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Abstract. The p[aper presents some basic results in the study of Hardy H2

spaces of locally bounded non-commutative functions on certain non-commutative

unit balls. We consider the cases of uniform, and row/column operator spaces
norm on a finite dimesional vector space.

1. Introduction

1.1. Haar Unitaries and Free Independence. Let N be a positive integer and
U(N) be the compact group of the N ×N unitary matrices with complex entries.
The Haar measure on U(N) will be denoted with dUN .

For each i, j ∈ {1, 2, . . . , N} we define the maps ui,j : U(N) −→ C giving the
i, j-th entry of each element from U(N). As shown in [1], the maps ui,j are in
L∞(U(N), dUN ). Let Sn be the symmetric group of order n; for σ ∈ Sn denote by
#(σ) the number of cycles in a minimal decomposition of the permutation σ. The
following result is shown in [2], Corollary 2.4:

Theorem 1.1. There exists a map Wg : Z+ × Sn −→ R such that:

(1) For all σ ∈ Sn, the limit lim
N→∞

Wg(N, σ)

N2n−#(σ)
exists and is finite.

(2) For any multiindices i = (i1, i2, . . . , in), i′ = (i′1, i
′
2, . . . , i

′
n), respectively j =

(j1, j2, . . . , jn), j′ = (j′1, j
′
2, . . . , j

′
n) with elements from the set {1, 2, . . . , N}

we have that∫
U(N)

ui1,j1 · · ·uin,jnui′1,j′1 · · ·ui′n,j′ndUN =
∑

σ,τ∈Sn

δi,i′ · δj,j′ ·Wg(N, τσ−1).

If m 6= n , then ∫
U(N)

ui1,j1 · · ·uin,jnui′1,j′1 · · ·ui′m,j′mdUN = 0.

An immediate consequence of the result above is the following:

Remark 1.2. Let U : U(N) −→ CN×N , U = [ui,j ]
N
i,j=1. Then, for all non-zero

integers α, ∫
U(N)

Tr(Uα)dUN = 0.

Proof. Suppose that α > 0. Then∫
U(N)

Tr(Uα)dUN =
∑

1≤i1,...,iα≤N

∫
U(N)

ui1,i2 · · ·uiα−1,iαuiα,i1dUN .
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From the last part of Theorem 1.1, all the terms in the above summation are zero,
hence the conclusion. Since U−1 = U∗, the case α < 0 is similar. �

Suppose that A is a unital algebra and φ : A −→ C is a conditional expectation.
A family {Aj}j∈J of unital subalgebras of A are said to be free independent if
any alternating product of centered (with respect to φ) of elements from {Aj}j∈J
is centered, i.e. for any n > 0, any ε(k) ∈ J (1 ≤ k ≤ n) such that ε(k) 6= ε(k + 1)
and any ak ∈ Aε(k) we have that φ(a1a2 · · · an) = 0.

As shown in the extensive literature on the subject (see [13], [10]), free indepen-
dence is the natural relation of independence in a non-commutative framework and
it is the asymptotical relation satisfied by various classes of random matrices.

Let A = {Aj,N}j∈J,N≥1 be an ensemble of matrices such that Aj,N ∈ CN×N for
all j ∈ J . The ensemble A is said to have limit distribution if for any m ∈ Z+ and
j1, . . . , jm ∈ J the limit

lim
N→∞

1

N
Tr(Aj1,N · · ·Ajm,N )

exists and it is finite, where Tr denotes the non-normalized trace.
The following result is proved in [14] and, in a more general framework, in [2],

[11]:

Theorem 1.3. Let m be a positive integer; for 1 ≤ k ≤ m and 1 ≤ i, j ≤ N

consider the random variables u
(k)
i,j : U(N) −→ C such that u

(k)
i,j ≡ ui,j and the

families {u(k)
i,j }Ni,j=1 are independent. Finally, for each k and N, consider the matrix

Uk,N ∈ L∞(U(N), dUN )N×N , having the entries u
(k)
i,j .

Suppose that A = {Aj,N}j∈J,N≥1 is an ensemble of complex matrices that has
limit distribution. Then the ensembles of random matrices {U1,N , U

∗
1,N}, {U2,N , U

∗
2,N},

. . . , {Um,N , U∗m,N} and A are asymptotically free with respect to the functional∫
U(N)

1
NTr(·)dUN .

Throughout the paper, Fm will denote the free semigroup with m generators
g1, . . . , gm. The elements of Fm are arbitrary reduced words w = gilgil−1

· · · gi1 ,
the semigroup operation is concatenation, the neutral element is the empty word
∅ and |w| = l will denote the length of the reduced word w. We will also use the

notation F [l]
m for the set of all reduced words from Fm of length l.

In the next section we will utilize the following consequences of the Theorems
1.1 and 1.3 from above:

Corollary 1.4. With the notations of Theorem 1.3, let v, w ∈ Fm , and, if w =
gwtgwt−1 . . . gw1 denote UwN = Uwt,NUwt−1,N · · ·Uw1,N . Then:

(i) if |v| 6= |w|, we have that, for any positive integer N ,∫
U(N)

Tr ((UwN )∗UvN ) dUN = 0

(ii) lim
N→∞

∫
U(N)

1

N
Tr ((UwN )∗UvN ) dUN = δw,v.

Proof. For (i), let

L = {l = (l−|v|, l−|v|+1, . . . , l0, l1, . . . , l|w|) ∈ {1, . . . , N}|v|+|w|+1 : l−|v| = l|w|}
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and Vk = {j ∈ {1, . . . , |v|} : vj = k}, respectively Wk = {j ∈ {1, . . . , |w|} : wj = k}.
Then, from the independence of the families {u(k)

i,j }Ni,j=1,∫
U(N)

Tr ((UwN )∗UvN )dUN =
∑
l∈L

∫
U(N)

|w|∏
k=1

u
(wk)
lk−1,lk

·
|v|∏
k=1

u
(vk)
l−k+1,l−k

dUN

=
∑
l∈L

p∏
r=1

(

∫
U(N)

∏
k∈Wr

u
(wk)
lk−1,lk

·
∏
k∈Vr

u
(vk)
l−k+1,l−k

dUN .

