H^{2} - SPACES OF NON-COMMUTATIVE FUNCTIONS

MIHAI POPA* AND VICTOR VINNIKOV

Abstract

The p[aper presents some basic results in the study of Hardy H^{2} spaces of locally bounded non-commutative functions on certain non-commutative unit balls. We consider the cases of uniform, and row/column operator spaces norm on a finite dimesional vector space.

1. Introduction

1.1. Haar Unitaries and Free Independence. Let N be a positive integer and $\mathcal{U}(N)$ be the compact group of the $N \times N$ unitary matrices with complex entries. The Haar measure on $\mathcal{U}(N)$ will be denoted with $d \mathcal{U}_{N}$.

For each $i, j \in\{1,2, \ldots, N\}$ we define the maps $u_{i, j}: \mathcal{U}(N) \longrightarrow \mathbb{C}$ giving the i, j-th entry of each element from $\mathcal{U}(N)$. As shown in [1], the maps $u_{i, j}$ are in $L^{\infty}\left(\mathcal{U}(N), d \mathcal{U}_{N}\right)$. Let S_{n} be the symmetric group of order n; for $\sigma \in S_{n}$ denote by $\#(\sigma)$ the number of cycles in a minimal decomposition of the permutation σ. The following result is shown in [2], Corollary 2.4:

Theorem 1.1. There exists a map $W g: \mathbb{Z}_{+} \times S_{n} \longrightarrow \mathbb{R}$ such that:
(1) For all $\sigma \in S_{n}$, the limit $\lim _{N \rightarrow \infty} \frac{W g(N, \sigma)}{N^{2 n-\#(\sigma)}}$ exists and is finite.
(2) For any multiindices $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right), \boldsymbol{i}^{\prime}=\left(i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{n}^{\prime}\right)$, respectively $\boldsymbol{j}=$ $\left(j_{1}, j_{2}, \ldots, j_{n}\right), j^{\prime}=\left(j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{n}^{\prime}\right)$ with elements from the set $\{1,2, \ldots, N\}$ we have that

$$
\int_{\mathcal{U}(N)} u_{i_{1}, j_{1}} \cdots u_{i_{n}, j_{n}} \overline{u_{i_{1}^{\prime}, j_{1}^{\prime}}} \cdots \overline{u_{i_{n}^{\prime}, j_{n}^{\prime}}} d \mathcal{U}_{N}=\sum_{\sigma, \tau \in S_{n}} \delta_{i, i^{\prime}} \cdot \delta_{j, j^{\prime}} \cdot W g\left(N, \tau \sigma^{-1}\right)
$$

If $m \neq n$, then

$$
\int_{\mathcal{U}(N)} u_{i_{1}, j_{1}} \cdots u_{i_{n}, j_{n}} \overline{u_{i_{1}^{\prime}, j_{1}^{\prime}}} \cdots \overline{u_{i_{m}^{\prime}, j_{m}^{\prime}}} d \mathcal{U}_{N}=0
$$

An immediate consequence of the result above is the following:
Remark 1.2. Let $U: \mathcal{U}(N) \longrightarrow \mathbb{C}^{N \times N}, U=\left[u_{i, j}\right]_{i, j=1}^{N}$. Then, for all non-zero integers α,

$$
\int_{\mathcal{U}(N)} \operatorname{Tr}\left(U^{\alpha}\right) d \mathcal{U}_{N}=0
$$

Proof. Suppose that $\alpha>0$. Then

$$
\int_{\mathcal{U}(N)} \operatorname{Tr}\left(U^{\alpha}\right) d \mathcal{U}_{N}=\sum_{1 \leq i_{1}, \ldots, i_{\alpha} \leq N} \int_{\mathcal{U}(N)} u_{i_{1}, i_{2}} \cdots u_{i_{\alpha-1}, i_{\alpha}} u_{i_{\alpha}, i_{1}} d \mathcal{U}_{N}
$$

[^0]From the last part of Theorem 1.1, all the terms in the above summation are zero, hence the conclusion. Since $U^{-1}=U^{*}$, the case $\alpha<0$ is similar.

Suppose that \mathcal{A} is a unital algebra and $\phi: \mathcal{A} \longrightarrow \mathbb{C}$ is a conditional expectation. A family $\left\{\mathcal{A}_{j}\right\}_{j \in J}$ of unital subalgebras of \mathcal{A} are said to be free independent if any alternating product of centered (with respect to ϕ) of elements from $\left\{\mathcal{A}_{j}\right\}_{j \in J}$ is centered, i.e. for any $n>0$, any $\epsilon(k) \in J(1 \leq k \leq n)$ such that $\epsilon(k) \neq \epsilon(k+1)$ and any $a_{k} \in \mathcal{A}_{\epsilon(k)}$ we have that $\phi\left(a_{1} a_{2} \cdots a_{n}\right)=0$.

As shown in the extensive literature on the subject (see [13], [10]), free independence is the natural relation of independence in a non-commutative framework and it is the asymptotical relation satisfied by various classes of random matrices.

Let $\mathfrak{A}=\left\{A_{j, N}\right\}_{j \in J, N \geq 1}$ be an ensemble of matrices such that $A_{j, N} \in \mathbb{C}^{N \times N}$ for all $j \in J$. The ensemble \mathfrak{A} is said to have limit distribution if for any $m \in \mathbb{Z}_{+}$and $j_{1}, \ldots, j_{m} \in J$ the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{Tr}\left(A_{j_{1}, N} \cdots A_{j_{m}, N}\right)
$$

exists and it is finite, where Tr denotes the non-normalized trace.
The following result is proved in [14] and, in a more general framework, in [2], [11]:

Theorem 1.3. Let m be a positive integer; for $1 \leq k \leq m$ and $1 \leq i, j \leq N$ consider the random variables $u_{i, j}^{(k)}: \mathcal{U}(N) \longrightarrow \mathbb{C}$ such that $u_{i, j}^{(k)} \equiv u_{i, j}$ and the families $\left\{u_{i, j}^{(k)}\right\}_{i, j=1}^{N}$ are independent. Finally, for each k and N, consider the matrix $U_{k, N} \in L^{\infty}\left(\mathcal{U}(N), d \mathcal{U}_{N}\right)^{N \times N}$, having the entries $u_{i, j}^{(k)}$.

Suppose that $\mathfrak{A}=\left\{A_{j, N}\right\}_{j \in J, N \geq 1}$ is an ensemble of complex matrices that has limit distribution. Then the ensembles of random matrices $\left\{U_{1, N}, U_{1, N}^{*}\right\},\left\{U_{2, N}, U_{2, N}^{*}\right\}$, $\ldots,\left\{U_{m, N}, U_{m, N}^{*}\right\}$ and \mathfrak{A} are asymptotically free with respect to the functional $\int_{\mathcal{U}(N)} \frac{1}{N} \operatorname{Tr}(\cdot) d \mathcal{U}_{N}$.

Throughout the paper, \mathcal{F}_{m} will denote the free semigroup with m generators g_{1}, \ldots, g_{m}. The elements of \mathcal{F}_{m} are arbitrary reduced words $w=g_{i_{l}} g_{i_{l-1}} \cdots g_{i_{1}}$, the semigroup operation is concatenation, the neutral element is the empty word \emptyset and $|w|=l$ will denote the length of the reduced word w. We will also use the notation $\mathcal{F}_{m}^{[l]}$ for the set of all reduced words from \mathcal{F}_{m} of length l.

In the next section we will utilize the following consequences of the Theorems 1.1 and 1.3 from above:

Corollary 1.4. With the notations of Theorem 1.3, let $v, w \in \mathcal{F}_{m}$, and, if $w=$ $g_{w_{t}} g_{w_{t-1}} \ldots g_{w_{1}}$ denote $U_{N}^{w}=U_{w_{t}, N} U_{w_{t-1}, N} \cdots U_{w_{1}, N}$. Then:
(i) if $|v| \neq|w|$, we have that, for any positive integer N,

$$
\int_{\mathcal{U}(N)} \operatorname{Tr}\left(\left(U_{N}^{w}\right)^{*} U_{N}^{v}\right) d \mathcal{U}_{N}=0
$$

(ii) $\lim _{N \rightarrow \infty} \int_{\mathcal{U}(N)} \frac{1}{N} \operatorname{Tr}\left(\left(U_{N}^{w}\right)^{*} U_{N}^{v}\right) d \mathcal{U}_{N}=\delta_{w, v}$.

