ON THE MULTIPLICATION OF OPERATOR-VALUED C-FREE RANDOM VARIABLES

MIHAI POPA, VICTOR VINNIKOV, AND JIUN-CHAU WANG

Abstract

We discuss some results concerning the multiplication of noncommutative random variables that are c-free with respect to a pair (Φ, φ), where Φ isa linear map with values in some Banach or C^{*}-algebra and φ is scalar-valued. In particular, we construct a suitable analogue of the Voiculescu's S-transform for this framework.

1. Introduction

The terminology "c-free independence" (or c-freeness) was first used in the 1990's by M. Bozejko, R. Speicher and M.Leinert (see [8], [9]) to denote a relation similar to D.-V. Voiculescu's free independendence, but in the framework of algebras endowed with two linear functionals (see Definition 2.1 below). The additive c-free convolution and the analytic characterization of the correspondent infinite divisibility was described in 1996 (see [9]); appropriate instruments for dealing with the multiplicative c-free convolution appeared a decade later, in [23]. There, for X a non-commutative random variable, we define an analytic function ${ }^{c} T_{X}(z)$, inspired by Voiculescu's S-transform, such that if X and Y are c-free , then ${ }^{c} T_{X Y}(z)={ }^{c} T_{X}(z) \cdot{ }^{c} T_{Y}(z)$. Alternate proofs of this result were given in [19] and [22].

The present work discusses the multiplicative c-free convolution in the framework of [16], namely when one of the functionals is replaced by a linear map with values in a (not necessarily commutative) Banach algebra. In particular we show that the combinatorial methods from [19] can be adapted to this more general framework. Notably, in the case of free independence over some Banach algebra, as showed in [10], [11], the analogue of Voculescu's S-transform satisfies a "twisted multiplicative relation", namely $T_{X Y}(b)=T_{X}\left(T_{Y}(b) \cdot b \cdot T_{Y}(b)^{-1}\right) \cdot T_{Y}(b)$. The main result of the present work, Theorem 3.1, shows that the non-commutative ${ }^{c} T$-transform satisfies the usual multiplicative relation: ${ }^{c} T_{X Y}(z)={ }^{c} T_{X}(z) \cdot{ }^{c} T_{Y}(z)$ for X, Y c-free noncommutative random variables.

The paper is organized as follows. Section 2 presents some preliminary notions and results, mainly concerning the lattice of non-crossing linked partitions and its connection to free and c-free cumulants and to t - and ${ }^{c} t$-coefficients. The main result of the section is Proposition 2.5, the characterization of c-freeness in terms of ${ }^{c} t$-coefficients. Section 3 restates the results on planar trees used in [19] and utilize them for the main result of the paper, Theorem 3.1. Section 4 discusses some aspects of infinite divisibility for the multiplicative c-free convolution in operatorvalued framework. The results from the scalar case (see [23]) can be easily extended

[^0]to the framework of a commutative algebra of operators, but they are generally not valid in the non-commutative case.

2. Framework and notations

2.1. Non-crossing partitions and c-free cumulants. In the first part of this paper we will consider A and B to be two unital Banach algebras and $\varphi: A \longrightarrow \mathbb{C}$, respectively $\Phi: A \longrightarrow B$ to be two unital and linear maps. If A and B are C^{*} - or von Neumann algebras, then we will require that φ, respectively Φ to be positive, respectively completely positive.

Definition 2.1. Suppose that A_{1} and A_{2} are two unital subalgebras of A. Then A_{1} and A_{2} are said to be c-free with respect to (Φ, φ) if for all n and all $a_{1}, a_{2}, \ldots, a_{n}$ such that $\varphi\left(a_{j}\right)=0$ and $a_{j} \in A_{\varepsilon(j)}$ with $\varepsilon(j) \in\{1,2\}$ and $\varepsilon(j) \neq \varepsilon(j+1)$ we have:
(i) $\varphi\left(a_{1} \cdots a_{n}\right)=0$
(ii) $\Phi\left(a_{1} \cdots a_{n}\right)=\Phi\left(a_{1}\right) \cdots \Phi\left(a_{n}\right)$.

Two elements, X and Y, of \mathfrak{A} are said two be c-free with respect to (Φ, φ) if the unital subalgebras of A generated by X and Y are c-free, as above. If A is a C^{*} - or a von Neumann algebra, then we will require that the unital C^{*}-, respectively von Neumann subalgebras of A generated by X and Y are c-free. If only condition (i) holds true, then the subalgebras A_{1}, A_{2} (respectively the elements X, Y) are said to be free with respect to φ.

As shown in [9], [20], there is a convenient combinatorial characterization of c-freeness in terms of non-crossing partitions, that we will summarize below.

A non-crossing partition γ of the ordered set $\{1,2, \ldots, n\}$ is a collection C_{1}, \ldots, C_{k} of mutually disjoint subsets of $\{1,2, \ldots, n\}$, called blocks, such that their union is the entire set $\{1,2, \ldots, n\}$ and there are no crossings, in the sense that there are no two blocks C_{l}, C_{s} and $i<k<p<q$ such that $i, p \in C_{l}$ and $k, q \in C_{s}$.

Example 1: Below is represented graphically the non-crossing partition $\pi=(1,5,6),(2,3),(4),(7,10),(8,9) \in N C L(10)$:

The set of all non-crossing partitions on the set $\{1,2, \ldots, n\}$ will be denoted by $N C(n)$. It has a lattice structure with respect to the reversed refinement order, with the biggest, respectively smallest element $\mathbb{1}_{n}=(1,2, \ldots, n)$, respectively $0_{n}=$ $(1), \ldots,(n)$. For $\pi, \sigma \in N C(n)$ we will denote by $\pi \bigvee \sigma$ their join (smallest common upper bound).

For $\gamma \in N C(n)$, a block $B=\left(i_{1}, \ldots, i_{k}\right)$ of γ will be called interior if there exists another block $D \in \gamma$ and $i, j \in D$ such that $i<i_{1}, i_{2}, \ldots, i_{k}<j$. A block will be called exterior if is not interior. The set of all interior, respectively exterior blocks of γ will be denoted by $\operatorname{Int}(\gamma)$, respectively $\operatorname{Ext}(\gamma)$. The set $\operatorname{Ext}(\gamma)$ is totally ordered by the value of the first element in each block.

For $X_{1}, \ldots, X_{n} \in A$, we define the free, respectively c-free, cumulants $\kappa_{n}\left(X_{1}, \ldots, X_{n}\right)$, respectively ${ }^{c} \kappa_{n}\left(X_{1}, \ldots, X_{n}\right)$ via the recurrences below:

$$
\begin{aligned}
& \varphi\left(X_{1} \cdots X_{n}\right)=\sum_{\gamma \in \operatorname{NC}(n)} \prod_{\substack{C=\text { block in } \gamma \\
C=\left(i_{1}, \ldots, i_{l}\right)}} \kappa_{l}\left(X_{i_{1}}, \ldots, X_{i_{l}}\right) \\
& \Phi\left(X_{1} \ldots X_{n}\right)=\sum_{\gamma \in \operatorname{NC}(n)}\left[\prod_{\substack{B \in \operatorname{Ext}(\gamma) \\
B=\left(j_{1}, \ldots, j_{l}\right)}}{ }^{c} \kappa_{l}\left(X_{j_{1}} \cdots X_{j_{l}}\right)\right] \cdot\left[\prod_{\substack{D \in \operatorname{Int}(\gamma) \\
D=\left(i_{1}, \ldots, i_{s}\right)}} \kappa_{s}\left(X_{i_{1}}, \ldots, X_{i_{s}}\right)\right]
\end{aligned}
$$

with the convention that if $\Lambda=\{\alpha(1), \alpha(2), \ldots, \alpha(n)\}$ is a totally ordered set and $\left\{X_{\alpha(p)}\right\}$ is a collection of elements from B, then

$$
\prod_{\lambda \in \Lambda} X_{\lambda}=X_{\alpha(1)} \cdot X_{\alpha(2)} \cdots X_{\alpha(n)}
$$

We will us the shorthand notations $\kappa_{n}(X)$ for $\kappa_{n}(X, \ldots, X)$ and ${ }^{c} \kappa_{n}(X)$ for ${ }^{c} \kappa_{n}(X, \ldots, X)$.

As shown in [17], [25], and in [20], if X_{1} and X_{2} are c-free, then

$$
\begin{align*}
R_{X_{1}+X_{2}}(z) & =R_{X_{1}}(z)+R_{X_{2}}(z) \tag{1}\\
{ }^{c} R_{X_{1}+X_{2}}(z) & ={ }^{c} R_{X_{1}}(z)+{ }^{c} R_{X_{2}}(z) \tag{2}
\end{align*}
$$

where, for $X \in A$, we let $R_{X}(z)=\sum_{n=1}^{\infty} \kappa_{n}(X) z^{n}$ and ${ }^{c} R_{X}(z)=\sum_{n=1}^{\infty}{ }^{c} \kappa_{n}(X) z^{n}$. That is, the mixed free and c-free cumulants in X_{1} and X_{2} vanish.