From Theorem 1.1, if card(Wr) 6= card(Vr), then the corespondent factor in the
above product cancels, hence the conclusion.

For (ii), note first if w = v, then (UwN )
∗
UvN = IdN , and the assertion is trivial.

If w 6= v, it suffices to prove the the equality for |w| = |v| (according to part (i) )
and vs 6= ws (since U∗k,NUk,N = IdN ).

From Remark 1.2,

∫
U(N)

1

N
Tr (Uk,N )dUN = 0, for all N > 1 and all 1 ≤ k ≤ m.

The conclusion follows now from Theorem 1.3 and the definition of free indepen-
dence. �

Corollary 1.5. Fix m a positive integer and suppose that U = [ui,j ]
mN
i,j=1, with

the functions ui,j : U(mN) −→ C as defined above. For 1 ≤ k ≤ m , consider
Uk ∈ L∞(U(mN), dUmN )N×N given by Uk = [u(k−1)N+i,j ]

N
i,j=1. (I. e., U1, . . . , Um

are the N ×N matricial block entries of the first N ×mN matricial row of U).
Let v, w ∈ Fm , and, if w = gwtgwt−1 . . . , gw1 denote Uw = UwtUwt−1 · · ·Uw1 .

Then:

(i) If |v| 6= |w|,
∫
U(mN)

Tr ((Uw)∗Uv) dUmN = 0.

(ii) If |v| = |w|, lim
N→∞

∫
U(mN)

1

N
Tr ((Uw)∗Uv) dUmN = δw,v

1

m|v|
.

Proof. Part (i) is an immediate consequence of the last equality of Theorem 1.1,
since the entries of U1, . . . , Um are also entries of U .

For part (ii), let ei,j be the m×m matrix with the i, j-entry 1 and all others 0,
let IdN be the identity N ×N matrix and Ei,j = IdN ⊗ ei,j ∈ CmN×mN . Then for

all 1 ≤ k ≤ m, we have that Ũk = Uk ⊗ e1,1 = E1,1UEk,1, hence

Tr ((Uw)∗Uv) = Tr
(
Ũ∗w1

. . . Ũ∗wsŨvs . . . Ũv1

)
(1)

=Tr (E1,w1
U∗E1,w2

U∗ · · ·E1,wtU
∗E1,1UEvs,1U · · ·Ev2,1UEv1,1)

To simplify the notations, we shall use the writting

(2) E0
i,j = Ei,j − δi,j

1

m
IdmN .

Note that Tr(E0
i,j = 0); moreover, for all non-zero integers α0, . . . , αn and all indices

i, j, k, l, kr, lr ∈ {1, . . . ,m} we have that

(3) lim
N→∞

1

mN

∫
U(mN)

Tr
(
Ei,jU

α0E0
k1,l1U

α
1 E

0
k2,l2 · · ·E

0
kn,lnU

αnEk,l
)
dUmN = 0.

To see that, we remark that using (2) for Ei,j and Ek,l, the integrand can be written
as a linear combination of alternating products of centered (according to Remark
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1.2) elements from the algebra generated by U and U−1 = U∗, respectively from
the algebra generated by {E1,k}mk=1. According to Theorem 1.3, the two algebras
are asymptotically free, hence (2) is proved.

An immediate consequence of (3) is that

(4) lim
N→∞

1

mN

∫
U(mN)

Tr
(
E1,w1

U∗ · · ·E1,wtU
∗E0

1,1UEvs,1U · · ·Ev1,1

)
dUmN = 0,

because, using (2) for E1,w2
, . . . , E1,wt and Ev2,1, . . . , Evs,1, the integrand from (4)

is a finite linear combination of integrands from (3).
From part (i), it suffices to prove part (ii) of the Corollary only for t = s. For

this we will use induction on s. If s = 1,

E1,w1
U∗E1,1UEv,1 = E1,w1

U∗E0
1,1UEv,1 +

1

m
E1,w1

· Ev,1

=E1,w1
U∗E0

1,1UEv,1 +
1

m
δv1,w1

E1,1

and the conclusion follows from (4) and Tr(E1,1) = N .
For the inductive step, using (2) for E1,1 in (1), we obtain

(Uw)∗Uv =E1,w1
U∗E1,w2

U∗ · · ·E1,wsU
∗E0

1,1UEvs,1U · · ·Ev2,1UEv1,1

+
1

m
E1,w1

U∗E1,w2
U∗ · · ·U∗(E1,ws · Evs,1)U · · ·Ev2,1UEv1,1

The first term of the above is similar to the integrand in (4). For the second term,
note that

E1,ws · Evs,1 = δws,vsE1,1

and the conclusion follows from the induction hypothesis. �

1.2. Non-Commutative Functions and Taylor-Taylor Expansion. The fol-
lowing definition for non-commutative functions is similar to [5], [6] and [9].

For V a (complex) linear space, we will denote by Vnc the linear space
∐∞
n=1 Vn×n.

A subset Ω of Vnc is said to be a non-commutative set if for all m,n and all
X ∈ Ω∩Vm×m and Y ∈ Ωn×n we have that X ⊕ Y ∈ Ω, where X ⊕ Y is the block
diagonal matrix from V(m+n)×(m+n) with X and Y the block entries of the main
diagonal and all other entries zero.