Proof. For (i), let

$$
L=\left\{l=\left(l_{-|v|}, l_{-|v|+1}, \ldots, l_{0}, l_{1}, \ldots, l_{|w|}\right) \in\{1, \ldots, N\}^{|v|+|w|+1}: l_{-|v|}=l_{|w|}\right\}
$$

and $V_{k}=\left\{j \in\{1, \ldots,|v|\}: v_{j}=k\right\}$, respectively $W_{k}=\left\{j \in\{1, \ldots,|w|\}: w_{j}=k\right\}$. Then, from the independence of the families $\left\{u_{i, j}^{(k)}\right\}_{i, j=1}^{N}$,

$$
\begin{array}{r}
\int_{\mathcal{U}(N)} \operatorname{Tr}\left(\left(U_{N}^{w}\right)^{*} U_{N}^{v}\right) d \mathcal{U}_{N}=\sum_{l \in L} \int_{\mathcal{U}(N)} \prod_{k=1}^{|w|} \overline{u_{l_{k-1}, l_{k}}^{\left(w_{k}\right)}} \cdot \prod_{k=1}^{|v|} u_{l_{-k+1}, l_{-k}}^{\left(v_{k}\right)} d \mathcal{U}_{N} \\
=\sum_{l \in L} \prod_{r=1}^{p}\left(\int_{\mathcal{U}(N)} \prod_{k \in W_{r}} \overline{u_{l_{k-1}, l_{k}}^{\left(w_{k}\right)}} \cdot \prod_{k \in V_{r}} u_{l_{-k+1}, l_{-k}}^{\left(v_{k}\right)} d \mathcal{U}_{N} .\right.
\end{array}
$$

From Theorem 1.1, if $\operatorname{card}\left(W_{r}\right) \neq \operatorname{card}\left(V_{r}\right)$, then the corespondent factor in the above product cancels, hence the conclusion.

For (ii), note first if $w=v$, then $\left(U_{N}^{w}\right)^{*} U_{N}^{v}=\operatorname{Id}_{N}$, and the assertion is trivial. If $w \neq v$, it suffices to prove the the equality for $|w|=|v|$ (according to part (i)) and $v_{s} \neq w_{s}\left(\right.$ since $\left.U_{k, N}^{*} U_{k, N}=\operatorname{Id}_{N}\right)$.

From Remark 1.2, $\int_{\mathcal{U}(N)} \frac{1}{N} \operatorname{Tr}\left(U_{k, N}\right) d \mathcal{U}_{N}=0$, for all $N>1$ and all $1 \leq k \leq m$. The conclusion follows now from Theorem 1.3 and the definition of free independence.

Corollary 1.5. Fix m a positive integer and suppose that $U=\left[u_{i, j}\right]_{i, j=1}^{m N}$, with the functions $u_{i, j}: \mathcal{U}(m N) \longrightarrow \mathbb{C}$ as defined above. For $1 \leq k \leq m$, consider $U_{k} \in L^{\infty}\left(\mathcal{U}(m N), d \mathcal{U}_{m N}\right)^{N \times N}$ given by $U_{k}=\left[u_{(k-1) N+i, j}\right]_{i, j=1}^{N}$. (I. e., U_{1}, \ldots, U_{m} are the $N \times N$ matricial block entries of the first $N \times m N$ matricial row of U).

Let $v, w \in \mathcal{F}_{m}$, and, if $w=g_{w_{t}} g_{w_{t-1}} \ldots, g_{w_{1}}$ denote $U^{w}=U_{w_{t}} U_{w_{t-1}} \cdots U_{w_{1}}$. Then:
(i) If $|v| \neq|w|, \int_{\mathcal{U}(m N)} \operatorname{Tr}\left(\left(U^{w}\right)^{*} U^{v}\right) d \mathcal{U}_{m N}=0$.
(ii) If $|v|=|w|, \lim _{N \rightarrow \infty} \int_{\mathcal{U}(m N)} \frac{1}{N} \operatorname{Tr}\left(\left(U^{w}\right)^{*} U^{v}\right) d \mathcal{U}_{m N}=\delta_{w, v} \frac{1}{m^{|v|}}$.

Proof. Part (i) is an immediate consequence of the last equality of Theorem 1.1, since the entries of U_{1}, \ldots, U_{m} are also entries of U.

For part (ii), let $e_{i, j}$ be the $m \times m$ matrix with the i, j-entry 1 and all others 0 , let Id_{N} be the identity $N \times N$ matrix and $E_{i, j}=\operatorname{Id}_{N} \otimes e_{i, j} \in \mathbb{C}^{m N \times m N}$. Then for all $1 \leq k \leq m$, we have that $\widetilde{U_{k}}=U_{k} \otimes e_{1,1}=E_{1,1} U E_{k, 1}$, hence

$$
\begin{align*}
\operatorname{Tr}\left(\left(U^{w}\right)^{*} U^{v}\right) & =\operatorname{Tr}\left(\widetilde{U_{w_{1}}^{*}} \cdots \widetilde{U_{w_{s}}^{*}} \widetilde{U_{v_{s}}} \cdots \widetilde{U_{v_{1}}}\right) \tag{1}\\
& =\operatorname{Tr}\left(E_{1, w_{1}} U^{*} E_{1, w_{2}} U^{*} \cdots E_{1, w_{t}} U^{*} E_{1,1} U E_{v_{s}, 1} U \cdots E_{v_{2}, 1} U E_{v_{1}, 1}\right)
\end{align*}
$$

To simplify the notations, we shall use the writting

$$
\begin{equation*}
E_{i, j}^{0}=E_{i, j}-\delta_{i, j} \frac{1}{m} \operatorname{Id}_{m N} \tag{2}
\end{equation*}
$$

Note that $\operatorname{Tr}\left(E_{i, j}^{0}=0\right)$; moreover, for all non-zero integers $\alpha_{0}, \ldots, \alpha_{n}$ and all indices $i, j, k, l, k_{r}, l_{r} \in\{1, \ldots, m\}$ we have that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{m N} \int_{\mathcal{U}(m N)} \operatorname{Tr}\left(E_{i, j} U^{\alpha_{0}} E_{k_{1}, l_{1}}^{0} U_{1}^{\alpha} E_{k_{2}, l_{2}}^{0} \cdots E_{k_{n}, l_{n}}^{0} U^{\alpha_{n}} E_{k, l}\right) d \mathcal{U}_{m N}=0 \tag{3}
\end{equation*}
$$

To see that, we remark that using (2) for $E_{i, j}$ and $E_{k, l}$, the integrand can be written as a linear combination of alternating products of centered (according to Remark
1.2) elements from the algebra generated by U and $U^{-1}=U^{*}$, respectively from the algebra generated by $\left\{E_{1, k}\right\}_{k=1}^{m}$. According to Theorem 1.3, the two algebras are asymptotically free, hence (2) is proved.

An immediate consequence of (3) is that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{m N} \int_{\mathcal{U}(m N)} \operatorname{Tr}\left(E_{1, w_{1}} U^{*} \cdots E_{1, w_{t}} U^{*} E_{1,1}^{0} U E_{v_{s}, 1} U \cdots E_{v_{1}, 1}\right) d \mathcal{U}_{m N}=0 \tag{4}
\end{equation*}
$$

because, using (2) for $E_{1, w_{2}}, \ldots, E_{1, w_{t}}$ and $E_{v_{2}, 1}, \ldots, E_{v_{s}, 1}$, the integrand from (4) is a finite linear combination of integrands from (3).

From part (i), it suffices to prove part (ii) of the Corollary only for $t=s$. For this we will use induction on s. If $s=1$,

$$
\begin{gathered}
E_{1, w_{1}} U^{*} E_{1,1} U E_{v, 1}=E_{1, w_{1}} U^{*} E_{1,1}^{0} U E_{v, 1}+\frac{1}{m} E_{1, w_{1}} \cdot E_{v, 1} \\
=E_{1, w_{1}} U^{*} E_{1,1}^{0} U E_{v, 1}+\frac{1}{m} \delta_{v_{1}, w_{1}} E_{1,1}
\end{gathered}
$$

and the conclusion follows from (4) and $\operatorname{Tr}\left(E_{1,1}\right)=N$.
For the inductive step, using (2) for $E_{1,1}$ in (1), we obtain

$$
\begin{aligned}
\left(U^{w}\right)^{*} U^{v}= & E_{1, w_{1}} U^{*} E_{1, w_{2}} U^{*} \cdots E_{1, w_{s}} U^{*} E_{1,1}^{0} U E_{v_{s}, 1} U \cdots E_{v_{2}, 1} U E_{v_{1}, 1} \\
& +\frac{1}{m} E_{1, w_{1}} U^{*} E_{1, w_{2}} U^{*} \cdots U^{*}\left(E_{1, w_{s}} \cdot E_{v_{s}, 1}\right) U \cdots E_{v_{2}, 1} U E_{v_{1}, 1}
\end{aligned}
$$

The first term of the above is similar to the integrand in (4). For the second term, note that

$$
E_{1, w_{s}} \cdot E_{v_{s}, 1}=\delta_{w_{s}, v_{s}} E_{1,1}
$$

and the conclusion follows from the induction hypothesis.
1.2. Non-Commutative Functions and Taylor-Taylor Expansion. The following definition for non-commutative functions is similar to [5], [6] and [9].

For \mathcal{V} a (complex) linear space, we will denote by $\mathcal{V}_{\text {nc }}$ the linear space $\coprod_{n=1}^{\infty} \mathcal{V}^{n \times n}$. A subset Ω of $\mathcal{V}_{\mathrm{nc}}$ is said to be a non-commutative set if for all m, n and all $X \in \Omega \cap \mathcal{V}^{m \times m}$ and $Y \in \Omega^{n \times n}$ we have that $X \oplus Y \in \Omega$, where $X \oplus Y$ is the block diagonal matrix from $\mathcal{V}^{(m+n) \times(m+n)}$ with X and Y the block entries of the main diagonal and all other entries zero.