Note that κ_{n} and ${ }^{c} \kappa_{n}$ are multilinear maps from A^{n} to \mathbb{C}, respectively B.
We will prove next a result analogous to Theorem 14.4 from [17], more precisely a lemma about c-free cumulants with products as entries, in fact an operator-valued version of Lemma 3.2 from [23].

For $\gamma \in N C(n)$ and $p \in\{1,2, \ldots, n\}$, we will denote by $\gamma[p]$ the block of γ that contains p.

The Kreweras complementary $\operatorname{Kr}(\pi)$ of $\pi \in N C(n)$ is defined as follows. Consider the symbols $\overline{1}, \ldots, \bar{n}$ such that $1<\overline{1}<2<\cdots<n<\bar{n}$. Then $\operatorname{Kr}(\pi)$ is the biggest element of $N C(\overline{1}, \ldots, \bar{n}) \cong N C(n)$ such that

$$
\pi \cup \operatorname{Kr}(\pi) \in N C(1, \overline{1}, \ldots, n, \bar{n})
$$

The total number of blocks in γ and $\operatorname{Kr}(\gamma)$ is $n+1$ (see [17], [14]).
Lemma 2.2. Suppose that X, Y are two c-free elements of A. Then
(i) $\kappa_{n}(X Y)=\sum_{\gamma \in N C(n)} \prod_{B \in \gamma} \kappa_{|B|}(X) \cdot \prod_{D \in \operatorname{Kr}(\gamma)} \kappa_{|D|}(Y)$
(ii) ${ }^{c} \kappa_{n}(X Y)=\sum_{\gamma \in N C(n)}{ }^{c} \kappa_{|\gamma[1]|}(X) \cdot{ }^{c} \kappa_{|K r(\gamma)[\bar{n}]|}(Y) \cdot \prod_{\substack{B \in \gamma \\ B \neq \gamma[1]}} \kappa_{|B|}(X) \cdot \prod_{\substack{D \in \operatorname{Kr}(\gamma) \\ D \neq \operatorname{Kr}(\gamma)[\bar{n}]}} \kappa_{|D|}(Y)$

Proof. Part (i) is shown in [17], Theorem 14.4. We will show part (ii) by induction on n. For $n=1$, the statement is trivial, since ${ }^{c} \kappa_{2}(X, Y)=0$ from the c-freeness of X and Y, therefore

$$
{ }^{c} \kappa_{1}(X Y)=\Phi(X Y)={ }^{c} \kappa_{1}(X)^{c} \kappa_{1}(Y) .
$$

For the inductive step, in order to simplify the writting, we will introduce several new notations.

First, let by $N C_{S}(n)$ the set of partitions from $N C(n)$ such that the elements from the same block have the same parity. For $\sigma \in N C_{S}(n)$, denote σ_{+}, respectively σ_{-}the restriction of σ to the even, respectively odd, numbers and define

$$
N C_{0}(n)=\left\{\sigma: \sigma \in N C(n), \sigma_{+}=K r\left(\sigma_{-}\right)\right\} .
$$

Also, we will need to consider the mappings

$$
N C(n) \times N C(m) \ni(\pi, \sigma) \mapsto \pi \oplus \sigma \in N C(m+n)
$$

the juxtaposition of partitions, and

$$
N C(n) \ni \sigma \mapsto \widehat{\sigma} \in N C(2 n)
$$

constructing by doubling the elements, that is if $\left(i_{1}, i_{2}, \ldots, i_{s}\right)$ is a block of σ, then $\left(2 i_{1}-1,2 i_{1}, 2 i_{2}-1,2 i_{2}, \ldots, 2 i_{s}-1,2 i_{s}\right)$ is a block of $\widehat{\sigma}$.

Then, for $\pi \in N C(n)$, define

$$
\begin{aligned}
& \kappa_{\pi}\left[X_{1}, \ldots, X_{n}\right]=\prod_{\substack{C=\text { block in } \\
C=\left(i_{1}, \ldots, i_{l}\right)}} \kappa_{l}\left(X_{i_{1}}, \ldots, X_{i_{l}}\right) \\
& \left.\mathcal{K}_{\pi}\left[X_{1}, \ldots, X_{n}\right]=\prod_{\substack{B \in \operatorname{Ext}(\gamma) \\
B=\left(j_{1}, \ldots, j_{l}\right)}}{ }^{c} \kappa_{l}\left(X_{j_{1}} \cdots X_{j_{l}}\right)\right] \cdot\left[\prod_{\substack{D \in \operatorname{Int}(\gamma) \\
D=\left(i_{1}, \ldots, i_{s}\right)}} \kappa_{s}\left(X_{i_{1}}, \ldots, X_{i_{s}}\right)\right.
\end{aligned}
$$

Remark that $\kappa_{\pi \oplus \sigma}=\kappa_{\pi} \cdot \kappa_{\sigma}$ and $\mathcal{K}_{\pi \oplus \sigma}=\mathcal{K}_{\pi} \cdot \mathcal{K}_{\sigma}$. Also, if $\left(i_{1}, i_{2}, \ldots, i_{s}\right) \in \operatorname{Ext}(\pi)$, then $\pi_{\mid\left\{i_{1}+1, \ldots, i_{s}-1\right\}} \cup \operatorname{Kr}\left(\pi_{\mid\left\{i_{1}+1, \ldots, i_{s}-1\right\}}\right)=\pi \cup \operatorname{Kr}(\pi)_{\mid\left\{i_{1}+1, \ldots, i_{s}-1\right\}}$, so Lemma 2.2 is equivalent to

$$
\begin{aligned}
\kappa_{\pi}[X Y, \ldots, X Y] & =\sum_{\substack{\sigma \in N C_{S}(2 n) \\
\sigma \bigvee \widehat{0_{n}}=\widehat{\pi}}} \kappa_{\sigma}[X, Y, \ldots, X, Y] \\
\mathcal{K}_{\pi}[X Y, \ldots, X Y] & =\sum_{\substack{\sigma \in N C_{S}(2 n) \\
\sigma \bigvee \widehat{O_{n}}=\widehat{\pi}}} \mathcal{K}_{\sigma}[X, Y, \ldots, X, Y] .
\end{aligned}
$$

One has that

$$
\begin{aligned}
\phi\left((X Y)^{n}\right) & =\sum_{\pi \in N C(n)} \mathcal{K}_{\pi}[X Y, \ldots, X Y] \\
& ={ }^{c} \kappa_{n}(X Y)+\sum_{\substack{\pi \in N C(n) \\
\pi \neq \mathbb{1}_{n}}} \mathcal{K}_{\pi}[X Y, \ldots, X Y] .
\end{aligned}
$$

On the other hand,

$$
\phi\left((X Y)^{n}\right)=\varphi(X \cdot Y \cdots X \cdot Y)=\sum_{\sigma \in N C(2 n)} \mathcal{K}_{\sigma}[X, Y, \ldots, X, Y]
$$

Since the mixed cumulants vanish, the equation above becomes

$$
\begin{aligned}
\phi\left((X Y)^{n}\right) & =\sum_{\sigma \in N C_{S}(2 n)} \mathcal{K}_{\sigma}[X, Y, \ldots, X, Y] \\
& =\sum_{\sigma \in N C_{0}(2 n)} \mathcal{K}_{\sigma}[X, Y, \ldots, X, Y]+\sum_{\substack{\sigma \in N C_{S}(2 n) \\
\sigma \notin N C_{0}(2 n)}} \mathcal{K}_{\sigma}[X, Y, \ldots, X, Y]
\end{aligned}
$$

But $N C_{S}(2 n)=\bigcup_{\pi \in N C(n)}\left\{\sigma: \quad \sigma \in N C_{S}(2 n), \sigma \bigvee \widehat{0_{n}}=\widehat{\pi}\right\}$. Also, for $\sigma \in$ $N C_{s}(2 n)$, one has that $\sigma \in N C_{0}(2 n)$ if and only if $\sigma \bigvee \widehat{0_{n}}=\mathbb{1}_{2 n}$. Therefore:

$$
N C_{S}(2 n) \backslash N C_{0}(2 n)=\bigcup_{\substack{\pi \in N C(n) \\ \pi \neq \mathbb{1}_{n}}}\left\{\sigma: \sigma \in N C_{S}(2 n), \sigma \bigvee \widehat{0_{n}}=\widehat{\pi}\right\}
$$