If V andW are two linear spaces and Ω a non-commutative set of Vnc, a mapping
f : Ω −→ Wnc is said to a non-commutative function if it satisfy the following
conditions:

• f(Ω ∪ Vn×n) ⊂ Wn×n for all positive integers n;
• f(X ⊕ Y ) = f(X)⊕ f(Y ) for all X,Y ∈ Ω;
• if X ∈ Ω ∪ Vn×n and T ∈ Cn×n such that TXT−1 ∈ Ω, then

f(TXT−1) = Tf(X)T−1.

Non-commutative functions have strong regularity properties - for an introduc-
tion to the basic theory see see [5] and [6]. Below we will mention only a particular
form of the Taylor-Taylor Expansion property, as shown in Section 7 of [5], that
will be extensively utilized in Section 3 of the present work.

Let V be a finite dimensional vector space with basis e1, . . . , ed. For X ∈ VN×N ,
there exist some unique X1, . . . , Xd ∈ CN×N such that X = X1e1 + . . .+Xded. If
w = gi1 · · · git ∈ Fd, we write Xw = Xgi1 · · ·Xgit .
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Suppose that Ω ⊆ Vnc is a non-commutative set such that for all N , the set
ΩN = Ω ∩ VN×N is open. Let b ∈ Ω1, let W be a Banach space and suppose that
f : Ω −→ Wnc is a non-commutative function locally bounded on slices separately
in every matrix dimension around b, that is for all positive integers N , and all
Y ∈ VN×N there exists ε > 0 such that the function t 7→ f(X + tY ) is bounded for
|t| < ε.

For n a positive integer also define the set

Υ(b, n) = {X ∈ ΩN : bIn + t(X − bIn) ∈ Ωn for all t ∈ C such that |t| ≤ 1}.

With the notations from above, Theorem 7.2 from [5] gives that for all positive
integers n and all X ∈ Υ(b, n)

(5) f(X) =

∞∑
l=0

[
∑
|w|=l

(X − bIn)w ⊗ fw]

series converges absolutely and uniformely (in fact, normally) on compacta of
Υ(b, n).

1.3. Operator space structures on Cm. An operator space structure on a linear
space V is given (see [3], Proposition 2.3.6) by a family of norms {‖ · ‖n}n>0, such
that each ‖·‖n is a norm on Vn×n and, for all X ∈ Vn×n, Y ∈ Vm×m, T, S ∈ Cn×n,
we have that

• ‖X ⊕ Y ‖n+m = max{‖X‖n, ‖Y ‖m}
• ‖TXS‖ ≤ ‖T‖‖X‖n‖S‖, where ‖ · ‖ denotes the usual operator norm of

complex matrices.

We will consider the operator spaces structures on Cm given by the ‖·‖∞, ‖·‖col,
and ‖ · ‖row, where, for X = (X1, . . . , Xm) ∈ (Cn×n)m ' (Cm)n×n and ‖ · ‖ the
usual operator norm in Cn×n

‖X‖∞ = max{‖X1‖, . . . , ‖Xm‖}

‖X‖col = ‖
m∑
i=1

X∗i Xi‖
1
2

‖X‖row = ‖
m∑
i=1

XiX
∗
i ‖

1
2 .

For the norm ‖·‖∞, the non-commutative unit ball is the non-commutative polydisc

(Dm)nc =

∞∐
n=1

{(X1, . . . , Xm) ∈ (Cn×n)m : ‖Xj‖ < 1, j = 1, . . . ,m}.

For the norms ‖·‖col, respectively ‖·‖row, the non-commutative unit balls are given
by

(Bm)nc =

∞∐
n=1

{(X1, . . . , Xm) ∈ (Cn×n)m :

m∑
i=1

X∗i Xi < In},

respectively by

(Bmrow)nc =

∞∐
n=1

{(X1, . . . , Xm) ∈ (Cn×n)m :

m∑
i=1

XiX
∗
i < In}.
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Identifying the components from (Cn×n)m of (Dm)nc, (Bm)nc, respectively (Bmrow)nc

with the correspondent sets from Cmn2

, the Shilov boundaries for the commutative
algebras of complex analytic functions in mn2 variables, as shown in [12], Example
1.5.51, are U(n)m, respectively the set of all isometries and coisometries of Cn×mn,
respectively Cmn×n. Since Cn×mn does not have any coisometries, it follows that
for the case of (Bm)nc the Shilov boundary from above is

∂(Bm, n) = {(X1, . . . , Xm) ∈ (Cn×n)m :

m∑
i=1

X∗i Xi = In}.

Also, since Cmn×n does not have any isometries, the correspodent Shilov boundary
for (Bmrow)nc ∩ (Cn×n) is

∂(Bmrow, n) = {(X1, . . . , Xm) ∈ (Cn×n)m :

m∑
i=1

XiX
∗
i = In}.

To simplify the writing in the next section, we will denote denote U(n)m by
∂(Dm, n). The natural measure on ∂(Dm, n) is the m-fold product measure µn of
the Haar measure on U(n). Corollary 1.4 gives then, that for any v, w ∈ Fm, we
have: ∫

∂(Dm,n)

Tr
(
(Xw)

∗
Xv
)
dµn = 0 if |v| 6= |w|(6)

lim
n→∞

∫
∂(Dm,n)

1

n
Tr
(
(Xw)

∗
Xv
)
dµn = δv,w.(7)

For the case of (Bm)nc, note that

∂(Bm, n) = {(X1, . . . , Xm) ∈ (Cn×n)m : there exists some U ∈ U(mn)

such that (In, 0, . . . , 0) · U = (X1, . . . , Xm)}.