If \mathcal{V} and \mathcal{W} are two linear spaces and Ω a non-commutative set of $\mathcal{V}_{\text {nc }}$, a mapping $f: \Omega \longrightarrow \mathcal{W}_{\mathrm{nc}}$ is said to a non-commutative function if it satisfy the following conditions:

- $f\left(\Omega \cup \mathcal{V}^{n \times n}\right) \subset \mathcal{W}^{n \times n}$ for all positive integers n;
- $f(X \oplus Y)=f(X) \oplus f(Y)$ for all $X, Y \in \Omega$;
- if $X \in \Omega \cup \mathcal{V}^{n \times n}$ and $T \in \mathbb{C}^{n \times n}$ such that $T X T^{-1} \in \Omega$, then

$$
f\left(T X T^{-1}\right)=T f(X) T^{-1}
$$

Non-commutative functions have strong regularity properties - for an introduction to the basic theory see see [5] and [6]. Below we will mention only a particular form of the Taylor-Taylor Expansion property, as shown in Section 7 of [5], that will be extensively utilized in Section 3 of the present work.

Let \mathcal{V} be a finite dimensional vector space with basis e_{1}, \ldots, e_{d}. For $X \in \mathcal{V}^{N \times N}$, there exist some unique $X_{1}, \ldots, X_{d} \in \mathbb{C}^{N \times N}$ such that $X=X_{1} e_{1}+\ldots+X_{d} e_{d}$. If $w=g_{i_{1}} \cdots g_{i_{t}} \in \mathcal{F}_{d}$, we write $X^{w}=X^{g_{i_{1}}} \cdots X^{g_{i_{t}}}$.

Suppose that $\Omega \subseteq \mathcal{V}_{\text {nc }}$ is a non-commutative set such that for all N, the set $\Omega_{N}=\Omega \cap \mathcal{V}^{N \times N}$ is open. Let $b \in \Omega_{1}$, let \mathcal{W} be a Banach space and suppose that $f: \Omega \longrightarrow \mathcal{W}_{\mathrm{nc}}$ is a non-commutative function locally bounded on slices separately in every matrix dimension around b, that is for all positive integers N, and all $Y \in \mathcal{V}^{N \times N}$ there exists $\varepsilon>0$ such that the function $t \mapsto f(X+t Y)$ is bounded for $|t|<\varepsilon$.

For n a positive integer also define the set

$$
\Upsilon(b, n)=\left\{X \in \Omega_{N}: b I_{n}+t\left(X-b I_{n}\right) \in \Omega_{n} \text { for all } t \in \mathbb{C} \text { such that }|t| \leq 1\right\}
$$

With the notations from above, Theorem 7.2 from [5] gives that for all positive integers n and all $X \in \Upsilon(b, n)$

$$
\begin{equation*}
f(X)=\sum_{l=0}^{\infty}\left[\sum_{|w|=l}\left(X-b I_{n}\right)^{w} \otimes f_{w}\right] \tag{5}
\end{equation*}
$$

series converges absolutely and uniformely (in fact, normally) on compacta of $\Upsilon(b, n)$.
1.3. Operator space structures on \mathbb{C}^{m}. An operator space structure on a linear space \mathcal{V} is given (see [3], Proposition 2.3.6) by a family of norms $\left\{\|\cdot\|_{n}\right\}_{n>0}$, such that each $\|\cdot\|_{n}$ is a norm on $\mathcal{V}^{n \times n}$ and, for all $X \in \mathcal{V}^{n \times n}, Y \in \mathcal{V}^{m \times m}, T, S \in \mathbb{C}^{n \times n}$, we have that

- $\|X \oplus Y\|_{n+m}=\max \left\{\|X\|_{n},\|Y\|_{m}\right\}$
- $\|T X S\| \leq\|T\|\|X\|_{n}\|S\|$, where $\|\cdot\|$ denotes the usual operator norm of complex matrices.
We will consider the operator spaces structures on \mathbb{C}^{m} given by the $\|\cdot\|_{\infty},\|\cdot\|_{\text {col }}$, and $\|\cdot\|_{\text {row }}$, where, for $X=\left(X_{1}, \ldots, X_{m}\right) \in\left(\mathbb{C}^{n \times n}\right)^{m} \simeq\left(\mathbb{C}^{m}\right)^{n \times n}$ and $\|\cdot\|$ the usual operator norm in $\mathbb{C}^{n \times n}$

$$
\begin{aligned}
& \|X\|_{\infty}=\max \left\{\left\|X_{1}\right\|, \ldots,\left\|X_{m}\right\|\right\} \\
& \|X\|_{\text {col }}=\left\|\sum_{i=1}^{m} X_{i}^{*} X_{i}\right\|^{\frac{1}{2}} \\
& \|X\|_{\text {row }}=\left\|\sum_{i=1}^{m} X_{i} X_{i}^{*}\right\|^{\frac{1}{2}}
\end{aligned}
$$

For the norm $\|\cdot\|_{\infty}$, the non-commutative unit ball is the non-commutative polydisc

$$
\left(\mathbb{D}^{m}\right)_{\mathrm{nc}}=\coprod_{n=1}^{\infty}\left\{\left(X_{1}, \ldots, X_{m}\right) \in\left(\mathbb{C}^{n \times n}\right)^{m}:\left\|X_{j}\right\|<1, j=1, \ldots, m\right\}
$$

For the norms $\|\cdot\|_{\text {col }}$, respectively $\|\cdot\|_{\text {row }}$, the non-commutative unit balls are given by

$$
\left(\mathbb{B}^{m}\right)_{\mathrm{nc}}=\coprod_{n=1}^{\infty}\left\{\left(X_{1}, \ldots, X_{m}\right) \in\left(\mathbb{C}^{n \times n}\right)^{m}: \sum_{i=1}^{m} X_{i}^{*} X_{i}<I_{n}\right\}
$$

respectively by

$$
\left(\mathbb{B}_{\text {row }}^{m}\right)_{\mathrm{nc}}=\coprod_{n=1}^{\infty}\left\{\left(X_{1}, \ldots, X_{m}\right) \in\left(\mathbb{C}^{n \times n}\right)^{m}: \sum_{i=1}^{m} X_{i} X_{i}^{*}<I_{n}\right\}
$$

Identifying the components from $\left(\mathbb{C}^{n \times n}\right)^{m}$ of $\left(\mathbb{D}^{m}\right)_{\mathrm{nc}},\left(\mathbb{B}^{m}\right)_{\mathrm{nc}}$, respectively $\left(\mathbb{B}_{\text {row }}^{m}\right)_{\mathrm{nc}}$ with the correspondent sets from $\mathbb{C}^{m n^{2}}$, the Shilov boundaries for the commutative algebras of complex analytic functions in $m n^{2}$ variables, as shown in [12], Example 1.5.51, are $\mathcal{U}(n)^{m}$, respectively the set of all isometries and coisometries of $\mathbb{C}^{n \times m n}$, respectively $\mathbb{C}^{m n \times n}$. Since $\mathbb{C}^{n \times m n}$ does not have any coisometries, it follows that for the case of $\left(\mathbb{B}^{m}\right)_{\text {nc }}$ the Shilov boundary from above is

$$
\partial\left(\mathbb{B}^{m}, n\right)=\left\{\left(X_{1}, \ldots, X_{m}\right) \in\left(\mathbb{C}^{n \times n}\right)^{m}: \sum_{i=1}^{m} X_{i}^{*} X_{i}=I_{n}\right\}
$$

Also, since $\mathbb{C}^{m n \times n}$ does not have any isometries, the correspodent Shilov boundary for $\left(\mathbb{B}_{\text {row }}^{m}\right)_{\mathrm{nc}} \cap\left(\mathbb{C}^{n \times n}\right)$ is

$$
\partial\left(\mathbb{B}_{\text {row }}^{m}, n\right)=\left\{\left(X_{1}, \ldots, X_{m}\right) \in\left(\mathbb{C}^{n \times n}\right)^{m}: \sum_{i=1}^{m} X_{i} X_{i}^{*}=I_{n}\right\}
$$

To simplify the writing in the next section, we will denote denote $\mathcal{U}(n)^{m}$ by $\partial\left(\mathbb{D}^{m}, n\right)$. The natural measure on $\partial\left(\mathbb{D}^{m}, n\right)$ is the m-fold product measure μ_{n} of the Haar measure on $\mathcal{U}(n)$. Corollary 1.4 gives then, that for any $v, w \in \mathcal{F}_{m}$, we have:

$$
\begin{align*}
& \int_{\partial\left(\mathbb{D}^{m}, n\right)} \operatorname{Tr}\left(\left(X^{w}\right)^{*} X^{v}\right) d \mu_{n}=0 \text { if }|v| \neq|w| \tag{6}\\
& \lim _{n \rightarrow \infty} \int_{\partial\left(\mathbb{D}^{m}, n\right)} \frac{1}{n} \operatorname{Tr}\left(\left(X^{w}\right)^{*} X^{v}\right) d \mu_{n}=\delta_{v, w} \tag{7}
\end{align*}
$$

For the case of $\left(\mathbb{B}^{m}\right)_{\mathrm{nc}}$, note that

$$
\begin{aligned}
\partial\left(\mathbb{B}^{m}, n\right)=\left\{\left(X_{1}, \ldots, X_{m}\right) \in\left(\mathbb{C}^{n \times n}\right)^{m}:\right. & \text { there exists some } U \in \mathcal{U}(m n) \\
& \text { such that } \left.\left(I_{n}, 0, \ldots, 0\right) \cdot U=\left(X_{1}, \ldots, X_{m}\right)\right\} .
\end{aligned}
$$