Therefore

$$
\begin{aligned}
\sum_{\substack{\sigma \in N C_{S}(2 n) \\
\sigma \notin N C_{0}(2 n)}} \mathcal{K}_{\sigma}[X, Y, \ldots, X, Y] & =\sum_{\substack{\pi \in N C(n) \\
\pi \neq \mathbb{1}_{n}}} \sum_{\substack{\sigma \in N C_{S}(2 n) \\
\sigma \bigvee \widehat{0_{n}}=\widehat{\pi}}} \mathcal{K}_{\sigma}[X, Y, \ldots, X, Y] \\
& =\sum_{\substack{\pi \in N C(n) \\
\pi \neq \mathbb{1}_{n}}} \mathcal{K}[X Y, \ldots, X Y] .
\end{aligned}
$$

so the proof is now complete.
2.2. Non-crossing linked partitions and t-coefficients. By a non-crossing linked partition π of the ordered set $\{1,2, \ldots, n\}$ we will understand a collection B_{1}, \ldots, B_{k} of subsets of $\{1,2, \ldots, n\}$, called blocks, with the following properties:
(a) $\bigcup_{l=1}^{k} B_{l}=\{1, \ldots, n\}$
(b) B_{1}, \ldots, B_{k} are non-crossing, in the sense that there are no two blocks B_{l}, B_{s} and $i<k<p<q$ such that $i, p \in B_{l}$ and $k, q \in B_{s}$.
(c) for any $1 \leq l, s \leq k$, the intersection $B_{l} \bigcap B_{s}$ is either void or contains only one element. If $\{j\}=B_{i} \bigcap B_{s}$, then $\left|B_{s}\right|,\left|B_{l}\right| \geq 2$ and j is the minimal element of only one of the blocks B_{l} and B_{s}.
We will use the notation $s(\pi)$ for the set of all $1 \leq k \leq n$ such that there are no blocks of π whose minimal element is k. A block $B=i_{1}<i_{2}<\cdots<i_{p}$ of π will be called exterior if there is no other block D of π containing two elements l, s such that $l=i_{1}$ or $l<i_{1}<i_{p}<s$. The set of all non-crossing linked partitions on $\{1, \ldots, n\}$ will be denoted by $N C L(n)$.

Example 2: Below is represented graphically the non-crossing linked partition $\pi=(1,4,6,9),(2,3),(4,5),(6,7,8),(10,11),(11,12) \in N C L(12)$. Its exterior blocks are $(1,4,6,9)$ and $(10,11)$.

Similarly to [10] and [19], we define the t-coefficients, respectively ${ }^{c} t$-coefficients, as follows. Take $A^{\circ}=A \backslash \operatorname{ker} \varphi$. Then, for n a positive integer, the maps $t_{n}: A \times\left(A^{\circ}\right)^{n} \longrightarrow \mathbb{C}$ and ${ }^{c} t_{n}: A \times\left(A^{\circ}\right)^{n} \longrightarrow B$ are given by the following recurrences:

$$
\begin{equation*}
\varphi\left(X_{1} \cdots X_{n}\right)=\sum_{\pi \in \operatorname{NCL}(n)}\left[\prod_{\substack{B \in \pi \\ B=\left(i_{1}, \ldots, i_{l}\right)}} t_{l-1}\left(X_{i_{1}} \ldots, X_{i_{l}}\right) \cdot \prod_{p \in s(\pi)} t_{0}(p)\right] \tag{3}
\end{equation*}
$$

respectively

$$
\begin{gather*}
\Phi\left(X_{1} \cdots X_{n}\right)=\sum_{\pi \in \operatorname{NCL}(n)}\left[\prod_{\substack{B \in \operatorname{Ext}(\pi) \\
B=\left(i_{1}, \ldots, i_{l}\right)}}{ }^{c} t_{l-1}\left(X_{i_{1}} \ldots, X_{i_{l}}\right)\right. \tag{4}\\
\cdot \prod_{\substack{D \in \operatorname{Int}(\pi) \\
D=\left(j_{1}, \ldots, j_{s}\right)}} t_{s-1}\left(X_{j_{1}}, \ldots, X_{j_{s}}\right) \cdot \prod_{p \in S(\pi)} t_{0}\left(X_{p}\right)
\end{gather*}
$$

To simplify the writing we will use the shorthand notations $t_{\pi}\left[X_{1}, \ldots, X_{n}\right]$, respectively ${ }^{c} t_{\pi}\left[X_{1}, \ldots, X_{n}\right]$ for the summing term of the right-hand side of (3), respectively (4); also we will write $t_{\pi}[X],{ }^{c} t_{\pi}[X]$ respectively $t_{n}(X),{ }^{c} t_{n}(X)$ for $t_{\pi}(X, \ldots, X),{ }^{c} t_{\pi}(X, \ldots, X)$, respectively $t_{n}(X, \ldots, X)$ and ${ }^{c} t_{n}(X, \ldots, X)$. Note that while all the factors in t_{π} are t-coefficents, the development of ${ }^{c} t_{\pi}$ contains both ${ }^{c} t$ - and t-coefficients.
2.3. The lattice $N C L(n)$ and c-freeness in terms on t-coefficients. On the set $N C L(n)$ we define a order relation by saying that $\pi \succeq \sigma$ if for any block B of π there exist D_{1}, \ldots, D_{s} blocks of σ such that $B=D_{1} \cup \cdots \cup D_{s}$. With respect to the order relation \succeq, the set $N C L(n)$ is a lattice.

Note also that a sublattice of $N C L(n)$.
We say that i and j are connected in $\pi \in N C L(n)$ if there exist B_{1}, \ldots, B_{s} blocks of π such that $i \in B_{1}, j \in B_{s}$ and $B_{k} \cap B_{k+1} \neq \varnothing, 1 \leq k \leq s-1$.

To $\pi \in N C L(n)$ we assign the partition $c(\pi) \in N C(n)$ defined as follows: i and j are in the same block of $c(\pi)$ if and only if they are connected in π. (I. e. the blocks of $c(\pi)$ are exactly the connected components of π.) We will use the notation

$$
[c(\pi)]=\{\sigma \in N C L(n): c(\sigma)=c(\pi)\}
$$

In Example 2 from above, we have that 5 and 8 as well as 10 and 12 are connected. More precisely, $c(\pi)=(1,4,5,6,7,8,9),(2,3),(10,11,12)$.

From the definition of the order relation \succeq, we have that, for every $\gamma \in N C(n)$, [γ] is a sublattice of $\operatorname{NCL}(n)$ and its maximal element is γ. Moreover, if γ has the blocks B_{1}, \ldots, B_{s}, each B_{l} of cardinality k_{l}, then we have the following ordered set isomorphism:

$$
\begin{equation*}
[c(\pi)] \simeq\left[\mathbb{1}_{k_{1}}\right] \times \cdots \times\left[\mathbb{1}_{k_{s}}\right] \tag{5}
\end{equation*}
$$

The factorization above has as immediate consequences the following two Propositions:

Proposition 2.3. For any positive integer n and any $X_{1}, \ldots, X_{n} \in A$ we have that

$$
\begin{aligned}
\kappa_{n}\left(X_{1}, \ldots, X_{n}\right) & =\sum_{\pi \in\left[\mathbb{1}_{n}\right]} t_{\pi}\left[X_{1}, \ldots, X_{n}\right] \\
{ }^{c} \kappa_{n}\left(X_{1}, \ldots, X_{n}\right) & =\sum_{\pi \in\left[\mathbb{1}_{n}\right]}{ }^{c} t_{\pi}\left[X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

Proof. First relation is shown in Proposition 1.4 from [19]. The second relation is trivial for $n=1$. For $n>1$, note that

$$
\sum_{\pi \in N C L(n)}{ }^{c} t_{\pi}\left[X_{1}, \ldots, X_{n}\right]=\sum_{\gamma \in N C(n)} \sum_{\pi \in[\gamma]}{ }^{c} t_{\gamma}\left[X_{1}, \ldots, X_{n}\right]
$$

and the similar relation for t_{π}.
Suppose that $\pi \in N C L(n)$ and $\gamma \in N C(n)$ are such that $\pi \in[\gamma]$. From the definition of ${ }^{c} t$ - and t-coefficients we have that
(6) ${ }^{c} t_{\pi}\left[X_{1}, \cdots, X_{n}\right]=\prod_{\substack{B \in \operatorname{Ext}(\pi) \\ B=\left(i_{1}, \ldots, i_{s}\right)}}{ }^{c} t_{\pi_{\mid B}}\left[X_{i_{1}}, \ldots, X_{i_{s}}\right] \cdot \prod_{\substack{D \in \operatorname{Int}(\pi) \\ D=\left(j_{1}, \ldots, j_{t}\right)}} t_{\pi_{\mid D}}\left[X_{j_{1}}, \ldots, X_{j_{t}}\right]$
and

$$
\begin{equation*}
t_{\pi}\left[X_{1}, \ldots, X_{n}\right]=\prod_{\substack{B \in \pi) \\ B=\left(i_{1}, \ldots, i_{s}\right)}}{ }^{c} t_{\pi_{\mid B}}\left[X_{i_{1}}, \ldots, X_{i_{s}}\right] \tag{7}
\end{equation*}
$$