Note that the group U(mn) acts transitively on ∂(Bm, n) by right multiplication.
Also, denoting

H(m,n) = {In ⊕ U : U ∈ U((m− 1)n)}
we have that H(m,n) is a compact subgroup of U(mn) which is also the stabilizer of
(In, 0, . . . , 0) ∈ ∂(Bm, n). Hence ∂(Bm, n) is isomorphic to U(mn)/H(m,n) and (see
[4], Theorem 2.49) there exists a unique Radon measure νn of mass 1 on ∂(Bm, n)
invariant at the action of U(mn) and, for any continuous function f : U(mn) −→ C
we have that

(8)

∫
U(mn)

f(U)dUmn(U) =

∫
∂(Bm,n)

∫
H(m,n)

f(UV )dU(m−1)n(V )dνn(UH(m,n)).

For 1 ≤ i ≤ n and 1 ≤ j ≤ mn and ui,j : U(mn)→ C as defined in Section 1.1,
a simple verification gives that, for all U ∈ U(mn) and V ∈ H(m,n)

(9) ui,j(U) = ui,j(U · V ).

Fix now f ∈ Alg{ui,j , ui,j : 1 ≤ i ≤ n, 1 ≤ j ≤ mn}. For all U ∈ U(mn), equation
(9) implies

(10)

∫
H(m,n)

f(UV )dU(m−1)n(V ) =

∫
H(m,n)

f(U)dU(m−1)n(V ) = f(U).
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Define f̂ on ∂(Bm, n) via f̂(UH(m,n)) = f(U). From (9), f̂ is well-defined. More-
over, equation (10) gives

(11)

∫
∂(Bm,n)

f̂(UH(m,n))dνn(UH(m,n)) =

∫
U(mn)

f(U)dUmn(U).

Hence, Corollary 1.5 implies that, for all v, w ∈ Fm, we have:∫
∂(Bm,n)

Tr
(
(Xw)

∗
Xv
)
dνn(X) = 0 if |v| 6= |w|(12)

lim
n→∞

∫
∂(Bm,n)

1

n
Tr
(
(Xw)

∗
Xv
)
dνn(X) = δv,w

1

m|v|
.(13)

Denoting by AT the transpose of the matrix A, we have that

∂(Bmrow, n) = {(X1, . . . , Xm) ∈ (Cn×n)m : there exists some U ∈ U(mn)

such that U · (In, 0, . . . , 0)T = (X1, . . . , Xm)T }.

In this case the transitive action of U(mn) on ∂(Bmrow, n) is by left multiplication
and H(m,n) is the stabilizer of (In, 0, . . . , 0)T . A similar argument as above gives
that there exists ν′n, a unique Radon measure of mass 1 on ∂(Bmrow, n), invariant at
the action of U(mn), and the pair (∂(Bmrow, n), ν′n) also satisfies equalities (12) and
(13).

2. Main results

The present section will address properties of certain H2 Hardy spaces associated
to the non-commutative unit balls for the operator norms ‖ · ‖∞ and ‖ · ‖col on Cm.
Since both (∂(Bm, n), µn) and (∂(Bmrow, n), ν′n) satisfy (12) and (13), similar results
to the case of ‖ · ‖col can be stated for the setting of ‖ · ‖row.

For Ω either Bm or Dm, consider the algebras

AΩ ={f : Ωnc −→ Cnc : f = non-commutative function, locally bounded

on slices separately in every matrix dimension}.

Equation (5) gives that for all f ∈ AΩ there exists a family of complex numbers
{fw}w∈Fm with f∅ = f(0), such that, for all X ∈ Ω

(14) f(X) =

∞∑
l=0

(
∑
w∈F [l]

m

Xwfw).

Theorem 2.1. (i) If f ∈ ADm and r ∈ (0, 1), then:

fw = lim
N−→∞

1

r|w|

∫
∂(Dm,N)

1

N
Tr ((Xw)∗f(rX)) dµN

= lim
r−→1−

lim
N−→∞

∫
∂(Dm,N)

1

N
Tr ((Xw)∗f(rX)) dµN .

(ii) If f ∈ ABm and r ∈ (0, 1), then

fw = lim
N−→∞

1

r|w|
·m|w|

∫
∂(Bm,N)

1

N
Tr ((Xw)∗f(rX)) dµN

= lim
r−→1−

lim
N−→∞

m|w|
∫
∂(Bm,N)

1

N
Tr ((Xw)∗f(rX)) dµN .
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Proof. For any positive integer N , relations (6) and (14) give∫
∂(Dm,N)

Tr ((Xw)∗f(rX)) dµN =

∞∑
l=0

[
∑
v∈F [l]

m

∫
∂(Dm,N)

Tr ((Xw)∗Xv) · r|v|fvdµN ]

=
∑

v,w∈Fm
|v|=|w|

r|v|fv ·
∫
∂(Dm,N)

Tr ((Xw)∗Xv) dµN ,

and the equalities from (i) follow from equation (7).
The argument for (ii) is similar, using equations (13), (14) and (12). �

Definition 2.2. For (Ω, dωN ) either (Bm, dνN ) or (Dm, dµN ), we define

H2(Ωnc) = {f ∈ AΩ : S(f) = sup
N

sup
r<1

∫
∂(Ω,N)

1

N
Tr (f(rX)∗f(rX)) dωN <∞}.

�

For f ∈ AΩ as above and X ∈ (Cm)nc, denote f [l](X) =
∑
w∈F [l]

m

fwXw. Remark

that:

(i) f [l](rX) = rl · f [l](X)

(ii) for X ∈ Ω, as disscussed is Section 1.2, we have that f(X) =

∞∑
l=0

f [l](X)

and the sum is absolutely convergent

(iii) if l 6= p, then

∫
∂(Ω,N)

Tr
(

(f [l](X))∗f [p](X)
)
dωN = 0.