Note that the group $\mathcal{U}(m n)$ acts transitively on $\partial\left(\mathbb{B}^{m}, n\right)$ by right multiplication. Also, denoting

$$
H(m, n)=\left\{I_{n} \oplus U: U \in \mathcal{U}((m-1) n)\right\}
$$

we have that $H(m, n)$ is a compact subgroup of $\mathcal{U}(m n)$ which is also the stabilizer of $\left(I_{n}, 0, \ldots, 0\right) \in \partial\left(\mathbb{B}^{m}, n\right)$. Hence $\partial\left(\mathbb{B}^{m}, n\right)$ is isomorphic to $\mathcal{U}(m n) / H(m, n)$ and (see [4], Theorem 2.49) there exists a unique Radon measure ν_{n} of mass 1 on $\partial\left(\mathbb{B}^{m}, n\right)$ invariant at the action of $\mathcal{U}(m n)$ and, for any continuous function $f: \mathcal{U}(m n) \longrightarrow \mathbb{C}$ we have that
(8) $\int_{\mathcal{U}(m n)} f(U) d \mathcal{U}_{m n}(U)=\int_{\partial\left(\mathbb{B}^{m}, n\right)} \int_{H(m, n)} f(U V) d \mathcal{U}_{(m-1) n}(V) d \nu_{n}(U H(m, n))$.

For $1 \leq i \leq n$ and $1 \leq j \leq m n$ and $u_{i, j}: \mathcal{U}(m n) \rightarrow \mathbb{C}$ as defined in Section 1.1, a simple verification gives that, for all $U \in \mathcal{U}(m n)$ and $V \in H(m, n)$

$$
\begin{equation*}
u_{i, j}(U)=u_{i, j}(U \cdot V) \tag{9}
\end{equation*}
$$

Fix now $f \in \operatorname{Alg}\left\{u_{i, j}, \overline{u_{i, j}}: 1 \leq i \leq n, 1 \leq j \leq m n\right\}$. For all $U \in \mathcal{U}(m n)$, equation (9) implies

$$
\begin{equation*}
\int_{H(m, n)} f(U V) d \mathcal{U}_{(m-1) n}(V)=\int_{H(m, n)} f(U) d \mathcal{U}_{(m-1) n}(V)=f(U) \tag{10}
\end{equation*}
$$

Define \widehat{f} on $\partial\left(\mathbb{B}^{m}, n\right)$ via $\widehat{f}(U H(m, n))=f(U)$. From (9), \widehat{f} is well-defined. Moreover, equation (10) gives

$$
\begin{equation*}
\int_{\partial\left(\mathbb{B}^{m}, n\right)} \widehat{f}(U H(m, n)) d \nu_{n}(U H(m, n))=\int_{\mathcal{U}(m n)} f(U) d \mathcal{U}_{m n}(U) \tag{11}
\end{equation*}
$$

Hence, Corollary 1.5 implies that, for all $v, w \in \mathcal{F}_{m}$, we have:

$$
\begin{align*}
& \int_{\partial\left(\mathbb{B}^{m}, n\right)} \operatorname{Tr}\left(\left(X^{w}\right)^{*} X^{v}\right) d \nu_{n}(X)=0 \text { if }|v| \neq|w| \tag{12}\\
& \lim _{n \rightarrow \infty} \int_{\partial\left(\mathbb{B}^{m}, n\right)} \frac{1}{n} \operatorname{Tr}\left(\left(X^{w}\right)^{*} X^{v}\right) d \nu_{n}(X)=\delta_{v, w} \frac{1}{m^{|v|}} . \tag{13}
\end{align*}
$$

Denoting by A^{T} the transpose of the matrix A, we have that

$$
\begin{aligned}
\partial\left(\mathbb{B}_{\text {row }}^{m}, n\right)=\left\{\left(X_{1}, \ldots, X_{m}\right) \in\right. & \left(\mathbb{C}^{n \times n}\right)^{m}: \text { there exists some } U \in \mathcal{U}(m n) \\
& \text { such that } \left.U \cdot\left(I_{n}, 0, \ldots, 0\right)^{T}=\left(X_{1}, \ldots, X_{m}\right)^{T}\right\} .
\end{aligned}
$$

In this case the transitive action of $\mathcal{U}(m n)$ on $\partial\left(\mathbb{B}_{\text {row }}^{m}, n\right)$ is by left multiplication and $H(m, n)$ is the stabilizer of $\left(I_{n}, 0, \ldots, 0\right)^{T}$. A similar argument as above gives that there exists ν_{n}^{\prime}, a unique Radon measure of mass 1 on $\partial\left(\mathbb{B}_{\text {row }}^{m}, n\right)$, invariant at the action of $\mathcal{U}(m n)$, and the pair $\left(\partial\left(\mathbb{B}_{\text {row }}^{m}, n\right), \nu_{n}^{\prime}\right)$ also satisfies equalities (12) and (13).

2. Main Results

The present section will address properties of certain H^{2} Hardy spaces associated to the non-commutative unit balls for the operator norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{\text {col }}$ on \mathbb{C}^{m}. Since both $\left(\partial\left(\mathbb{B}^{m}, n\right), \mu_{n}\right)$ and $\left(\partial\left(\mathbb{B}_{\text {row }}^{m}, n\right), \nu_{n}^{\prime}\right)$ satisfy (12) and (13), similar results to the case of $\|\cdot\|_{\text {col }}$ can be stated for the setting of $\|\cdot\|_{\text {row }}$.

For Ω either \mathbb{B}^{m} or \mathbb{D}^{m}, consider the algebras
$\mathcal{A}_{\Omega}=\left\{f: \Omega_{\mathrm{nc}} \longrightarrow \mathbb{C}_{\mathrm{nc}}: f=\right.$ non-commutative function, locally bounded on slices separately in every matrix dimension $\}$.

Equation (5) gives that for all $f \in \mathcal{A}_{\Omega}$ there exists a family of complex numbers $\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}}$ with $f_{\emptyset}=f(0)$, such that, for all $X \in \Omega$

$$
\begin{equation*}
f(X)=\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} X^{w} f_{w}\right) \tag{14}
\end{equation*}
$$

Theorem 2.1. (i) If $f \in \mathcal{A}_{\mathbb{D}^{m}}$ and $r \in(0,1)$, then:

$$
\begin{aligned}
f_{w} & =\lim _{N \longrightarrow \infty} \frac{1}{r|w|} \int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(\left(X^{w}\right)^{*} f(r X)\right) d \mu_{N} \\
& =\lim _{r \longrightarrow 1^{-}} \lim _{N \longrightarrow \infty} \int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(\left(X^{w}\right)^{*} f(r X)\right) d \mu_{N}
\end{aligned}
$$

(ii) If $f \in \mathcal{A}_{\mathbb{B}^{m}}$ and $r \in(0,1)$, then

$$
\begin{aligned}
f_{w} & =\lim _{N \longrightarrow \infty} \frac{1}{r^{|w|}} \cdot m^{|w|} \int_{\partial\left(\mathbb{B}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(\left(X^{w}\right)^{*} f(r X)\right) d \mu_{N} \\
& =\lim _{r \longrightarrow 1^{-}} \lim _{\longrightarrow \rightarrow} m^{|w|} \int_{\partial\left(\mathbb{B}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(\left(X^{w}\right)^{*} f(r X)\right) d \mu_{N} .
\end{aligned}
$$

Proof. For any positive integer N, relations (6) and (14) give

$$
\begin{aligned}
\int_{\partial\left(\mathbb{D}^{m}, N\right)} \operatorname{Tr}\left(\left(X^{w}\right)^{*} f(r X)\right) d \mu_{N} & =\sum_{l=0}^{\infty}\left[\sum_{v \in \mathcal{F}_{m}^{[l]}} \int_{\partial\left(\mathbb{D}^{m}, N\right)} \operatorname{Tr}\left(\left(X^{w}\right)^{*} X^{v}\right) \cdot r^{|v|} f_{v} d \mu_{N}\right] \\
& =\sum_{\substack{v, w \in \mathcal{F}_{m} \\
|v|=|w|}} r^{|v|} f_{v} \cdot \int_{\partial\left(\mathbb{D}^{m}, N\right)} \operatorname{Tr}\left(\left(X^{w}\right)^{*} X^{v}\right) d \mu_{N}
\end{aligned}
$$

and the equalities from (i) follow from equation (7).
The argument for (ii) is similar, using equations (13), (14) and (12).
Definition 2.2. For $\left(\Omega, d \omega_{N}\right)$ either $\left(\mathbb{B}^{m}, d \nu_{N}\right)$ or $\left(\mathbb{D}^{m}, d \mu_{N}\right)$, we define

$$
H^{2}\left(\Omega_{n c}\right)=\left\{f \in \mathcal{A}_{\Omega}: S(f)=\sup _{N} \sup _{r<1} \int_{\partial(\Omega, N)} \frac{1}{N} \operatorname{Tr}\left(f(r X)^{*} f(r X)\right) d \omega_{N}<\infty\right\} .
$$

For $f \in \mathcal{A}_{\Omega}$ as above and $X \in\left(\mathbb{C}^{m}\right)_{\mathrm{nc}}$, denote $f^{[l]}(X)=\sum_{w \in \mathcal{F}_{m}^{[l]}} f^{w} X^{w}$. Remark that:
(i) $f^{[l]}(r X)=r^{l} \cdot f^{[l]}(X)$
(ii) for $X \in \Omega$, as disscussed is Section 1.2, we have that $f(X)=\sum_{l=0}^{\infty} f^{[l]}(X)$ and the sum is absolutely convergent
(iii) if $l \neq p$, then $\int_{\partial(\Omega, N)} \operatorname{Tr}\left(\left(f^{[l]}(X)\right)^{*} f^{[p]}(X)\right) d \omega_{N}=0$.