Therefore, the equation (4) becomes

$$
\begin{aligned}
\Phi\left(X_{1} \cdots X_{n}\right)= & \sum_{\gamma \in N C(n)}\left[\prod_{\substack{B \in \operatorname{Ext}(\pi) \\
B=\left(i_{1}, \ldots, i_{s}\right)}}\left(\sum_{\substack{\pi \in N C L(n) \\
\pi \in[\gamma]}}{ }^{c} t_{\pi_{\mid B}}\left[X_{i_{1}}, \ldots, X_{i_{s}}\right]\right)\right. \\
& \left.\cdot \prod_{\substack{D \in \operatorname{Int}(\pi) \\
D=\left(j_{1}, \ldots, j_{l}\right)}}\left(\sum_{\substack{\pi \in N C L(n) \\
\pi \in[\gamma]}} t_{\pi_{\mid D}}\left[X_{j_{1}}, \ldots, X_{\left.j_{l}\right]}\right]\right)\right]
\end{aligned}
$$

and the factorization (5) gives:

$$
\begin{aligned}
\Phi\left(X_{1} \cdots X_{n}\right)= & \sum_{\gamma \in N C(n)}\left[\prod_{\substack{B \in \operatorname{Ext}(\pi) \\
B=\left(i_{1}, \ldots, i_{s}\right)}}\left(\sum_{\sigma \in\left[\mathbb{1}_{s}\right]}{ }^{c} t_{\sigma}\left[X_{i_{1}}, \ldots, X_{i_{s}}\right]\right)\right. \\
& \left.\cdot \prod_{\substack{D \in \operatorname{Int}(\pi) \\
D=\left(j_{1}, \ldots, j_{l}\right)}}\left(\sum_{\sigma \in\left[\mathbb{1}_{l}\right]} t_{\sigma}\left[X_{j_{1}}, \ldots, X_{j_{l}}\right]\right)\right]
\end{aligned}
$$

The conclusion follows now utilizing the moment-cumulant recurrence and induction on n.

For $X \in A^{\circ}$, we define the formal power series $T_{X}(z)=\sum_{n=0}^{\infty} t_{n}(X) z^{n}$ and ${ }^{c} T_{X}(z)=\sum_{n=0}^{\infty}{ }^{c} t_{n}(X) z^{n}$. Also, we consider the moment series of X, namely $M_{X}(z)=\sum_{n=1}^{\infty} \Phi\left(X^{n}\right) z^{n}$, and $m_{X}(z)=\sum_{n=1}^{\infty} \varphi\left(X^{n}\right) z^{n}$. As shown [23] Lemma 7.1(i) the recurrence 3 gives that

$$
\begin{equation*}
T_{X}\left(m_{X}(z)\right) \cdot\left(1+m_{X}(z)\right)=\frac{1}{z} m_{X}(z) \tag{8}
\end{equation*}
$$

The proposition below gives an analogous relation for the series ${ }^{c} T_{X}(z)$ (i. e. a non-commutative analogue of Lemma 7.1(ii) from [23]).

Proposition 2.4. With the notations above, we have that

$$
\begin{equation*}
{ }^{c} T_{X}\left(m_{X}(z)\right) \cdot\left(1+M_{X}(z)\right)=\frac{1}{z} M_{X}(z) \tag{9}
\end{equation*}
$$

Proof. Let $N C L(1, p)=\{\pi \in N C P(p): \pi$ has only one exterior block $\}$.
Note that for each $\tau \in N C L(n)$, there exists a unique triple $p \leq n, \pi \in$ $N C L(1, p)$ and $\sigma \in N C L(n-p)$ such that $\tau=\pi \oplus \sigma$. Indeed, taking p to be the maximal element of the block of $c(\tau)$ containing 1 , it follows that

$$
\tau=\tau_{\mid\{1,2, \ldots, p\}} \oplus \tau_{\mid\{p+1, \ldots, n\}}
$$

and that $\tau_{\mid\{1,2, \ldots, p\}} \in N C L(1, p)$.

Conversely, each triple p, π, σ as above determine a unique $\pi \oplus \sigma \in N C L(n)$, hence

$$
N C L(n)=\bigcup_{p \leq n}\{\pi \oplus \sigma: \pi \in N C L(1, p), \sigma \in N C L(n-p)\}
$$

therefore the recurrence 4 gives

$$
\begin{align*}
\Phi\left(X^{n}\right) & =\sum_{\pi \in N C L(n)}{ }^{c} t_{p} i(X) \\
& =\sum_{p \leq n}\left[\sum_{\pi \in N C L(p)}{ }^{c} t_{\pi}(X) \cdot\left(\sum_{\sigma \in N C L(n-p)}{ }^{c} t_{\sigma}(X)\right)\right] \\
& =\sum_{p \leq n}\left[\sum_{\pi \in N C L(p)}{ }^{c} t_{\pi}(X) \cdot \Phi\left(X^{n-p}\right)\right] . \tag{10}
\end{align*}
$$

Let $N C L(1, q, p)=\{\pi \in N C L(1, p):$ the exterior block of π has exactly q elements $\}$. Fix $\pi \in N C L(1, q, p)$ and let $\left(1, i_{1}, i_{2}, \ldots, i_{q-1}\right)$ be the exterior block of π. Define $\widetilde{\pi} \in N C L(p-1)$ such that, with the notations following the recurrences (3)-(4), ${ }^{c} t_{\pi}(X)={ }^{c} t_{q-1} \cdot t_{\widetilde{\pi}}(X)$, as follows:

- if $\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ is an interior block of π, then $\left(j_{1}-1, j_{2}-1, \ldots, j_{s}-1\right)$ is a block in $\tilde{\pi}$;
- if $j>1$ and the only block of π containing j is exterior, then $(j-1)$ is a block of $\widetilde{\pi}$
i.e. $\widetilde{\pi}$ is obtaining by " deleting " the 1 and the exterior block of π. For each i_{l} in the exterior block $\left(1, i_{1}, i_{2}, \ldots, i_{q-1}\right)$ of π we define i_{l}^{\prime} to be the maxinal element connected to i_{l} in π, and let $i_{0}^{\prime}=0$. Then each set $S(l)=\left\{i_{l-1}^{\prime}+1, i_{l-1}^{\prime}+2, \ldots, i_{l}^{\prime}\right\}$ is nonvoid and we have the decomposition $\widetilde{\pi}=\widetilde{\pi}_{\mid S(1)} \oplus \widetilde{\pi}_{\mid S(2)} \oplus \cdots \oplus \widetilde{\pi}_{\mid S(q-1)}$. Example 3. If $\pi=\{(1,4,6,9),(2,3),(4,5),(6,7,8)\}$, then

$$
\widetilde{\pi}=\{(1,2),(3,4),(5,6,7),(8)\}=\{(1,2),(3,4)\} \oplus\{(1,2,3)\} \oplus\{(1)\}
$$

see the diagram below:

Using the equality ${ }^{c} t_{\pi}(X)={ }^{c} t_{q-1} \cdot t_{\tilde{\pi}}(X)$, we obtain

$$
\begin{align*}
\sum_{\pi \in N C L(1, q, p)}{ }^{c} t_{\pi}(X) & ={ }^{c} t_{q-1}(X) \cdot \sum_{r_{1}+\ldots r_{q-1}=p}\left(\prod_{k=1}^{q-1} \sum_{\sigma \in N C L\left(r_{k}\right)} t_{\sigma}(X)\right) \\
& ={ }^{c} t_{q-1}(X) \sum_{r_{1}+\ldots r_{q-1}=p}\left(\prod_{k=1}^{q-1} \varphi\left(X^{r_{k}}\right)\right) \tag{11}
\end{align*}
$$

Since $N C L(1, p)=\bigcup_{q=1}^{p} N C L(1, q, p)$, the equations (10) and (11) give that

$$
\Phi\left(X^{n}\right)=\sum_{p=1}^{n}\left(\sum _ { q = 1 } ^ { p } { } ^ { c } t _ { q - 1 } (X) \cdot \sum _ { r _ { 1 } + \ldots r _ { q - 1 } = p } \left(\prod_{k=1}^{q-1} \varphi\left(X^{r_{k}}\right),\right.\right.
$$

which is the relation of the left hand side and right hand side coefficients of z^{n-1} in equation (9).

