T with dimDT̂ = 1, acting on Ĥ ⊃ H. Since362

T̂ |Ĥ ⊖ H is a shift of multiplicity 1, T̂ must have the form363

T̂ :=

⎛

⎜⎜⎜⎜⎜⎝

T 0 0 . . .
X 0 0 . . .
0 1 0 . . .
0 0 1 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎠
,364

with a nonnull X : H → C, X = a ⊗ ξ for some ξ ∈ H with ‖ξ‖ = 1365

and some a. We have DT̂ ⊂ H, and DT̂ |H = I − T ∗T − X∗X. Since366

I − T ∗T has rank 2, while I − T ∗T − X∗X has rank 1, it follows from367

Lemma 5.1 that X = aξ ⊗ ξ, with ξ ∈ ker DT̂ ∩ DT . �368
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Lemma 5.3. If ξ is an eigenvector of DT , and Tξ is completely nonunitary,369

then:370

1. The characteristic function bξ of Tξ is nonextreme.371

2. If Iξ ⊂ Y ⊂ Kξ, Y is invariant with respect to Tξ, and Tξ|Y is an isometry,372

then Tξ|Y is a shift of multiplicity 1.373

Proof. By Lemma 5.2, we have dim DTξ
= dimDT ∗

ξ
= 1, so Tξ has a scalar374

characteristic function bξ. This has to be nonextreme since Tξ has an isometric375

restriction (namely, T |Iξ).376

For the second statement, apply Lemma 2.1(2) to the contraction Tξ377

and its invariant subspace Y. �378

At this point we may give another reformulation of the main question.379

Theorem 5.4. If T is a c.n.u. with characteristic function given by (3.1), then380

the following are equivalent:381

1. T is unitarily equivalent with Yb for some nonextreme b.382

2. There exists ξ ∈ DT , ‖ξ‖ = 1, such that the contraction Tξ defined by (5.2)383

is completely nonunitary and Tξ|Iξ is a maximal isometry.384

Proof. If T is unitarily equivalent with Yb for some nonextreme b, then,385

by Lemma 2.3, Yb is a completely nonunitary dilation of Yb with the re-386

quired properties in the assumptions of 5.2(2), whence it has to be unitarily387

equivalent to some Tξ. By Lemma 2.3 we know that Tξ|Iξ is a maximal388

isometry.389

Conversely, if (2) is true, the given completely nonunitary contraction390

Tξ has a nonextreme characteristic function bξ by Lemma 5.3(i). There ex-391

ists therefore a unitary W : Kξ → K̂bξ
, such that Ybξ

W = WTξ. By392

Lemma 2.3(4), Jb is the space on which acts the unique maximal isometry393

contained in Ybξ
, and therefore it has to be equal to WIξ. Passing to orthog-394

onals, W maps H onto Kbξ
, and commutes with the respective compressions395

there. This says precisely that T is unitarily equivalent to Ybξ
. �396

We have then to investigate the two properties in point (2) of the above397

proposition.398

6. Tξ Completely Nonunitary399

We prove in this section that conditions (C1)–(C3) imply that Tξ is com-400

pletely nonunitary.401

Proposition 6.1. Suppose T is a c.n.u. contraction on H that satisfies condi-402

tions (C1)–(C3). Then Tξ is completely nonunitary for all ξ ∈ DT , ‖ξ‖ = 1.403

Proof. Denote by V the minimal isometric dilation of Tξ, acting on the space404

K ⊃ H. Since Tξ is a minimal dilation of T , it follows easily that V is also a405

minimal isometric dilation of T .406

We will use the Sz.-Nagy–Foias model of the contraction T , which is the407

space408

H = (H2 ⊕ ∆L2(C2)) ⊖ {ΘT h ⊕ ∆h : h ∈ H2(C2)}409
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and the operator unitarily equivalent to T is T = PH(S ⊕ Z)|H. The min-410

imal unitary dilation V is just S ⊕ Z acting on K = H2 ⊕ ∆L2(C2), and411

its unitary part acts on the space {0} ⊕ ∆L2(C2). Let us denote by Ω the412

unitary that implements the equivalence; that is, Ω : K → K, Ω(H) = H,413

ΩV = VΩ.414

If Tn → 0 strongly, then the characteristic function of T is given by (3.1),415

with |φ1|2 + |φ2|2 = 1 a.e. Then416

Θ∗
T ΘT =

(
|φ1|2 φ̄1φ2

φ̄2φ1 |φ2|2
)

=

(
φ̄1

φ̄2

) (
φ1 φ2

)
417

is almost everywhere on T a one-dimensional projection in C
2. Therefore418

∆(eit) is also a one-dimensional projection a.e. If we write J(eit) =

(
φ̄1(e

it)
φ̄2(e

it)