Therefore, if $f \in \mathcal{H}^{2}\left(\Omega_{\mathrm{nc}}\right)$, with notations

$$
\begin{aligned}
S_{N, r}(f) & =\int_{\partial(\Omega, N)} \frac{1}{N} \operatorname{Tr}\left(f(r X)^{*} f(r X)\right) d \omega_{N} \\
S_{N}(f) & =\lim _{r \rightarrow 1^{-}} S_{N, r}(f)
\end{aligned}
$$

we have that $S_{N, r}(f)=\sum_{l=0}^{\infty} S_{N, r}\left(f^{[l]}\right)=\sum_{l=0}^{\infty} r^{2 l} S_{N}\left(f^{[l]}\right)$, and both sums are absolutely convergent; in fact $S_{N}\left(f^{[l]}\right) \geq 0$ for all l.

Theorem 2.3. (i) If $f \in H^{2}\left(\left(\mathbb{D}^{m}\right)_{n c}\right)$, then $\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}}\left|f_{w}\right|^{2}\right)<\infty$.
(ii) If $f \in H^{2}\left(\left(\mathbb{B}^{m}\right)_{n c}\right)$, then $\sum_{l=0}^{\infty}\left(\frac{1}{m^{l}} \sum_{w \in \mathcal{F}_{m}^{[l]}}\left|f_{w}\right|^{2}\right)<\infty$.

Proof. For (i), note first that if $r \in(0,1), f \in H^{2}\left(\left(\mathbb{D}^{m}\right)_{\mathrm{nc}}\right)$ and $X \in \partial\left(\mathbb{D}^{m}, N\right)$, then $f(r X)=\sum_{l=0}^{\infty} r^{l} f^{[l]}(X)$ and the series is absolutely convergent.

Therefore equation (6) implies that

$$
\begin{gathered}
\int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(f(r X)^{*} f(r X)\right) d \mu_{N}=\sum_{l=0}^{\infty} r^{2 l} \int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(f^{[l]}(X)^{*} f^{[l]}(X)\right) d \mu_{N} \\
=\sum_{l=0}^{\infty} r^{2 l}\left[a_{l}+b_{l, N}\right]
\end{gathered}
$$

where $a_{l}=\sum_{|w|=l}\left|f_{w}\right|^{2}$ and

$$
b_{l, N}=\sum_{\substack{|v|=|w|=l \\ v \neq w}} \overline{f_{w}} f_{v} \cdot \int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(\left(X^{w}\right)^{*} X^{v}\right) d \mu_{N} .
$$

$f^{[l]}(X)^{*} f^{[l]}(X)$ is positive in C^{*}-algebra in $\mathbb{C}^{N \times N}$, henceforth $a_{l}+b_{l, N} \geq 0$. Relation (7) implies that $\lim _{N \rightarrow \infty} b_{l, N}=0$ for all l, hence, since $f \in H^{2}\left(\mathbb{D}_{\mathrm{nc}}\right)$, we have that

$$
\sup _{N} \sup _{r<1} \sum_{l=0}^{\infty} r^{2 l} \cdot\left(a_{l}+b_{l, N}\right)<\infty .
$$

It follows that $\sup _{r<1} \sum_{l=0}^{\infty} r^{2 l} a_{l}<\infty$, and, since $a_{l} \geq 0$, we have that $\sum_{l=0}^{\infty} a_{l}<\infty$.
The argument for part (ii) is analogous, utilizing equations (12) and (13).

Theorem 2.4.

(i) With the notations from Definition 2.2, $H^{2}\left(\Omega_{n c}\right)$ are inner-product spaces, with the inner product given by

$$
\langle f, g\rangle=\lim _{N \longrightarrow \infty} \lim _{r \longrightarrow 1^{-}} \int_{\partial(\Omega, N)} \frac{1}{N} \operatorname{Tr}\left(g(r X)^{*} f(r X)\right) d \omega_{N}
$$

(ii) $\left\{X^{w}\right\}_{w \in \mathcal{F}_{m}}$ is a complete orthonormal system in $H^{2}\left(\left(\mathbb{D}^{m}\right)_{n c}\right)$ and, for all $f \in \mathcal{A}_{\mathbb{D}^{m}}$, we have that $f_{w}=\left\langle f, X^{w}\right\rangle$ and $f=\sum_{w \in \mathcal{F}_{m}} f_{w} X^{w}$ in $H^{2}\left(\left(\mathbb{D}^{m}\right)_{n c}\right)$.
(iii) $\left\{m^{\frac{|w|}{2}} X^{w}\right\}_{w \in \mathcal{F}_{m}}$ is a complete orthonormal system in $H^{2}\left(\left(\mathbb{B}^{m}\right)_{n c}\right)$ and, for all $f \in \mathcal{A}_{\mathbb{B}^{m}}$, we have that $f_{w}=\left\langle f, m^{|w|} X^{w}\right\rangle$ and $f=\sum_{w \in \mathcal{F}_{m}} f_{w} X^{w}$ in $H^{2}\left(\left(\mathbb{B}^{m}\right)_{n c}\right)$.

Proof. From equations (6) and (12),

$$
\int_{\partial(\Omega, N)} \frac{1}{N} \operatorname{Tr}\left(g(r X)^{*} f(r X)\right) d \omega_{N}=\sum_{l=0}^{\infty} r^{2 l} \int_{\partial(\Omega, N)} \frac{1}{N} \operatorname{Tr}\left(g^{[l]}(X)^{*} f^{[l]}(X)\right) d \omega_{N}
$$

For $A, B \in \mathbb{C}^{N \times N},\left|\operatorname{Tr}\left(A^{*} B\right)\right| \leq \frac{1}{2}\left[\operatorname{Tr}\left(A^{*} A\right)+\operatorname{Tr}\left(B^{*} B\right)\right]$, hence

$$
\left|\int_{\partial(\Omega, N)} \frac{1}{N} \operatorname{Tr}\left(g^{[l]}(X)^{*} f^{[l]}(X)\right) d \omega_{N}\right| \leq \frac{1}{2}\left[S_{N}\left(f^{[l]}+g^{[l]}\right)\right] .
$$

From $f, g \in H^{2}\left(\Omega_{\mathrm{nc}}\right)$, the series $\sum_{l=0}^{\infty} S_{N}\left(f^{[l]}+g^{[l]}\right)$ is convergent (in fact absolutely convergent, since all terms are positive), hence the limit after $r \rightarrow 1^{-}$from part (i)
does exist and equals

$$
\sum_{l=0}^{\infty} \int_{\partial(\Omega, N)} \frac{1}{N} \operatorname{Tr}\left(g^{[l]}(X)^{*} f^{[l]}(X)\right) d \omega_{N}
$$

From equations (7) and (13),

$$
\lim _{N \rightarrow \infty} \int_{\partial(\Omega, N)} \frac{1}{N} \operatorname{Tr}\left(g^{[l]}(X)^{*} f^{[l]}(X)\right) d \omega_{N}= \begin{cases}\sum_{w \in \mathcal{F}_{m}^{[l]}} \overline{g^{w}} f^{w} & \text { if } f, g \in H^{2}\left(\left(\mathbb{D}^{m}\right)_{\mathrm{nc}}\right) \\ \sum_{w \in \mathcal{F}_{m}^{[l]}} \frac{1}{m^{l}} \overline{g^{w}} f^{w} & \text { if } f, g \in H^{2}\left(\left(\mathbb{B}^{m}\right)_{\mathrm{nc}}\right)\end{cases}
$$

and the last sums are absolutely convergent from Theorem 2.3. Therefore

$$
\langle f, g\rangle=\left\{\begin{array}{cl}
\sum_{w \in \mathcal{F}_{m}} \overline{g^{w}} f^{w} & \text { if } f, g \in H^{2}\left(\left(\mathbb{D}^{m}\right)_{\mathrm{nc}}\right) \tag{15}\\
\sum_{w \in \mathcal{F}_{m}} \frac{1}{m^{l}} \overline{g^{w}} f^{w} & \text { if } f, g \in H^{2}\left(\left(\mathbb{B}^{m}\right)_{\mathrm{nc}}\right)
\end{array}\right.
$$

particularly if $\langle f, f\rangle=0$, then $f_{w}=0$ for all $w \in \mathcal{F}_{m}$, hence $f=0$.
The parts (ii) and (iii) are immediate consequences of (15) and equations (7) and (13).