We conclude this section with the following result.

Proposition 2.5. (Characterization of c-freeness in terms of ${ }^{c} t$-coefficients) Two elements X, Y from A° are c-free if and only if all their mixed t - and ${ }^{c} t$ coefficients vanish, that is for all n and all $a_{1}, \ldots, a_{n} \in\{X, Y\}$ such that $a_{k}=X$ and $a_{l}=Y$ for some k, l we have that

$$
{ }^{c} t_{n-1}\left(a_{1}, \ldots, a_{n}\right)={ }^{c} t_{n-1}\left(a_{1}, \ldots, a_{n}\right)=0
$$

Proof. We will show by induction on n the equivalence between vanishing of mixed free and c-free cumulants of order n in X and Y and vanishing of mixed t - and ${ }^{c} t$-coefficients of order up to $n-1$. For $n=2$ the result is trivial, since $k_{2}(X, Y)=$ $t_{1}(X, Y)$ and ${ }^{c} \kappa_{2}(X, Y)={ }^{c} t_{1}(X, Y)$.

For the inductive step suppose that a_{1}, \ldots, a_{n} are not all X nor all Y. Proposition 2.3 gives

$$
\begin{gathered}
\kappa_{n}\left(a_{1}, \ldots, a_{n}\right)=t_{n-1}\left(a_{1}, \ldots, a_{n}\right)+\sum_{\substack{\pi \in\left[\mathbb{1}_{n}\right] \\
\pi \neq \mathbb{1}_{n}}} t_{\pi}\left[a_{1}, \ldots, a_{n}\right] \\
{ }^{c} \kappa_{n}\left(a_{1}, \ldots, a_{n}\right)={ }^{c} t_{n-1}\left(a_{1}, \ldots, a_{n}\right)+\sum_{\substack{\pi \in\left[\mathbb{1}_{n}\right] \\
\pi \neq \mathbb{1}_{n}}}{ }^{c} t_{\pi}\left[a_{1}, \ldots, a_{n}\right] .
\end{gathered}
$$

Fix $\pi \in\left[\mathbb{1}_{n}\right], \pi \neq \mathbb{1}_{n}$. Since π is connected, there is $\left(i_{1}, \ldots, i_{s}\right)$, a block of π with $s<n$ such that $a_{i_{1}}, \ldots, a_{i_{2}}$ are not all X not all Y, so equations (6) and (7) and the induction hypothesis imply that $t_{\pi}\left(a_{1}, \ldots, a_{n}\right)={ }^{c} t_{\pi}\left(a_{1}, \ldots, a_{n}\right)=0$, hence $\kappa_{n}\left(a_{1}, \ldots, a_{n}\right)=t_{n-1}\left(a_{1}, \ldots, a_{n}\right)$ and ${ }^{c} \kappa_{n}\left(a_{1}, \ldots, a_{n}\right)={ }^{c} t_{n-1}\left(a_{1}, \ldots, a_{n}\right)$ so q.e.d..

3. PLANAR TREES AND THE MULTIPLICATIVE PROPERTY OF THE T-TRANSFORM

In this section we will use the combinatorial arguments from [19] to show that whenever X and Y are two c-free elements from A°, we have that

$$
\begin{align*}
T_{X Y}(z) & =T_{X}(z) \cdot T_{Y}(z) \tag{12}\\
{ }^{c} T_{X Y}(z) & ={ }^{c} T_{X}(z) \cdot{ }^{c} T_{Y}(z) \tag{13}
\end{align*}
$$

where, for $Z \in A^{\circ}$, we define $T_{Z}(z)=\sum_{n=0}^{\infty} t_{n}(Z) z^{n}$.
3.1. Planar trees. We will start with a review of the notations from [19].

An elementary planar tree we will denote a graph with $m \geq 1$ vertices, $v_{1}, v_{2}, \ldots, v_{m}$, and $m-1$ edges, or branches, connecting the vertex v_{1} (that we will call root) to the vertices v_{2}, \ldots, v_{m} (called offsprings). A single vertex (with no offsprings) will be also considered an elementary planar tree.

By a planar tree we will understand a graph consisting in a finite number of levels, such that:

- first level consists in a single elementary planar tree, whose root will be also the root of the planar tree;
- the k-th level will consist in a set of elementary planar trees such that their roots are among the offsprings of the $k-1$-th level.

The set of all planar trees with n vertices wil be denoted by $\mathfrak{T}(n)$. If $C \in \mathfrak{T}(n)$, the set of elementary trees composing the planar tree C will be denoted by $E(C)$; by $\mathfrak{r}(C)$ we will denote the elementary tree containing the root of C and let $\mathfrak{b}(C)=$ $E(C) \backslash \mathfrak{r}(C)$.

Below are represented graphically the elementary planar tree C_{1} and the 2-level planar tree C_{2} :

We consider the vertices of a planar tree with the "left depth first" order from [1], given by:
(i) roots are less than their offsprings;
(ii) offsprings of the same root are ordered from left to right;
(iii) if v is less that w, then all the offsprings of v are smaller than any offspring of w.
(I.e. the order in which the vertices are passed by walking along the branches from the root to the right-most vertex, not counting vertices passed more than one time, see the example below).

Example 4:

Next, consider, as in [19], the map $\Theta:\left[\mathbb{1}_{n}\right] \longrightarrow \mathfrak{T}(n)$ by putting $\Theta(\pi)$ be the planar tree composed by the elementary trees of vertices numbered $\left(i_{1}, \ldots, i_{s}\right)$ (with respect to the above order relation), for each $\left(i_{1}, \ldots, i_{s}\right)$ block of π. More precisely, if $\left(1,2, i_{1}, \ldots, i_{s}\right)$ is the block of π containing 1 , then the first level of $\Theta(\pi)$ is the elementary planar tree of root numbered 1 and offsprings numbered $\left(2, i_{1}, \ldots, i_{s}\right)$. The second level of $\Theta(\pi)$ will be determined by the blocks (if any) having $2, i_{1}, \ldots, i_{s}$ as first elements etc (see Example 5 below). As shown in [19], the map Θ is well-defined and bijective.

Example 5:

For $X \in A^{\circ}$, define the maps \mathcal{E}_{X}, respectively $\widetilde{\mathcal{E}}_{X}$ from $\bigcup_{n \in \mathbb{N}} \mathfrak{T}(n)$ to \mathbb{C}, respectively to B, as follows. If C is an elementary planar tree with n vertices let $\mathcal{E}_{X}(C)=t_{n-1}(X)$ and $\widetilde{\mathcal{E}}_{X}(C)={ }^{c} t_{n-1}(X)$. If $W \in \mathfrak{T}(n)$, then let

$$
\begin{aligned}
& \mathcal{E}_{X}(W)=\prod_{C \in E(W)} \mathcal{E}_{X}(C) \\
& \widetilde{\mathcal{E}}_{X}(W)=\widetilde{\mathcal{E}}_{X}(\mathfrak{r}(W)) \cdot \prod_{C \in \mathfrak{b}(W)} \mathcal{E}_{X}(C)
\end{aligned}
$$

As in [19], proposition 2.3 and the construction of the bijection Θ give then

$$
\begin{equation*}
\kappa_{n}(X)=\sum_{C \in \mathfrak{T}(n)} \mathcal{E}_{X}(C) \text { and }{ }^{c} \kappa_{n}(X)=\sum_{C \in \mathfrak{T}(n)} \widetilde{\mathcal{E}}_{X}(C) . \tag{14}
\end{equation*}
$$

3.2. Bicolor planar trees and the Kreweras complement. A bicolor elementary planar tree is an elementary tree together with a mapping from its offsprings to $\{0,1\}$ such that the offsprings whose image is 1 are smaller (in the sense of Section 3.1) than the offsprings of image 0 . Branches toward offsprings of color 0 , respectively 1 , will be also said to be of color 0 , respectively 1 . We will represent by solid lines the branches of color 1 and by dashed lines the branches of color 0 . The set of all bicolor planar trees with n vertices will be denoted by $\mathfrak{E B}(n)$. Below is the graphical representation of $\mathfrak{E B}(4)$:

A bicolor planar tree is a planar tree whose constituent elementary trees are all bicolor; the set of all bicolor planar trees will be denoted by $\mathfrak{B}(n)$.

For $\pi \in N C_{S}(2 n)$, we will say that the blocks with odd elements are of color 1 and the ones with even elements are of color 0 . Note that $\pi \in N C_{S}(2 n)$ if and only if π has exactly 2 exterior blocks, one of color 1 and one of color 0 and if i_{1} and i_{2} are two consecutive elements from the same block, then $\pi_{\mid\left(i_{1}+1, \ldots, i_{2}-1\right)}$ has exactly one exterior block, of different color than the one containing i_{1} and i_{2}.