Therefore, if f ∈ H2(Ωnc), with notations

SN,r(f) =

∫
∂(Ω,N)

1

N
Tr (f(rX)∗f(rX)) dωN

SN (f) = lim
r→1−

SN,r(f)

we have that SN,r(f) =

∞∑
l=0

SN,r(f
[l]) =

∞∑
l=0

r2lSN (f [l]), and both sums are abso-

lutely convergent; in fact SN (f [l]) ≥ 0 for all l.

Theorem 2.3. (i) If f ∈ H2((Dm)nc), then

∞∑
l=0

(
∑
w∈F [l]

m

|fw|2) <∞.

(ii) If f ∈ H2((Bm)nc), then

∞∑
l=0

(
1

ml

∑
w∈F [l]

m

|fw|2) <∞.

Proof. For (i), note first that if r ∈ (0, 1), f ∈ H2((Dm)nc) and X ∈ ∂(Dm, N),

then f(rX) =

∞∑
l=0

rlf [l](X) and the series is absolutely convergent.
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Therefore equation (6) implies that∫
∂(Dm,N)

1

N
Tr(f(rX)∗f(rX))dµN =

∞∑
l=0

r2l

∫
∂(Dm,N)

1

N
Tr(f [l](X)∗f [l](X))dµN

=

∞∑
l=0

r2l[al + bl,N ]

where al =
∑
|w|=l

|fw|2 and

bl,N =
∑

|v|=|w|=l
v 6=w

fwfv ·
∫
∂(Dm,N)

1

N
Tr((Xw)∗Xv)dµN .

f [l](X)∗f [l](X) is positive in C∗-algebra in CN×N , henceforth al + bl,N ≥ 0.
Relation (7) implies that lim

N→∞
bl,N = 0 for all l, hence, since f ∈ H2(Dnc), we have

that

sup
N

sup
r<1

∞∑
l=0

r2l · (al + bl,N ) <∞.

It follows that sup
r<1

∞∑
l=0

r2lal <∞, and, since al ≥ 0, we have that

∞∑
l=0

al <∞.

The argument for part (ii) is analogous, utilizing equations (12) and (13). �

Theorem 2.4.
(i) With the notations from Definition 2.2, H2(Ωnc) are inner-product spaces, with
the inner product given by

〈f, g〉 = lim
N−→∞

lim
r−→1−

∫
∂(Ω,N)

1

N
Tr (g(rX)∗f(rX)) dωN .

(ii) {Xw}w∈Fm is a complete orthonormal system in H2((Dm)nc) and, for all

f ∈ ADm , we have that fw = 〈f,Xw〉 and f =
∑
w∈Fm

fwX
w in H2((Dm)nc).

(iii) {m
|w|
2 Xw}w∈Fm is a complete orthonormal system in H2((Bm)nc) and, for

all f ∈ ABm , we have that fw = 〈f,m|w|Xw〉 and f =
∑
w∈Fm

fwX
w in H2((Bm)nc).

Proof. From equations (6) and (12),∫
∂(Ω,N)

1

N
Tr (g(rX)∗f(rX)) dωN =

∞∑
l=0

r2l

∫
∂(Ω,N)

1

N
Tr
(
g[l](X)∗f [l](X)

)
dωN .

For A,B ∈ CN×N , |Tr(A∗B)| ≤ 1
2 [Tr(A∗A) + Tr(B∗B)], hence

|
∫
∂(Ω,N)

1

N
Tr
(
g[l](X)∗f [l](X)

)
dωN | ≤

1

2
[SN (f [l] + g[l])].

From f, g ∈ H2(Ωnc), the series
∑∞
l=0 SN (f [l] +g[l]) is convergent (in fact absolutely

convergent, since all terms are positive), hence the limit after r → 1− from part (i)
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does exist and equals

∞∑
l=0

∫
∂(Ω,N)

1

N
Tr
(
g[l](X)∗f [l](X)

)
dωN .

From equations (7) and (13),

lim
N→∞

∫
∂(Ω,N)

1

N
Tr
(
g[l](X)∗f [l](X)

)
dωN =


∑
w∈F [l]

m

gwfw if f, g ∈ H2((Dm)nc)

∑
w∈F [l]

m

1

ml
gwfw if f, g ∈ H2((Bm)nc)

and the last sums are absolutely convergent from Theorem 2.3. Therefore

(15) 〈f, g〉 =


∑
w∈Fm

gwfw if f, g ∈ H2((Dm)nc)∑
w∈Fm

1

ml
gwfw if f, g ∈ H2((Bm)nc)

particularly if 〈f, f〉 = 0, then fw = 0 for all w ∈ Fm, hence f = 0.
The parts (ii) and (iii) are immediate consequences of (15) and equations (7)

and (13). �

Remark 2.5. The limit over N in Theorem 2.4(i) is not the supremum. For
example, if m = 2 and f(X) = X1X2 +X2X1, then∫

∂(Dm,N)

1

N
Tr (f(rX)∗f(rX)) dµN = 2r2(1 +

1

N2
)

Definition 2.6. As before, Ω will denote either Dm or Bm.
For X ∈ Ωnc, define the map EXΩ : H2(Ωnc) −→ CN×N via EXΩ (f) = f(X).

Let BΩ,N = {X ∈ Ωnc ∩ CN×N : EXΩ is a bounded map} and BΩ =

∞∐
N=1

BΩ,N .

For p > 0, we define the Hilbert space

l2p(Fm) = {{fw}w∈Fm : fw ∈ C, ‖{fw}w∈Fm‖2,p =

∞∑
l=0

(
∑
w∈F [l]

m

1

pl
fwfw) <∞}.