Remark 2.5. The limit over N in Theorem 2.4(i) is not the supremum. For example, if $m=2$ and $f(X)=X_{1} X_{2}+X_{2} X_{1}$, then

$$
\int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(f(r X)^{*} f(r X)\right) d \mu_{N}=2 r^{2}\left(1+\frac{1}{N^{2}}\right)
$$

Definition 2.6. As before, Ω will denote either \mathbb{D}^{m} or \mathbb{B}^{m}.
For $X \in \Omega_{n c}$, define the map $E_{\Omega}^{X}: H^{2}\left(\Omega_{n c}\right) \longrightarrow \mathbb{C}^{N \times N}$ via $E_{\Omega}^{X}(f)=f(X)$.
Let $\mathcal{B}_{\Omega, N}=\left\{X \in \Omega_{n c} \cap \mathbb{C}^{N \times N}: E_{\Omega}^{X}\right.$ is a bounded map $\}$ and $\mathcal{B}_{\Omega}=\coprod_{N=1}^{\infty} \mathcal{B}_{\Omega, N}$.
For $p>0$, we define the Hilbert space

$$
l_{p}^{2}\left(\mathcal{F}_{m}\right)=\left\{\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}}: f_{w} \in \mathbb{C},\left\|\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}}\right\|_{2, p}=\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} \frac{1}{p^{l}} \overline{f_{w}} f_{w}\right)<\infty\right\} .
$$

Proposition 2.7. With the above notations, we have that
(i) $\mathcal{B}_{\mathbb{D}^{m}}=\left\{X \in\left(\mathbb{D}^{m}\right)_{n c}\right.$: the series $\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right)$ converges for any sequence $\left.\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}} \in l^{2}\left(\mathcal{F}_{m}\right)\right\}$
(ii) $\mathcal{B}_{\mathbb{B}^{m}}=\left\{X \in\left(\mathbb{B}^{m}\right)_{n c}\right.$: the series $\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right)$ converges for any sequence $\left.\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}} \in l_{m}^{2}\left(\mathcal{F}_{m}\right)\right\}$

Proof. Suppose that $X \in \mathbb{D}^{m} \cap \mathbb{C}^{N \times N}$ is such that $\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right)$ converges for all $\left\{f_{w}\right\} \in l^{2}\left(\mathcal{F}_{m}\right)$ and consider the linear map $\widetilde{E_{\mathbb{D}^{m}}^{X}}: l^{2}\left(\mathcal{F}_{m}\right) \longrightarrow \mathbb{C}^{N \times N}$, given by

$$
\widetilde{E_{\mathbb{D}^{m}}^{X}}\left(\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}}\right)=\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right)
$$

For every l, define also

$$
E_{\mathbb{D}^{m}}^{X, l}\left(\left\{f_{w}\right\}\right)=\sum_{s=0}^{l}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right)
$$

From the initial assertion, $\widetilde{E_{\mathbb{D}^{m}}^{X}}$ is the pointwise limit of $\left\{E_{\mathbb{D}^{m}}^{X, l}\right\}_{l>0}$. Each $E_{\mathbb{D}^{m}}^{X, l}$ is a bounded linear operator from $l^{2}\left(\mathcal{F}_{m}\right)$ to $\mathbb{C}^{N \times N}$, so Banach-Steinhaus Theorem gives that $\widetilde{E_{\mathbb{D}^{m}}^{X}}$ is bounded.

Take now $f \in H^{2}\left(\left(\mathbb{D}^{m}\right)_{\text {nc }}\right)$. From Theorem 2.3, the sequence $\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}}$ of its Taylor-Taylor coefficients is in $l^{2}\left(\mathcal{F}_{m}\right)$ and its norm, according to relation (15), coincides to the norm of f in $H^{2}\left(\left(\mathbb{D}^{m}\right)_{\mathrm{nc}}\right)$, hence the operator $E_{\mathbb{D}^{m}}^{X}$ is bounded and $\left\|E_{\mathbb{D}^{m}}^{X}\right\| \leq\left\|\widetilde{E_{\mathbb{D}^{m}}^{X}}\right\|$.

For the converse, fix $\left\{f_{w}\right\}_{w} \in l^{2}\left(\mathcal{F}_{m}\right)$ and, for all $l>0$ consider the functions $\alpha_{l}:\left(\left(\mathbb{D}^{m}\right)_{\mathrm{nc}}\right)_{N} \longrightarrow \mathbb{C}^{N \times N}$ given by $\alpha_{l}(X)=\sum_{|w| \leq l} f_{w} X^{w}$. The sums are finite, therefore $\alpha_{l} \in H^{2}\left(\left(\mathbb{D}^{m}\right)_{\mathrm{nc}}\right)$, hence, if $X \in \mathbb{D}^{m} \cap \mathbb{C}^{N \times N}$, then

$$
\begin{aligned}
\left\|\alpha_{l+s}(X)-\alpha_{l}(X)\right\| & \leq\left\|E_{\mathbb{D}^{m}}^{X}\right\| \cdot\left\|\alpha_{l+s}-\alpha_{l}\right\|_{H^{2}\left(\left(\mathbb{D}^{m}\right)_{\mathrm{nc}}\right)} \\
& \leq\left\|E_{\mathbb{D}^{m}}^{X}\right\| \cdot\left(\sum_{l<|w| \leq l+s}\left|f_{w}\right|^{2}\right)
\end{aligned}
$$

Since the sequence $\left\{\sum_{|w| \leq l}\left|f_{w}\right|^{2}\right\}_{l \geq 0}$ is Cauchy, it follows that $\left\{\alpha_{l}\right\}_{l}$ is also a Cauchy sequence, therefore the series $\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right)$ converges.

The argument for part (ii) is similar, replacing $l^{2}\left(\mathcal{F}_{m}\right)$ to $l_{m}^{2}\left(\mathcal{F}_{m}\right)$ and using second parts of Theorem 2.3 and of relation (15).

Theorem 2.8. For $p>0$, define

$$
\Upsilon_{p}^{m}=\left\{X \in\left(\mathbb{C}^{m}\right)_{n c}: \sum_{w \in \mathcal{F}_{m}} p^{|w|}\left(X^{w}\right)^{*} X^{w} \text { converges }\right\}
$$

Then $\mathcal{B}_{\mathbb{D}^{m}}=\left(\mathbb{D}^{m}\right)_{n c} \cap \Upsilon_{1}^{m}$ and $\mathcal{B}_{\mathbb{B}^{m}}=\left(\mathbb{B}^{m}\right)_{n c} \cap \Upsilon_{m}^{m}$.
Moreover, if $X \in \Upsilon_{p}^{m} \cap \mathbb{C}^{N \times N}$, then $\left\{X^{w}\right\}_{w \in \mathcal{F}_{m}} \in l_{\frac{1}{p}}^{2}\left(\mathcal{F}_{m}\right) \otimes \mathbb{C}^{N \times N}$.
Proof. Suppose that $X \in \mathcal{B}_{\mathbb{D}^{m}, N}$. Since, according to Proposition 2.7(i), the series $\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right)$ converges for any $\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}}$ from $l^{2}\left(\mathcal{F}_{m}\right)$, it follows that the
series $\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} e^{*} X^{w} \widetilde{e}\right)$ also converges for any $e, \widetilde{e} \in \mathbb{C}^{N}$. The Riesz Representation Theorem gives that $\left\{e^{*} X^{w} \widetilde{e}\right\}_{w \in \mathcal{F}_{m}} \in l^{2}\left(\mathcal{F}_{m}\right)$, therefore also the series $\sum_{l=0}^{\infty} \sum_{w \in \mathcal{F}_{m}^{[l]}} e^{*}\left(X^{w}\right)^{*} \widetilde{e} X^{w}$ converges for all $e, \widetilde{e} \in \mathbb{C}^{N}$.

Taking e, \widetilde{e} from the cannonical basis of \mathbb{C}^{N}, we get that $\sum_{w \in \mathcal{F}_{m}}\left(X^{w}\right)^{*} X^{w}$ converges on each entry, therefore in $\mathbb{C}^{N \times N}$.

The argument for $\left(\mathbb{B}^{m}\right)_{\text {nc }}$ is similar.
Suppose now than $X \in \Upsilon_{p}^{m} \cap \mathbb{C}^{N \times N}$. Then $\sum_{w \in \mathcal{F}_{m}} p^{|w|}\left(X^{w}\right)^{*} X^{w}$ also converges entrywise, and, since the (j, j)-entry of the series equals

$$
\sum_{w \in \mathcal{F}_{m}} p^{|w|}\left(\sum_{l=1}^{N} \overline{x_{l, j}^{(w)}} x_{l, j}^{(w)}\right)=\sum_{l=1}^{N}\left(\sum_{w \in \mathcal{F}_{m}} p^{|w|} \overline{\left(_{l, j}^{(w)}\right.} x_{l, j}^{(w)}\right)
$$

where $x_{l, j}^{(w)}$ is the (l, j)-entry of X^{w}, it follows that $\left\{x_{l, j}^{(w)}\right\}_{w \in \mathcal{F}_{m}} \in l_{\frac{1}{p}}^{2}\left(\mathcal{F}_{m}\right)$ for all l, j. In particular $\left\{X^{w}\right\}_{w \in \mathcal{F}_{m}} \in l_{\frac{1}{p}}^{2}\left(\mathcal{F}_{m}\right) \otimes \mathbb{C}^{N \times N}$.