)
:419

C → C
2, then the map f �→ J(f) is a unitary operator from L2 to JL2 =420

∆L2(C2). Moreover, J intertwines multiplication with eit in the correspond-421

ing L2 spaces.422

Consider now the operator Tξ corresponding in the Sz.-Nagy–Foias423

model to Tξ, that is, Tξ = ΩTξΩ
∗. Its unitary part is a reducing sub-424

space of the unitary part of V, and thus has to be a reducing subspace425

of {0}⊕∆L2(C2) with respect to S ⊕Z, which means a reducing subspace of426

JL2 with respect to multiplication by eit. Therefore it is J(L2(E)) for some427

measurable subset E ⊂ T, or, equivalently, ∆L2(E).428

Consider now the vector eξ introduced in the previous section. Since429

‖Tξeξ‖ = ‖eξ‖, we must also have Tξeξ = V eξ, and therefore430

TξΩeξ = VΩeξ = (S ⊕ Z)eξ ∈ (S ⊕ Z)H ⊂ H ⊕ {ΘT c1 ⊕ ∆c2 : c1, c2 ∈ C}.431

By (5.2), Tξeξ belongs to H⊕C (it has no components on the subsequent432

copies of C in the formula of Kξ), and the second component is aξ �= 0. So433

the projection of Tξeξ onto Iξ is a nonzero vector on the first component of434

Iξ, which is a wandering vector for Tξ|Iξ. Applying Ω to this projection, we435

obtain that a wandering vector for Tξ|Ω(Iξ) is of the form ΘT c1 ⊕∆c2. After436

a change of basis in DT , we may assume that c2 = 0.437

It follows then that Tξ is the compression of S ⊕ Z to the space438

Kξ = H ⊕
{

ΘT

(
h
0

)
⊕ ∆

(
h
0

)
: h ∈ H2

}
439

= K ⊖
{

ΘT

(
0
h

)
⊕ ∆

(
0
h

)
: h ∈ H2

}
. (6.1)440

Now, if {0}⊕∆L2(E) ⊂ Kξ, it has to be orthogonal to ∆
(

0
H2

)
, whence441

∆(eit) must be a.e. on E the projection on the first coordinate. That means442

that φ1 = 0 a.e. on E, whence φ1 ≡ 0, φ2 inner. This is excluded by the last443

part of the hypothesis. �444
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7. The Final Result445

We need only one more ingredient to obtain the final result.446

Lemma 7.1. Suppose T is a c.n.u. contraction on H that satisfies conditions447

(C1)–(C3). The following are equivalent:448

1. Tξ|Iξ is a maximal isometry.449

2. For any H ′ ⊂ H such that TH ′ ⊂ H ′ and T ′ := T |H ′ is a scalar model450

operator, we have eξ /∈ H ′.451

3. For any H ′ ⊂ H such that TH ′ ⊂ H ′ and T ′ := T |H ′ is a scalar model452

operator, we have eξ /∈ DT ′ .453

Proof. (1) =⇒ (2). Suppose (1) is true, and let H ′ ⊂ H such that TH ′ ⊂454

H ′, eξ ∈ H ′, and T ′ := T |H ′ is a scalar model operator. Then DT ′ having455

dimension 1, is spanned by eξ. It may then be checked that the space Y =456

Iξ ⊕ H ′ is invariant with respect to Tξ, and Tξ|Y is an isometry that strictly457

extends Tξ|Iξ. Therefore eξ /∈ H ′.458

(2) =⇒ (3) is immediate. Let us assume that (3) is true, and suppose459

Iξ ⊂ Y ⊂ Kξ, TξY ⊂ Y, and Tξ|Y is an isometry. If Y ′ = Y ∩ H �= {0}460

and T ′ = PY′T ′
ξ|Y ′, then T ′

ξ is an isometric dilation of T ′, which is a shift461

of multiplicity 1 by Lemma 5.3(2). Thus T ′ is the compression of a shift462

of multiplicity one to a coinvariant subspace, which is precisely unitarily463

equivalent to a scalar model operator.464

Since DT ′ = {x ∈ Y ′ : ‖T ′x‖ < ‖x‖}, we have DT ′ ⊂ DT . Suppose then465

x ∈ DT ′ , x = x1 + x2, with x1 ∈ ker T, x2 multiple of eξ. We have then466

‖x1‖2 + ‖x2‖2 = ‖x‖2 = ‖Tξx‖2 = ‖Tx1‖2 + ‖Tx2‖2 ≤ ‖x2‖2,467

whence x1 = 0. Therefore x is a multiple of eξ, which contradicts assump-468

tion (3). It follows that Y = Iξ, ending the proof of the lemma. �469

In the light of Lemma 7.1, we may now state the last necessary condition:470

(C4) There exists η ∈ DT such that, if Y ′ ⊂ H, TY ′ ⊂ Y ′, and T ′ := T |Y ′ is471