We will represent blocks of color 1 by solid lines and blocks of color 0 by dashed lines:

As shown in [19], there exist a bijection $\Lambda: N C_{S}(2 n) \longrightarrow \mathfrak{B}(n)$, constructed as follows(see also Example 6 below):

- If $\left(i_{1}, \ldots, i_{s}\right)$ and $\left(j_{1}, \ldots, j_{p}\right.$ are the two exterior blocks of π, then the first level of $\Lambda(\pi)$ is an elementary tree with $s-1+p-1$ offsprings, the first $s-1$ of color 1 , corresponding to $\left(i_{2}, \ldots, i_{s}\right)$, in this order, and the last $p-1$ of color 0 , corresponding to $\left(j_{2}, \ldots, i_{p}\right)$, in this order.
- Suppose that i_{1} and i_{2} are consecutive elements in a block of π already represented in an elementary tree of $\Lambda(\pi)$, that π has the exterior block $\left(j_{1}, \ldots, j_{p}\right)$ and that i_{2} is the minimal element of the block $\left(i_{2}, d_{1}, \ldots, d_{r}\right)$. The the blocks $B=\left(j_{1}, \ldots, j_{p}\right)$ and $D=\left(i_{2}, d_{1}, \ldots, d_{r}\right)$ will have different colors. They will be then represented by an elementary tree of vertex corresponding to i_{2} (the block of i_{1} and i_{2} has been already represented from the hypothesis), and with $p-1+k$ offsprings, keeping the colors of the blocks B and D, the ones of color 1 placed before the ones of color 0 .

Example 6:

For $X, Y \in A^{\circ}$, we define the maps $\omega_{X Y}: \cup_{n \in \mathbb{N}} \mathfrak{B}(n) \longrightarrow \mathbb{C}$, respectively $\widetilde{\omega}_{X Y}: \cup_{n \in \mathbb{N}} \mathfrak{B}(n) \longrightarrow B$ as follows. If $C_{0} \in \mathfrak{E} \mathfrak{B}(n)$ has k offsprings of color 1 and $n-k-1$ offsprings of color 0 , then we define

$$
\begin{aligned}
& \omega_{X, Y}\left(C_{0}\right)=t_{k}(X) t_{n-k-1}(Y) \\
& \widetilde{\omega}_{X, Y}\left(C_{0}\right)={ }^{c} t_{k}(X)^{c} t_{n-k-1}(Y) .
\end{aligned}
$$

For $W \in \mathfrak{B}(n)$, define

$$
\begin{aligned}
\omega_{X, Y}(W) & =\prod_{D \in E(W)} \omega_{X, Y}(D) \\
\widetilde{\omega}_{X, Y}(W) & =\widetilde{\omega}_{X, Y}(\mathfrak{r}(W)) \cdot \prod_{D \in \mathfrak{b}(W)} \omega_{X, Y}(D) .
\end{aligned}
$$

Remark that, for $\pi \in N C_{S}(2 n)$, the definitions of Λ and $\omega_{X, Y}, \widetilde{\omega}_{X, Y}$ give
(15) $\omega_{X, Y}(\Lambda(\pi))=\kappa_{\pi_{-}}[X] \kappa_{\pi_{+}}[Y]$
(16) $\widetilde{\omega}_{X, Y}(\Lambda(\pi))={ }^{c} \kappa_{\left|\pi_{-}[1]\right|}(X) \cdot{ }^{c} \kappa_{\left|\pi_{+}[2 n]\right|}(Y) \cdot \prod_{\substack{B \in \pi_{-} \\ B \neq \pi_{-}[1]}} \kappa_{|B|}(X) \cdot \prod_{\substack{D \in \pi_{+} \\ D \neq \pi_{+}[2 n]}} \kappa_{|D|}(Y)$

3.3. The multiplicative property of the ${ }^{c} T$-transform.

Theorem 3.1. If X, Y are c-free elements from A°, then $T_{X Y}=T_{X} T_{Y}$ and ${ }^{c} T_{X Y}={ }^{c} T_{X} \cdot{ }^{c} T_{Y}$.

Proof. We need to show that, for all $m \geq 0$

$$
\begin{equation*}
\left.\left.t_{m}(X Y)=\sum_{k=0}^{m} t_{k}(X) t_{m-k}(Y)\right) \text { and }{ }^{c} t_{m}(X Y)=\sum_{k=0}^{m}{ }^{c} t_{k}(X)^{c} t_{m-k}(Y)\right) \tag{17}
\end{equation*}
$$

If C_{n} is denoting the elementary planar tree with n vertices, with the notations from the previous two sections, the equation (17) are equivalent to

$$
\begin{equation*}
\mathcal{E}_{X Y}\left(A_{n}\right)=\sum_{B \in \mathfrak{E} \mathfrak{B}(n)} \omega_{X, Y}(B) \text { and } \widetilde{\mathcal{E}}_{X Y}\left(A_{n}\right)=\sum_{B \in \mathfrak{E} \mathfrak{B}(n)} \widetilde{\omega}_{X, Y}(B) \tag{18}
\end{equation*}
$$

i.e. for example,

We will prove (18) by induction on n. For $n=0$, the result is trivial. Suppose (18) true for $m \leq n-1$.

Relation (14) and Lemma 2.2 give

$$
\begin{aligned}
\sum_{C \in \mathfrak{T}(n)} \widetilde{\mathcal{E}}_{X Y}(C) & ={ }^{c} \kappa_{n}(X Y) \\
& =\sum_{\pi \in N C_{S}(2 n)}{ }^{c} \kappa_{\left|\pi_{-}[1]\right|}(X) \cdot{ }^{c} \kappa_{\left|\pi_{+}[2 n]\right|}(Y) \cdot \prod_{\substack{B \in \pi_{-} \\
B \neq \pi_{-}[1]}} \kappa_{|B|}(X) \cdot \prod_{\substack{D \in \pi_{+} \\
D \neq \pi_{+}[2 n]}} \kappa_{|D|}(Y)
\end{aligned}
$$

and equation (16) and the bijectivity of Λ give:

$$
\begin{equation*}
\sum_{C \in \mathfrak{T}(n)} \widetilde{\mathcal{E}}_{X Y}(C)=\sum_{B \in \mathfrak{B}(n)} \widetilde{\omega}_{X, Y}(B) . \tag{19}
\end{equation*}
$$

Similarly, we have that

$$
\begin{equation*}
\sum_{C \in \mathfrak{T}(n)} \mathcal{E}_{X Y}(C)=\sum_{B \in \mathfrak{B}(n)} \omega_{X, Y}(B) \tag{20}
\end{equation*}
$$

All non-elementary trees from $\mathfrak{T}(n)$ are unions on elementary trees with less than n vertices. The relations (19) and (20) imply that the image under $\widetilde{\mathcal{E}}_{X Y}$, respectively $\mathcal{E}_{X Y}$ of any such tree is the sum of the images under $\widetilde{\omega}_{X Y}$, respectively under $\omega_{X Y}$ of its colored versions. Hence

$$
\begin{equation*}
\sum_{\substack{C \in \mathfrak{T}(n) \\ C \neq C_{n}}} \mathcal{E}_{X Y}(C)=\sum_{\substack{B \in \mathfrak{B}(n) \\ B \notin \mathfrak{E} \mathfrak{B}(n)}} \omega_{X, Y}(B) \quad \text { and } \sum_{\substack{C \in \mathfrak{T}(n) \\ C \neq C_{n}}} \widetilde{\mathcal{E}}_{X Y}(C)=\sum_{\substack{B \in \mathfrak{B}(n) \\ B \notin \mathfrak{E} \mathfrak{B}(n)}} \widetilde{\omega}_{X, Y}(B) \tag{21}
\end{equation*}
$$

Finally, the equations (21) and (19), (20) give that $\mathcal{E}_{X Y}\left(A_{n}\right)=\sum_{B \in \mathfrak{B}(n)} \omega_{X, Y}(B)$ and that $\widetilde{\mathcal{E}}_{X Y}\left(A_{n}\right)=\sum_{B \in \mathfrak{B}(n)} \widetilde{\omega}_{X, Y}(B)$, that is (18).

4. Infinite Divisibility

Fix a unital C^{*}-subalgebra B of $L(H)$, the C^{*}-algebra of bounded linear operators on a Hilbert space H. In this section, we study the infinite divisibility relative to the c-freeness. A natural framework for such a discussion is in a c-free probability space (A, Φ, φ), that is, the algebras A is also a concrete C^{*}-algebra acting on some Hilbert space K, the linear map $\Phi: A \rightarrow B$ is a unital completely positive map, and the expectation functional φ is a state on $L(K)$. Note that we have the norm $\|\Phi\|=\|\Phi(1)\|=1$.