Remark 2.9. (i) $\Upsilon_{1}^{m} \not \subset\left(\mathbb{D}^{m}\right)_{n c}$ and $\Upsilon_{m}^{m} \not \subset\left(\mathbb{B}^{m}\right)_{n c}$.
(ii) If $X=\left(X_{1}, X_{2}, \ldots, X_{m}\right) \in\left(\mathbb{C}^{N \times N}\right)^{m}$ is such that

$$
X^{*} X_{1}+X_{2}^{*} X_{2}+\cdots+X_{m}^{*} X_{m}<\frac{1}{p}
$$

then $X \in \Upsilon_{p}^{m}$. In particular, $\frac{1}{\sqrt{m}}\left(\mathbb{D}^{m}\right)_{n c} \subset \mathcal{B}_{\mathbb{D}^{m}}$ and $\frac{1}{\sqrt{m}}\left(\mathbb{B}^{m}\right)_{n c} \subset \mathcal{B}_{\mathbb{B}^{m}}$.
Proof. For part (i), it suffices to take $X=\left(X_{1}, 0, \ldots, 0\right)$ with X_{1} nilpotent with norm larger than 1 . Then $X \in \Upsilon_{p}^{m}$ for any $p>0$, but $X \notin\left(\mathbb{B}^{m}\right)_{\mathrm{nc}},\left(\mathbb{D}^{m}\right)_{\mathrm{nc}}$.

For part (ii), suppose that $X^{*} X_{1}+X_{2}^{*} X_{2}+\cdots+X_{m}^{*} X_{m}<\frac{\theta}{p}$ for some $0<\theta<1$.
Denote by $X^{[l]}=p^{l} \sum_{w \in \mathcal{F}_{m}^{[l]}}\left(X^{w}\right)^{*} X^{w}$. Then

$$
0 \leq X^{[l+1]}=\sum_{w \in \mathcal{F}_{m}^{[l]}} p^{l}\left(X^{w}\right)^{*}\left(p \sum_{k=1}^{m} X_{k}^{*} X_{k}\right) X^{w}<\theta X^{[l]}
$$

hence $\sum_{w \in \mathcal{F}_{m}}\left(X^{w}\right)^{*} X^{w}<\frac{1}{1-\theta}$.

Definition 2.10. For $p>0$, we will consider the sets

$$
\mathcal{K}_{p}=\left\{(X, Y) \in\left(\mathbb{C}^{m}\right)_{n c} \times\left(\mathbb{C}^{m}\right)_{n c}: \sum_{l=0}^{\infty}\left[\sum_{w \in \mathcal{F}_{m}^{[l]}} p^{l} X^{w} \otimes\left(Y^{w}\right)^{*}\right] \text { converges }\right\}
$$

and the maps $K_{p}: \mathcal{K}_{p} \longrightarrow \mathbb{C}_{n c}$, given by

$$
K_{p}(X, Y)=\sum_{l=0}^{\infty}\left[\sum_{w \in \mathcal{F}_{m}^{[l]}} p^{l} X^{w} \otimes\left(Y^{w}\right)^{*}\right]
$$

Theorem 2.8 implies the following result:
Remark 2.11. $\left(\Upsilon_{p}^{m} \times \Upsilon_{p}^{m}\right) \subset \mathcal{K}_{p}$.
Also, note that from the second part of Theorem 2.8, any sequence $f=\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}}$ from $l_{p}^{2}\left(\mathcal{F}_{m}\right)$ can be identified with a nc-function on Υ_{p}^{m} via

$$
f(X)=\sum_{l=o}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right)
$$

Next, we will consider the following spaces of nc-functions:
Definition 2.12. For $p>0$ define $\overline{H_{m, p}^{2}}$ as follows:

$$
\begin{aligned}
& \overline{H_{m, p}^{2}}=\left\{f: \Upsilon_{p}^{m} \longrightarrow \mathbb{C}_{n c}: f\right. \text { is nc-function such that there exists some sequence } \\
& \left.\quad\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}} \in l_{p}^{2}\left(\mathcal{F}_{m}\right) \text { such that } f(X)=\sum_{l=o}^{\infty} \sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right\}
\end{aligned}
$$

Note that $\overline{H_{p}^{2}}$ are Hilbert spaces with the inner-products inherited from $l_{p}^{2}\left(\mathcal{F}_{m}\right)$. Proposition 2.13 below shows that in fact they are reproducing kernel Hilbert spaces with respect to K_{p}.
Proposition 2.13. Fix $Y \in \Upsilon_{p}^{m} \cap \mathbb{C}^{M \times M}$. With the notations above, we have that:
(i) The map $K_{p}(\cdot, Y): \Upsilon_{p}^{m} \longrightarrow\left(\mathbb{C}^{M \times M}\right)_{n c}$ is a non-commutative function that belongs to $\overline{H_{p, m}^{2}} \otimes \mathbb{C}^{M \times M}$.
(ii) for any $e_{1}, e_{2} \in \mathbb{C}^{M}$ and any $f \in \overline{H_{p, m}^{2}}$,

$$
\left\langle f, e_{1}^{*} K_{p}(\cdot, Y) e_{2}\right\rangle_{l_{p}^{2}\left(\mathcal{F}_{m}\right)}=e_{2}^{*} f(Y) e_{1}
$$

Proof. For part (i), first note that for any $w \in \mathcal{F}_{m}$, the map $X \mapsto p^{|w|} X^{w} \otimes\left(Y^{w}\right)^{*}$ is a noncommutative function from \mathbb{C}_{nc} to $\left(\mathbb{C}^{M \times M}\right)_{\mathrm{nc}}$, hence it suffices to prove the convergence in $\overline{H_{p, m}^{2}}$.

Let $y_{i, j}^{(w)}$ be the (i, j)-entry of Y^{w}.
From Theorem 2.8, the sequences $\left\{y_{i, j}^{(w)}\right\}_{w \in \mathcal{F}_{m}}$ are in $l_{p}^{2}\left(\mathcal{F}_{m}\right)$ for all i, j, hence the map $X \mapsto \sum_{w \in \mathcal{F}_{m}} y_{i, j}^{(w)} X^{w}$ is a \mathbb{C}_{nc}-valued non-commutative function from $\overline{H_{p, m}^{2}}$.

For part (ii), let $\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}} \in l^{2}\left(\mathcal{F}_{m}\right)$ such that $f(X)=\sum_{w \in \mathcal{F}_{m}} f_{w} X^{w}$. Then

$$
\begin{gathered}
\left\langle f, e_{1}^{*} K_{p}(\cdot, Y) e_{2}\right\rangle_{l_{p}^{2}\left(\mathcal{F}_{m}\right)}=\left\langle\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}},\left\{e_{1}^{*}\left(Y^{w}\right)^{*} e_{2}\right\}_{w \in \mathcal{F}_{m}}\right\rangle_{l_{p}^{2}\left(\mathcal{F}_{m}\right)} \\
=\sum_{w \in \mathcal{F}_{m}} e_{2}^{*} f_{w} Y^{w} e_{1}=e_{2}^{*} f(Y) e_{1}
\end{gathered}
$$

Proposition 2.14. Suppose that f is a non-commutative function locally bounded on slices separately in every matrix dimension around 0 and

$$
\begin{aligned}
& \Phi(r)=\lim _{N \longrightarrow \infty} \int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(f(r X)^{*} f(r X)\right) d \mu_{N} \\
& \Psi(r)=\lim _{N \longrightarrow \infty} \int_{\partial\left(\mathbb{B}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(f(r X)^{*} f(r X)\right) d \nu_{N}
\end{aligned}
$$

Then f extends to a function in $\overline{H_{1, m}^{2}}$, respectively in $\overline{H_{m, m}^{2}}$, if and only if $\Phi(r)$, respectively $\Psi(r)$, exists for all small r (in which case Φ, respectively Ψ, are also analytic at 0) and it extends analytically to $(0,1)$ and continously to $[0,1]$.

Moreover, $\lim _{r \longrightarrow 1^{-}} \Phi(r)=\|f\|_{\overline{H_{1, m}^{2}}}$, respectively $\lim _{r \longrightarrow 1^{-}} \Psi(r)=\|f\|_{\overline{H_{m, m}^{2}}}$.
Proof. Suppose first that f extends to $\tilde{f} \in \overline{H_{1, m}^{2}}$, that is there exists $\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}}$ such that

$$
\begin{equation*}
f(X)=\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}\right) \tag{16}
\end{equation*}
$$

for all $X \in \Upsilon_{1}^{m}$; in particular, Remark 2.9(ii) gives that the expansion (16) holds for all $X \in \frac{1}{\sqrt{m}} \mathbb{D}^{m}$.