Proposition 2.7. With the above notations, we have that

(i) BDm = {X ∈ (Dm)nc : the series

∞∑
l=0

(
∑
w∈F [l]

m

fwX
w) converges for any

sequence {fw}w∈Fm ∈ l2(Fm)}

(ii) BBm = {X ∈ (Bm)nc : the series

∞∑
l=0

(
∑
w∈F [l]

m

fwX
w) converges for

any sequence {fw}w∈Fm ∈ l2m(Fm)}
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Proof. Suppose that X ∈ Dm ∩CN×N is such that

∞∑
l=0

(
∑
w∈F [l]

m

fwX
w) converges for

all {fw} ∈ l2(Fm) and consider the linear map ẼXDm : l2(Fm) −→ CN×N , given by

ẼXDm({fw}w∈Fm) =

∞∑
l=0

(
∑
w∈F [l]

m

fwX
w).

For every l, define also

EX,lDm ({fw}) =

l∑
s=0

(
∑
w∈F [l]

m

fwX
w).

From the initial assertion, ẼXDm is the pointwise limit of {EX,lDm}l>0. Each EX,lDm is
a bounded linear operator from l2(Fm) to CN×N , so Banach-Steinhaus Theorem

gives that ẼXDm is bounded.
Take now f ∈ H2((Dm)nc). From Theorem 2.3, the sequence {fw}w∈Fm of its

Taylor-Taylor coefficients is in l2(Fm) and its norm, according to relation (15),
coincides to the norm of f in H2((Dm)nc), hence the operator EXDm is bounded and

‖EXDm‖ ≤ ‖ẼXDm‖.
For the converse, fix {fw}w ∈ l2(Fm) and, for all l > 0 consider the functions

αl : ((Dm)nc)N −→ CN×N given by αl(X) =
∑
|w|≤l

fwX
w. The sums are finite,

therefore αl ∈ H2((Dm)nc), hence, if X ∈ Dm ∩ CN×N , then

‖αl+s(X)− αl(X)‖ ≤ ‖EXDm‖ · ‖αl+s − αl‖H2((Dm)nc)

≤ ‖EXDm‖ · (
∑

l<|w|≤l+s

|fw|2).

Since the sequence {
∑
|w|≤l |fw|2}l≥0 is Cauchy, it follows that {αl}l is also a

Cauchy sequence, therefore the series

∞∑
l=0

(
∑
w∈F [l]

m

fwX
w) converges.

The argument for part (ii) is similar, replacing l2(Fm) to l2m(Fm) and using
second parts of Theorem 2.3 and of relation (15).

�

Theorem 2.8. For p > 0 , define

Υm
p = {X ∈ (Cm)nc :

∑
w∈Fm

p|w|(Xw)∗Xwconverges}.

Then BDm = (Dm)nc ∩Υm
1 and BBm = (Bm)nc ∩Υm

m.
Moreover, if X ∈ Υm

p ∩ CN×N , then {Xw}w∈Fm ∈ l21
p

(Fm)⊗ CN×N .

Proof. Suppose that X ∈ BDm,N . Since, according to Proposition 2.7(i), the series
∞∑
l=0

(
∑
w∈F [l]

m

fwX
w) converges for any {fw}w∈Fm from l2(Fm), it follows that the
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series

∞∑
l=0

(
∑
w∈F [l]

m

fwe
∗Xwẽ) also converges for any e, ẽ ∈ CN . The Riesz Repre-

sentation Theorem gives that {e∗Xwẽ}w∈Fm ∈ l2(Fm), therefore also the series
∞∑
l=0

∑
w∈F [l]

m

e∗(Xw)∗ẽXw converges for all e, ẽ ∈ CN .

Taking e, ẽ from the cannonical basis of CN , we get that
∑
w∈Fm(Xw)∗Xw con-

verges on each entry, therefore in CN×N .
The argument for (Bm)nc is similar.

Suppose now than X ∈ Υm
p ∩ CN×N . Then

∑
w∈Fm

p|w|(Xw)∗Xw also converges

entrywise, and, since the (j, j)-entry of the series equals∑
w∈Fm

p|w|(

N∑
l=1

x
(w)
l,j x

(w)
l,j ) =

N∑
l=1

(
∑
w∈Fm

p|w|x
(w)
l,j x

(w)
l,j )

where x
(w)
l,j is the (l, j)-entry of Xw, it follows that {x(w)

l,j }w∈Fm ∈ l21
p

(Fm) for all

l, j. In particular {Xw}w∈Fm ∈ l21
p

(Fm)⊗ CN×N .

�

Remark 2.9. (i) Υm
1 6⊂ (Dm)nc and Υm

m 6⊂ (Bm)nc.
(ii) If X = (X1, X2, . . . , Xm) ∈ (CN×N )m is such that

X∗X1 +X∗2X2 + · · ·+X∗mXm <
1

p

then X ∈ Υm
p . In particular, 1√

m
(Dm)nc ⊂ BDm and 1√

m
(Bm)nc ⊂ BBm .

Proof. For part (i), it suffices to take X = (X1, 0, . . . , 0) with X1 nilpotent with
norm larger than 1. Then X ∈ Υm

p for any p > 0, but X 6∈ (Bm)nc, (Dm)nc.

For part (ii), suppose that X∗X1 +X∗2X2 + · · ·+X∗mXm < θ
p for some 0 < θ < 1.

Denote by X [l] = pl
∑
w∈F [l]

m

(Xw)∗Xw. Then

0 ≤ X [l+1] =
∑
w∈F [l]

m

pl(Xw)∗

(
p

m∑
k=1

X∗kXk

)
Xw < θX [l]

hence
∑
w∈Fm

(Xw)∗Xw <
1

1− θ
.