The distribution of a unitary $u \in(A, \Phi, \varphi)$, written as the spectral integral

$$
u=\int_{\mathbb{T}} \xi d E_{u}(\xi)
$$

is the pair (μ, ν), where $\nu=\varphi \circ E_{u}$ is a positive Borel probability measure on the circle $\mathbb{T}=\{|\xi|=1\}$, and μ is a linear map from $\mathbb{C}[\xi, 1 / \xi]$, the ring of Laurent polynomials, into the C^{*}-algebra B such that

$$
\mu(f)=\Phi\left(f\left(u, u^{*}\right)\right), \quad f \in \mathbb{C}[\xi, 1 / \xi] .
$$

Of course, the positivity of Φ and the Stinespring theorem (see [18], Theorem 3.11) imply that the map μ extends to a completely positive map on $C(\mathbb{T})$, the C^{*} algebra of continuous functions on \mathbb{T}. More generally, given any sequence $\left\{A_{n}: n \in\right.$ $\mathbb{Z}\} \subset L(H)$, it is known (see [18]) that the operator-valued trigonometric moment sequence

$$
A_{n}=\mu\left(\xi^{n}\right), \quad n \in \mathbb{Z}
$$

extends linearly to a completely positive map $\mu: C(\mathbb{T}) \rightarrow L(H)$ if and only if the operator-valued power series $F(z)=A_{0} / 2+\sum_{k=1}^{\infty} z^{k} A_{k}$ converges on the open unit disk \mathbb{D} and satisfies $F(z)+F(z)^{*} \geq 0$ for $z \in \mathbb{D}$. In particular, for the unitary u this implies that its moment generating series

$$
M_{u}(z)=\Phi\left(z u(1-z u)^{-1}\right)=\sum_{k=1}^{\infty} z^{k} \mu\left(\xi^{k}\right)
$$

and

$$
\begin{equation*}
m_{u}(z)=\varphi\left(z u(1-z u)^{-1}\right)=\int_{\mathbb{T}} \frac{z \xi}{1-z \xi} d \nu(\xi) \tag{22}
\end{equation*}
$$

satisfy the properties:

$$
I+M_{u}(z)+M_{u}(z)^{*} \geq 0 \quad \text { and } \quad 1+m_{u}(z)+\overline{m_{u}(z)} \geq 0
$$

for $|z|<1$. Thus, the formula

$$
\begin{equation*}
B_{u}(z)=\frac{1}{z} M_{u}(z)\left(I+M_{u}(z)\right)^{-1}, \quad z \in \mathbb{D} \tag{23}
\end{equation*}
$$

defines an analytic function from the disk \mathbb{D} to the algebra B, with the norm $\left\|B_{u}(z)\right\|<1$ for $z \in \mathbb{D}$. Analogously, the function

$$
b_{u}(z)=\frac{m_{u}(z)}{z+z m_{u}(z)}, \quad z \in \mathbb{D}
$$

will be an analytic self-map of the disk \mathbb{D}. Notice that we have $B_{u}(0)=\Phi(u)$ and $b_{u}(0)=\varphi(u)$.

Conversely, suppose we are given two analytic maps $B: \mathbb{D} \rightarrow B$ and $b: \mathbb{D} \rightarrow \mathbb{D}$ satisfying $\|B(z)\|<1$ for $|z|<1$. Then the maps $M(z)=z B(z)(I-z B(z))^{-1}$ and $m(z)=z b(z) /(1-z b(z))$ are well-defined in \mathbb{D}, and they can be written as the convergent power series:

$$
M(z)=\sum_{k=1}^{\infty} z^{k} A_{k} \quad \text { and } \quad m(z)=\sum_{k=1}^{\infty} a_{k} z^{k}, \quad z \in \mathbb{D}
$$

where the operators $A_{k} \in B$ and the coefficients $a_{k} \in \mathbb{D}$. Since $I-|z|^{2} B(z) B(z)^{*} \geq$ 0 , we have

$$
I+M_{u}(z)+M_{u}(z)^{*}=(I-z B(z))^{-1}\left(I-|z|^{2} B(z) B(z)^{*}\right)\left[(I-z B(z))^{-1}\right]^{*} \geq 0
$$

for every $z \in \mathbb{D}$. Therefore, the solution of the operator-valued trigonometric moment sequence problem implies that the map

$$
\mu\left(\xi^{n}\right)= \begin{cases}A_{n}, & n>0 \\ I, & n=0 \\ A_{n}^{*}, & n<0\end{cases}
$$

extends linearly to a completely positive map from $C(\mathbb{T})$ into B. In the case of $m(z)$, we obtain a Borel probability measure ν on \mathbb{T} satisfying (22). The pair (μ, ν) is uniquely determined by the analytic maps B and b. It is now easy to construct a c-free probability space (A, Φ, φ) and a unitary random variable $u \in A$ so that the distribution of u is precisely the pair (μ, ν). Indeed, we simply let $A=C(\mathbb{T})$, whose members are viewed as the multiplication operators acting on the Hilbert space $L^{2}(\mathbb{T} ; \nu), \Phi=\mu$, and the variable u can be defined as

$$
(u f)(\xi)=\xi f(\xi), \quad \xi \in \mathbb{T}, \quad f \in L^{2}(\mathbb{T} ; \nu)
$$

In summary, we have identified the distribution of u with the pair $\left(B_{u}, b_{u}\right)$ of contractive analytic functions.

A unitary $u \in A$ is said to be c-free infinitely divisible if for every positive integer n, there exists identically distributed c-free unitaries $u_{1}, u_{2}, \cdots, u_{n}$ in A such that u and the product $u_{1} u_{2} \cdots u_{n}$ have the same distribution.

It follows from the definition of the c-freeness that if a unitary $u \in A$, with the distribution (μ, ν), is c-free infinitely divisible, then the law ν must be infinitely divisible with respective to the free multiplicative convolution \boxtimes, that is, to each $n \geq 1$ there exists a probability measure ν_{n} on \mathbb{T} such that

$$
\nu=\nu_{n} \boxtimes \nu_{n} \boxtimes \cdots \boxtimes \nu_{n} \quad(n \text { times }) .
$$

The theory of \boxtimes-infinite divisibility is well-understood, see [5], and we shall focus on the c-free infinitely divisible distribution μ, or equivalently, on the function B_{u}. From Equation (23) and Proposition 2.4, we have that the ${ }^{c} T$-transform of u satisfies

$$
{ }^{c} T_{u}\left(m_{u}(z)\right)=B_{u}(z)
$$

Therefore, Theorem 2.1 yields immediately the following characterization of c-freely infinite divisibility.
Proposition 4.1. A unitary $u \in(A, \Phi, \varphi)$ with distribution (μ, ν) is c-free infinitely divisible if and only if ν is \boxtimes-infinitely divisible and the function B_{u} is infinitely divisible in the sense that to each $n \geq 1$, there exists an analytic map $B_{n}: \mathbb{D} \rightarrow B$ such that

$$
\left\|B_{n}(z)\right\|<1 \quad \text { and } \quad B_{u}(z)=\left[B_{n}(z)\right]^{n}, \quad z \in \mathbb{D}
$$

It was proved in [5] that a \boxtimes-infinitely divisible law ν is the Haar measure $d \theta / 2 \pi$ on the circle group $\mathbb{T}=\{\exp (i \theta): \theta \in(-\pi, \pi]\}$ if and only if ν has zero first moment. We now show the c-free analogue of this result.