unitarily equivalent to a scalar model operator, then η /∈ Y ′.472

The desired characterization is then given by the next theorem.473

Theorem 7.2. Suppose T is a c.n.u. contraction on H. The following are474

equivalent:475

1. T is unitarily equivalent to Xb for some nonextreme function b �≡ 0.476

2. T satisfies conditions (C1)–(C4).477

Proof. If T is unitarily equivalent to Xb for some nonextreme function b �≡ 0,478

then (C1)–(C3) have already been proved. To prove (C4), note that, since Yb479

is a dilation of Yb with dimDYb
= 1 and Yb|K̃b ⊖ Kb is a maximal isometry,480

it follows from Lemma 5.2(2) that Yb is unitarily equivalent to Tξ, with481

ξ ∈ DYb
. Then (C4) follows from Lemma 7.1.482

For the reverse implication, choose a vector ξ such that η = eξ; its483

existence is ensured by Lemma 5.1. The dilation Tξ is a completely nonunitary484

contraction by Proposition 6.1. Lemma 7.1 ensures that Tξ|Iξ is a maximal485

isometry, and then Theorem 5.4 implies that (1) is true. �486

Journal: 20 Article No.: 2125 TYPESET DISK LE CP Disp.:2014/1/28 Pages: 16

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J. Mashreghi and D. Timotin

Condition (C3) can be reformulated as487

(C3′) There exists no subspace Y ⊂ H such that T ∗Y ⊂ Y and, if TY := T ∗|Y,488

then dimDTY
= dimDT ∗

Y
= 1.489

Indeed, we have T ∗
Y

n = PYTn → 0 strongly by (a). Similarly, condition490

(C4) can be reformulated as491

(C4′) There exists η ∈ DT such that, whenever Y ′ ⊂ H, TY ′ ⊂ Y ′, and, if492

T ′ := T |Y ′, dimDT ′ = dimDT ′∗ = 1, we have η /∈ Y ′.493

8. Freedom in the choice of b494

A natural question when considering model theory is whether a given operator495

determines its model (up to some simple transformation). Let us then suppose496

that a contraction T ∈ L(H) is unitarily equivalent to Xb1 as well as to497

Xb2 for some b1, b2 in the unit ball of H∞. Since X∗
b1

and X∗
b2

have to be498

unitarily equivalent, their characteristic functions must coincide. Also, by499

looking at the dimensions of the defect spaces of T , it follows immediately that500

b1, b2 are simultaneously extreme or nonextreme, so we have to discuss two501

cases.502

If b is extreme, then the characteristic function of X∗
b is precisely b. So503

the answer is simple: if T is unitarily equivalent to Xb1 as well as to Xb2 ,504

then b1 = κb2 for some unimodular constant κ.505

If b1, b2 are nonextreme, the characteristic functions of X∗
b1

and X∗
b2

are506

given by Lemma 2.3, and if they coincide we must have507

(
a2

b2

)
=

(
α β
γ δ

) (
a1

b1

)
(8.1)508

for some unitary constant matrix
(

α β
γ δ

)
. This is possible for rather different509

functions b1, b2, as shown by the following example. Take b1 = z/
√

2 (so510

a1 = 1/
√

2), and α = β = γ = −δ = 1/
√

2; it follows that b2 = 1−z
2 . We have511

then Xb1 unitarily equivalent to Xb2 , but b1 is a constant multiple of an inner512

function, while b2 is outer. There seems to be no simple criterion that could513

decide when Xb1 unitarily equivalent to Xb2 without involving the associated514

outer functions a1 and a2.515

A natural question is then whether there exist cases when, as in the516

extreme case, b is uniquely determined up to a unimodular constant. If Xb1517

and Xb2 are unitarily equivalent, then (8.1) implies, in particular, that a2 =518

αa1 +βb1 is outer. Conversely, suppose b1 is given, a1 is the associated outer519

function, and a certain combination a2 = αa1+βb1 is outer. We may suppose520

|α|2+|β|2 = 1; if we take γ = β̄, δ = −ᾱ, then
(

α β
γ δ

)
is unitary and b2 defined521

by (8.1) has the property that Xb2 is unitarily equivalent to Xb1 .522

We may then reformulate the last problem as follows:523

Question: Does there exist a nonextreme function b such that, if a is the524

associated outer function, then αa + βb outer implies β = 0?525
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