�

Definition 2.10. For p > 0, we will consider the sets

Kp = {(X,Y ) ∈ (Cm)nc × (Cm)nc :

∞∑
l=0

[
∑
w∈F [l]

m

plXw ⊗ (Y w)∗] converges}

and the maps Kp : Kp −→ Cnc, given by

Kp(X,Y ) =

∞∑
l=0

[
∑
w∈F [l]

m

plXw ⊗ (Y w)∗].
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Theorem 2.8 implies the following result:

Remark 2.11. (Υm
p ×Υm

p ) ⊂ Kp. �

Also, note that from the second part of Theorem 2.8, any sequence f = {fw}w∈Fm
from l2p(Fm) can be identified with a nc-function on Υm

p via

f(X) =

∞∑
l=o

(
∑
w∈F [l]

m

fwX
w).

Next, we will consider the following spaces of nc-functions:

Definition 2.12. For p > 0 define H2
m,p as follows:

H2
m,p = {f : Υm

p −→ Cnc : f is nc-function such that there exists some sequence

{fw}w∈Fm ∈ l2p(Fm) such that f(X) =

∞∑
l=o

∑
w∈F [l]

m

fwX
w}.

Note that H2
p are Hilbert spaces with the inner-products inherited from l2p(Fm).

Proposition 2.13 below shows that in fact they are reproducing kernel Hilbert spaces
with respect to Kp.

Proposition 2.13. Fix Y ∈ Υm
p ∩CM×M . With the notations above, we have that:

(i) The map Kp(·, Y ) : Υm
p −→ (CM×M )nc is a non-commutative function that

belongs to H2
p,m ⊗ CM×M .

(ii) for any e1, e2 ∈ CM and any f ∈ H2
p,m ,

〈f, e∗1Kp(·, Y )e2〉l2p(Fm) = e∗2f(Y )e1.

Proof. For part (i), first note that for any w ∈ Fm, the map X 7→ p|w|Xw ⊗ (Y w)∗

is a noncommutative function from Cnc to (CM×M )nc, hence it suffices to prove the

convergence in H2
p,m.

Let y
(w)
i,j be the (i, j)-entry of Y w.

From Theorem 2.8, the sequences {y(w)
i,j }w∈Fm are in l2p(Fm) for all i, j, hence

the map X 7→
∑
w∈Fm y

(w)
i,j X

w is a Cnc -valued non-commutative function from

H2
p,m.

For part (ii), let {fw}w∈Fm ∈ l2(Fm) such that f(X) =
∑
w∈Fm

fwX
w. Then

〈f, e∗1Kp(·, Y )e2〉l2p(Fm) = 〈{fw}w∈Fm , {e∗1(Y w)∗e2}w∈Fm〉l2p(Fm)

=
∑
w∈Fm

e∗2fwY
we1 = e∗2f(Y )e1.

�

Proposition 2.14. Suppose that f is a non-commutative function locally bounded
on slices separately in every matrix dimension around 0 and

Φ(r) = lim
N−→∞

∫
∂(Dm,N)

1

N
Tr(f(rX)∗f(rX))dµN ,

Ψ(r) = lim
N−→∞

∫
∂(Bm,N)

1

N
Tr(f(rX)∗f(rX))dνN .
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Then f extends to a function in H2
1,m, respectively in H2

m,m, if and only if Φ(r),

respectively Ψ(r), exists for all small r (in which case Φ, respectively Ψ, are also
analytic at 0) and it extends analytically to (0, 1) and continously to [0, 1] .

Moreover, lim
r−→1−

Φ(r) = ‖f‖
H2

1,m
, respectively lim

r−→1−
Ψ(r) = ‖f‖H2

m,m
.

Proof. Suppose first that f extends to f̃ ∈ H2
1,m, that is there exists {fw}w∈Fm

such that

(16) f(X) =

∞∑
l=0

(
∑
w∈F [l]

m

fwX
w)

for all X ∈ Υm
1 ; in particular, Remark 2.9(ii) gives that the expansion (16) holds

for all X ∈ 1√
m
Dm.

As before, consider the non-commutative functions f [l] : (Cm)nc −→ Cnc given
by f [l](X) =

∑
w∈F [l]

m
fwX

w. Then, for X ∈ ∂(Dm, N), we have that

‖f [l](
1

m
X)‖ ≤

∑
w∈F [l]

m

1

ml
sup
w∈F [l]

m

(|fw| · ‖Xw‖) ≤ sup
w∈F [l]

m

|fw|,

therefore, for r ∈ (0, 1
m ),∫

∂(Dm,N)

1

N
Tr
(
f [l](rX)∗f [l](rX)

)
dµN ≤ sup

w∈F [l]
m

|fw|2.

hence, expansion (16) and Corollary 1.4(ii) give that∫
∂(Dm,N)

1

N
Tr (f(rX)∗ f(rX)) dµN

=

∞∑
l=0

∫
∂(Dm,N)

1

N
Tr
(
f [l](rX)∗f [l](rX)

)
dµN ≤ ‖f‖2l2(Fm).

Therefore, using Corollary 1.4(i), we have that for r ∈ (0, 1
m ),

Φ(r) =

∞∑
l=0

r2l(
∑
w∈F [l]

m

|fw|2)

and Φ extends analytically to (0, 1) and continously to [0, 1].
The proof for Ψ is similar, using Remark 2.9 and Corollary 1.5.
For the converse, suppose that there exists δ > 0 such that Φ(r) exists for r < δ

and extends analitically to (0, 1). In particular there exists some N0 such that the
integral from the definition of Φ(·) is finite if N > N0. Fix now N > N0; equation
(5) gives that there exists some α > 0 such that the series

∑
w∈Fm fwX

w converges

absolutely for X ∈ αDm, particularly {( αm )|w|fw}w∈Fm ∈ l1(Fm) ⊂ l2(Fm).
Let R = min{δ, αm}. Then Corollary 1.4 gives that, for r ∈ (0, R),

Φ(r) =

∞∑
l=0

r2l(
∑
w∈F [l]

m

|fw|2)

and the conclusion follows since Φ(·) extends analytically to (0, 1).
As before, the proof for Ψ(·) is similar, using equation (5) and Corollary 1.5.