Proposition 4.2. Let $u \in(A, \Phi, \varphi)$ be a c-free infinitely divisible unitary with $\Phi(u)=0$. If $\varphi(u)=0$, then one has $\Phi\left(u^{n}\right)=0$ for all integers $n \neq 0$.
Proof. Denote by (μ, ν) the distribution of u. Assume first that $\varphi(u)=0$, hence the law ν equals $d \theta / 2 \pi$. The c-free infinitely divisibility of u shows that there exist c-free and identically distributed unitaries u_{1} and u_{2} in A such that $\varphi\left(u_{1}\right)=0=\varphi\left(u_{2}\right)$ and $u=u_{1} u_{2}$ in distribution. Therefore, for $n>1$, we have

$$
\begin{aligned}
\Phi\left(u^{n}\right) & =\Phi(\underbrace{\left(u_{1} u_{2}\right)\left(u_{1} u_{2}\right) \cdots\left(u_{1} u_{2}\right)}_{n \text { times }}) \\
& =\Phi\left(u_{1}\right) \Phi\left(u_{2}\right) \cdots \Phi\left(u_{1}\right) \Phi\left(u_{2}\right) \\
& =\Phi\left(u_{1} u_{2}\right) \Phi\left(u_{1} u_{2}\right) \cdots \Phi\left(u_{1} u_{2}\right)=\Phi(u)^{n}=0 .
\end{aligned}
$$

The case of $n<0$ follows from the identity $\Phi\left(u^{n}\right)=\Phi\left(u^{-n}\right)^{*}$.
An interesting case for c-freely infinite divisibility arises from the commutative situation. To illustrate, suppose $B=C(X)$, the algebra of continuous complexvalued functions defined on a Hausdorff compact set $X \subset \mathbb{C}$ equipped with the usual supremum norm. Denote by \mathcal{M} the family of all Borel finite (positive) measures on \mathbb{T}, equipped with the weak*-topology from duality with continuous functions on \mathbb{T}. Then we shall have the following
Proposition 4.3. Let ν be $a \boxtimes$-infinitely divisible law on \mathbb{T} and $\nu \neq d \theta / 2 \pi$. A unitary $u \in(A, \Phi, \varphi)$ is c-free infinitely divisible if and only if its ${ }^{c} T$-transform admits the following Lévy-Hinčín type representation:

$$
{ }^{c} T_{u}\left(\frac{z}{1-z}\right)(x)=\gamma_{x} \exp \left(\int_{\xi \in \mathbb{T}} \frac{\xi z+1}{\xi z-1} d \sigma_{x}(\xi)\right), \quad x \in X, \quad z \in \mathbb{D},
$$

where the map $x \mapsto \gamma_{x}$ is a continuous function from X to the circle \mathbb{T} and the map $x \mapsto \sigma_{x}$ is weak*-continuous from X to \mathcal{M}.

Proof. The integral representation follows directly from the characterization of cfree infinite divisibility in the scalar-valued case [23]. To conclude, we need to show the continuity of the functions σ_{x} and γ_{x}. To this purpose, observe that

$$
\left|{ }^{c} T_{u}\left(\frac{z}{1-z}\right)(x)\right|=\exp \left(-\int_{\xi \in \mathbb{T}} \frac{1-|z|^{2}}{|z-\xi|^{2}} d \sigma_{x}(1 / \xi)\right) .
$$

In particular, we have

$$
\exp \left(-\sigma_{x}(\mathbb{T})\right)=\left|{ }^{c} T_{u}(0)(x)\right|
$$

Thus, if $\left\{x_{\alpha}\right\}$ is a net converging to a point $x \in X$, then the family $\left\{\sigma_{x_{\alpha}}(\mathbb{T})\right\}$ is bounded, and for every $z \in \mathbb{D}$ we have

$$
\int_{\xi \in \mathbb{T}} \frac{1-|z|^{2}}{|z-\xi|^{2}} d \sigma_{x_{\alpha}}(1 / \xi) \rightarrow \int_{\xi \in \mathbb{T}} \frac{1-|z|^{2}}{|z-\xi|^{2}} d \sigma_{x}(1 / \xi)
$$

as $x_{\alpha} \rightarrow x$. Since bounded sets in \mathcal{M} are compact in the weak-star topology, the above convergence of Poisson integrals determines uniquely the limit σ_{x} of the net $\left\{\sigma_{x_{\alpha}}\right\}$. We deduce that the measures $\left\{\sigma_{x_{\alpha}}\right\}$ converge weakly to σ_{x}, and therefore the function σ_{x} is continuous. This and the identity

$$
{ }^{c} T_{u}(0)(x)=\gamma_{x} \exp \left(-\sigma_{x}(\mathbb{T})\right)
$$

imply further the continuity of the function γ_{x}.
We end the paper with the remark that if the algebra B is non-commutative, a B-valued contractive map $B(z)$ does not always have contractive analytic n-th roots for each $n \geq 1$, even when $B(z)$ is invertible for every $z \in \mathbb{D}$. To illustrate, consider the constant map

$$
B(z)=\left[\begin{array}{cc}
\lambda^{2} & 2 \lambda \\
0 & \lambda^{2}
\end{array}\right], \quad z \in \mathbb{D}
$$

Then $B(z)$ is an invertible contraction if the modulus $|\lambda|$ is sufficiently small, and yet its square roots

$$
\left[\begin{array}{cc}
\pm \lambda & 1 \\
0 & \pm \lambda
\end{array}\right]
$$

have the same norm $\sqrt{1+|\lambda|^{2}}$.

References

[1] M. Anshelevich, E. G. Effros, M. Popa, Zimmermann type cancellation in the free Faa di Bruno algebra. J. Funct. Anal. 237 (2006), no. 1, 76104
[2] S. Belinschi, H. Bercovici Partially defined semigroups relative to multiplicative free convolution, Int. Math. Res. Not. 2005, no. 2, 65-101
[3] S. Belinschi, H. Bercovici Hinčin's theorem for multiplicative free convolution, Canadian Math. Bulletin, 2008, Vol. 51, no. 1, 26-31
[4] H. Bercovici, V. Pata Stable laws and domains of attraction in free probability theory Ann. of Math., 1449 (1999), 1023-1060
[5] H. Bercovici and D. Voiculescu Lévy-Hinčin type theorems for multiplicative and additive free convolution, Pacific Journal of Mathematics, (1992), Vol. 153, No. 2, 217-248.
[6] H. Bercovici, J.-C. Wang Limit theorems for free multiplicative convolutions Trans. Amer. Math. Soc. 360 (2008), no. 11, 6089-6102
[7] F. Boca Free products of completely positive maps and spectral sets J. Funct. Anal. 97 (1991), no. 2, 251-263
[8] M. Bożejko and R. Speicher. ψ-independent and symmetrized white noises. Quantum Probability and Related Topics, (L. Accardi, ed.), World Scientific, Singapore, VI (1991), 219-236
[9] M. Bożejko, M. Leinert and R. Speicher. Convolution and Limit Theorems for Conditionally free Random Variables. Pac. J. Math. 175 (1996), 357-388
[10] K. Dykema. Multilinear function series and transforms in Free Probability theory. Adv. in Math. vol. 208, no. 1, pp.351-407, 2007
[11] K. Dykema. On the S-transform over a Banach algebra J Funct. Anal., vol. 231, no. 1, pp. 90-110, 2006
[12] U. Haagerup. On Voiculescu's R - and S-transforms for Free non-commuting Random Variables. Fields Institute Communications, vol. 12(1997), 127-148
[13] A. Hinčin, Zur Theorie der unbeschränkt teilbaren Verteilungsgesetze Mat. Sb. 2 (1937), 79-119
[14] G. Kreweras. Sur les partitions non-croisees dun cycle. Discrete Math. 1 (1972), pp. 333-350
[15] A.D. Krystek. Infinite divisibility for conditionally free convolution. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007), no. 4, 499-522
[16] W. Mlotkowski. Operator-valued version of conditionally free product Studia Math. 153 (2002), no. 1, 1330
[17] A. Nica, R. Speicher. Lectures on the Combinatorics of the Free Probability. London mathematical Society Lecture Note Series 335(2006), Cambridge University Press
[18] V.I. Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics, vol. 78(2002), Cambridge University Press
[19] M. Popa. Non-crossing linked partitions and multiplication of free random variables. Operator theory live, 135-143, Theta Ser. Adv. Math., 12, Theta, Bucharest, 2010
[20] M. Popa. Multilinear function series in conditionally free probability with amalgamation. Comm. on Stochastic Anal., Vol 2, No 2 (Aug 2008)
[21] M. Popa. A new proof for the multiplicative property of the boolean cumulants with applications to operator-valued case Colloq. Math. 117 (2009), no. 1, 81-93
[22] M. Popa. A Fock space model for addition and multiplication of c-free random variables Proc. Amer. Math. Soc. 142 (2014), 2001-2012
[23] M. Popa, J.-C. Wang. On multiplicative conditionally free convolution. Trans. Amer. Math. Soc. 363 (2011), no. 12, 6309-6335
[24] R. Speicher. Combinatorial Theory of the Free Product with amalgamation and OperatorValued Free Probability Theory. Mem. AMS, Vol 132, No 627 (1998)
[25] D.V. Voiculescu, K. Dykema, A. Nica. Free random variables. CRM Monograph Series, 1. AMS, Providence, RI, 1992.

Department of Mathematics, University of Texas at San Antonio, One UTSA Circle San Antonio, Texas 78249, USA

E-mail address: mihai.popa@utsa.edu
Department of Mathematics, Ben-Gurion University of the Negev, Be'er Sheva 8410501, ISRAEL

E-mail address: vinnikov@cs.bgu.ac.il
Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E6, Canada

E-mail address: jcwang@math.usask.ca

[^0]: This work was partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0119.