�
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Proposition 2.15. For f ∈ H2
1,m and g ∈ H2

m,m, respectively Y ∈ Υm
1 ∩ CM×M

and Y ′ ∈ Υm
m ∩ CM×M , we have that

ϕf,Y (r) = lim
N−→∞

∫
∂(Dm,N)

1

N
Tr⊗ IdCM×M (f(rX)K1(rX, Y ∗)∗) dµN (X)

ψg,Y ′(r) = lim
N−→∞

∫
∂(Bm,N)

1

N
Tr⊗ IdCM×M (g(rX)Km(rX, (Y ′)∗)∗) dνN (X)

are analytic functions of r for r small and they extend analytically to (0, 1) and
continously to [0, 1]. Moreover, lim

r−→1−
ϕf,Y (r) = f(Y ) and lim

r−→1−
ψg,Y ′(r) = g(Y ′).

Proof. Let p ≥ 1 and r ∈ (0, (2m2p)−1), let {fw}w∈Fm ∈ l2p(Fm), and consider

X ∈ CN×N , Y ∈ CM×M such that sup
w∈Fm

‖Zw‖ = m(Z) <∞ and sup
w∈Fm

‖Xw‖ ≤ 1.

First, note that the series

∞∑
l=0

(
∑
w∈F [l]

m

r2|w|fwp
|w|Y w) converges asolutely, since

‖{(rp)2|w|}w‖l2(Fm) < 2 and

∞∑
l=0

(
∑
w∈F [l]

m

‖r2|w|fwp
|w|Y w‖) ≤ m(Y ) ·

∞∑
l=0

(
∑
w∈F [l]

m

(rp)2|w| · |p−|w|fw|

≤m(Y ) · ‖{fw‖w‖
1
2

l2p(Fm) · ‖{(rp)
2|w|}w‖

1
2

l2(Fm)

Also, we have that ‖{(rmp)|w|}w‖l2(Fm) < 2 and

[

∞∑
k=0

(
∑

w∈F [k]
m

‖fw · r|w|Xw‖)] · [
∞∑
l=0

(
∑
v∈F [l]

m

pl · rl‖Xv ⊗ (Y v)∗‖)]

≤ [

∞∑
k=0

mkrk(
∑

w∈F [k]
m

|fw|)] · (
∞∑
l=0

plrlml ·m(Y ))

≤ [

∞∑
k=0

(r ·mp)k · (
∑

w∈F [k]
m

p−|w||fw|)] · 2m(Y )

≤ ‖{fw}w‖
1
2

l2p(Fm) · ‖{(rmp)
|w|}w‖

1
2

l2(Fm) · 2m(Y ).

Therefore, for p = 1, if f and Y are as in the statement of 2.15, we have that∫
∂(Dm,N)

1

N
Tr⊗ IdCM×M (f(rX)K1(rX, Y ∗)∗) dµN (X)

=

∫
∂(Dm,N)

1

N
Tr⊗ IdCM×M (

∞∑
k,l=0

∑
w∈F [k]

m

∑
v∈F [l]

m

fw · rkXw · (Xv)∗ ⊗ Y v)dµN (X).

Since 1
NTr⊗ IdCM×M is a bounded linear map, using Corollary 1.4, the right hand

side of the equation above equals

∞∑
l=0

(
∑
w∈F [l]

m

fwY
w). and the conclusion for ϕY,f

follows.
The proof for ψg,Y ′ is analogous letting p = m and using Corollary 1.5.

�
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Definition 2.16. For Ω either Bm or Dm, define

H∞(Ωnc) = {f : Ωnc −→ Cnc : f is a non-commutative function and sup
Z∈Ω
‖f(Z)‖ <∞}

H∞(BΩ) = {f : BΩ −→ Cnc : f is a non-commutative function and sup
Z∈BΩ

‖f(Z)‖ <∞}.

Obviously, H∞(Ωnc) ⊂ H∞(BΩ), since BΩ ⊂ Ωnc. We will further detail this
inclusion below.

Definition 2.17. For Ω either Bm or Dm, define

M(Ωnc) = {f : Ωnc −→ Cnc : f is a non-commutative function which is also a

bounded left multiplier for H2(Ωnc)}
M(BΩ) = {f : BΩ −→ Cnc : f is a non-commutative function which is also a

bounded left multiplier for H2
1,m, if Ω = Bm, respectively H2

m,m if Ω = Dm}.

where the multiplier norms are the natural ones.

Proposition 2.18. With the notations above, we have that

H∞(Ωnc) ⊆M(Ωnc) ⊆M(BΩ) ⊆ H∞(BΩ).

Proof. From the consideration above, we only need to prove the last inclusion.
Consider g ∈ M(BΩ), denote Mg the left multiplier with g and take X ∈ BΩ ∩
CM×M , Y ∈ Υm

p ∩CN×N . From Poposition 2.13, for any e1, e2 ∈ CM and f1, f2 ∈
CN , we have that

〈(Mg)
∗e∗1K(·, X)e2,f

∗
1K(·, Y )f2〉 = 〈e∗1K(·, X)e2,Mgf

∗
1K(·, Y )f2〉

=〈g(·)f∗1K(·, Y )f2, e
∗
1K(·, X)e2〉∗

=(e∗2g(X)f∗1K(X,Y )f2e1)∗,

hence (Mg)
∗K(·, X) = K(·, X)g(X)∗ and since ‖(Mg)

∗K(·, X)‖ ≤ ‖Mg‖·‖K(·, X)‖
and K(·, ·) is a reproducing kernel, it follows that ‖g(X)‖ ≤ ‖Mg‖. �
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