As before, consider the non-commutative functions $f^{[l]}:\left(\mathbb{C}^{m}\right)_{\mathrm{nc}} \longrightarrow \mathbb{C}_{\mathrm{nc}}$ given by $f^{[l]}(X)=\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} X^{w}$. Then, for $X \in \partial\left(\mathbb{D}^{m}, N\right)$, we have that

$$
\left\|f^{[l]}\left(\frac{1}{m} X\right)\right\| \leq \sum_{w \in \mathcal{F}_{m}^{[l]}} \frac{1}{m^{l}} \sup _{w \in \mathcal{F}_{m}^{[l]}}\left(\left|f_{w}\right| \cdot\left\|X^{w}\right\|\right) \leq \sup _{w \in \mathcal{F}_{m}^{[l]}}\left|f_{w}\right|,
$$

therefore, for $r \in\left(0, \frac{1}{m}\right)$,

$$
\int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(f^{[l]}(r X)^{*} f^{[l]}(r X)\right) d \mu_{N} \leq \sup _{w \in \mathcal{F}_{m}^{[l]}}\left|f_{w}\right|^{2}
$$

hence, expansion (16) and Corollary 1.4(ii) give that

$$
\begin{aligned}
& \int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(f(r X)^{*} f(r X)\right) d \mu_{N} \\
&=\sum_{l=0}^{\infty} \int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr}\left(f^{[l]}(r X)^{*} f^{[l]}(r X)\right) d \mu_{N} \leq\|f\|_{l^{2}\left(\mathcal{F}_{m}\right)}^{2}
\end{aligned}
$$

Therefore, using Corollary 1.4(i), we have that for $r \in\left(0, \frac{1}{m}\right)$,

$$
\Phi(r)=\sum_{l=0}^{\infty} r^{2 l}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}}\left|f_{w}\right|^{2}\right)
$$

and Φ extends analytically to $(0,1)$ and continously to $[0,1]$.
The proof for Ψ is similar, using Remark 2.9 and Corollary 1.5.
For the converse, suppose that there exists $\delta>0$ such that $\Phi(r)$ exists for $r<\delta$ and extends analitically to $(0,1)$. In particular there exists some N_{0} such that the integral from the definition of $\Phi(\cdot)$ is finite if $N>N_{0}$. Fix now $N>N_{0}$; equation (5) gives that there exists some $\alpha>0$ such that the series $\sum_{w \in \mathcal{F}_{m}} f_{w} X^{w}$ converges absolutely for $X \in \alpha \mathbb{D}^{m}$, particularly $\left\{\left(\frac{\alpha}{m}\right)^{|w|} f_{w}\right\}_{w \in \mathcal{F}_{m}} \in l^{1}\left(\mathcal{F}_{m}\right) \subset l^{2}\left(\mathcal{F}_{m}\right)$.

Let $R=\min \left\{\delta, \frac{\alpha}{m}\right\}$. Then Corollary 1.4 gives that, for $r \in(0, R)$,

$$
\Phi(r)=\sum_{l=0}^{\infty} r^{2 l}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}}\left|f_{w}\right|^{2}\right)
$$

and the conclusion follows since $\Phi(\cdot)$ extends analytically to $(0,1)$.
As before, the proof for $\Psi(\cdot)$ is similar, using equation (5) and Corollary 1.5.

Proposition 2.15. For $f \in \overline{H_{1, m}^{2}}$ and $g \in \overline{H_{m, m}^{2}}$, respectively $Y \in \Upsilon_{1}^{m} \cap \mathbb{C}^{M \times M}$ and $Y^{\prime} \in \Upsilon_{m}^{m} \cap \mathbb{C}^{M \times M}$, we have that

$$
\begin{aligned}
\varphi_{f, Y}(r) & =\lim _{N \longrightarrow \infty} \int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr} \otimes I d_{\mathbb{C}^{M \times M}}\left(f(r X) K_{1}\left(r X, Y^{*}\right)^{*}\right) d \mu_{N}(X) \\
\psi_{g, Y^{\prime}}(r) & =\lim _{N \longrightarrow \infty} \int_{\partial\left(\mathbb{B}^{m}, N\right)} \frac{1}{N} \operatorname{Tr} \otimes I d_{\mathbb{C}^{M \times M}}\left(g(r X) K_{m}\left(r X,\left(Y^{\prime}\right)^{*}\right)^{*}\right) d \nu_{N}(X)
\end{aligned}
$$

are analytic functions of r for r small and they extend analytically to $(0,1)$ and continously to $[0,1]$. Moreover, $\lim _{r \longrightarrow 1^{-}} \varphi_{f, Y}(r)=f(Y)$ and $\lim _{r \longrightarrow 1^{-}} \psi_{g, Y^{\prime}}(r)=g\left(Y^{\prime}\right)$. Proof. Let $p \geq 1$ and $r \in\left(0,\left(2 m^{2} p\right)^{-1}\right)$, let $\left\{f_{w}\right\}_{w \in \mathcal{F}_{m}} \in l_{p}^{2}\left(\mathcal{F}_{m}\right)$, and consider $X \in \mathbb{C}^{N \times N}, Y \in \mathbb{C}^{M \times M}$ such that $\sup _{w \in \mathcal{F}_{m}}\left\|Z^{w}\right\|=m(Z)<\infty$ and $\sup _{w \in \mathcal{F}_{m}}\left\|X^{w}\right\| \leq 1$.

First, note that the series $\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} r^{2|w|} f_{w} p^{|w|} Y^{w}\right)$ converges asolutely, since $\left\|\left\{(r p)^{2|w|}\right\}_{w}\right\|_{l^{2}\left(\mathcal{F}_{m}\right)}<2$ and

$$
\begin{aligned}
& \sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}}\left\|r^{2|w|} f_{w} p^{|w|} Y^{w}\right\|\right) \leq m(Y) \cdot \sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}}(r p)^{2|w|} \cdot\left|p^{-|w|} f_{w}\right|\right. \\
& \leq m(Y) \cdot \|\left\{f_{w}\left\|_{w}\right\|_{l_{p}^{2}\left(\mathcal{F}_{m}\right)}^{\frac{1}{2}} \cdot\left\|\left\{(r p)^{2|w|}\right\}_{w}\right\|_{l^{2}\left(\mathcal{F}_{m}\right)}^{\frac{1}{2}}\right.
\end{aligned}
$$

Also, we have that $\left\|\left\{(r m p)^{|w|}\right\}_{w}\right\|_{l^{2}\left(\mathcal{F}_{m}\right)}<2$ and

$$
\begin{aligned}
{\left[\sum _ { k = 0 } ^ { \infty } \left(\sum_{w \in \mathcal{F}_{m}^{[k]}}\right.\right.} & \left.\left.\left\|f_{w} \cdot r^{|w|} X^{w}\right\|\right)\right] \cdot\left[\sum_{l=0}^{\infty}\left(\sum_{v \in \mathcal{F}_{m}^{[l]}} p^{l} \cdot r^{l}\left\|X^{v} \otimes\left(Y^{v}\right)^{*}\right\|\right)\right] \\
& \leq\left[\sum_{k=0}^{\infty} m^{k} r^{k}\left(\sum_{w \in \mathcal{F}_{m}^{[k]}}\left|f_{w}\right|\right)\right] \cdot\left(\sum_{l=0}^{\infty} p^{l} r^{l} m^{l} \cdot m(Y)\right) \\
& \leq\left[\sum_{k=0}^{\infty}(r \cdot m p)^{k} \cdot\left(\sum_{w \in \mathcal{F}_{m}^{[k]}} p^{-|w|}\left|f_{w}\right|\right)\right] \cdot 2 m(Y) \\
& \leq\left\|\left\{f_{w}\right\}_{w}\right\|_{l_{p}^{2}\left(\mathcal{F}_{m}\right)}^{\frac{1}{2}} \cdot\left\|\left\{(r m p)^{|w|}\right\}_{w}\right\|_{l^{2}\left(\mathcal{F}_{m}\right)}^{\frac{1}{2}} \cdot 2 m(Y)
\end{aligned}
$$

Therefore, for $p=1$, if f and Y are as in the statement of 2.15, we have that

$$
\begin{aligned}
& \int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr} \otimes \operatorname{Id}_{\mathbb{C}^{M \times M}}\left(f(r X) K_{1}\left(r X, Y^{*}\right)^{*}\right) d \mu_{N}(X) \\
& \quad=\int_{\partial\left(\mathbb{D}^{m}, N\right)} \frac{1}{N} \operatorname{Tr} \otimes \operatorname{Id}_{\mathbb{C}^{M \times M}}\left(\sum_{k, l=0}^{\infty} \sum_{w \in \mathcal{F}_{m}^{[k]}} \sum_{v \in \mathcal{F}_{m}^{[l]}} f_{w} \cdot r^{k} X^{w} \cdot\left(X^{v}\right)^{*} \otimes Y^{v}\right) d \mu_{N}(X) .
\end{aligned}
$$

Since $\frac{1}{N} \operatorname{Tr} \otimes \operatorname{Id}_{\mathbb{C}^{M \times M}}$ is a bounded linear map, using Corollary 1.4, the right hand side of the equation above equals $\sum_{l=0}^{\infty}\left(\sum_{w \in \mathcal{F}_{m}^{[l]}} f_{w} Y^{w}\right)$. and the conclusion for $\varphi_{Y, f}$ follows.

The proof for $\psi_{g, Y^{\prime}}$ is analogous letting $p=m$ and using Corollary 1.5.

Definition 2.16. For Ω either \mathbb{B}^{m} or \mathbb{D}^{m}, define
$\begin{aligned} H^{\infty}\left(\Omega_{n c}\right) & =\left\{f: \Omega_{n c} \longrightarrow \mathbb{C}_{n c}: \text { fis a non-commutative function and } \sup _{Z \in \Omega}\|f(Z)\|<\infty\right\} \\ H^{\infty}\left(\mathcal{B}_{\Omega}\right) & =\left\{f: \mathcal{B}_{\Omega} \longrightarrow \mathbb{C}_{n c}: \text { fis a non-commutative function and } \sup _{Z \in \mathcal{B}_{\Omega}}\|f(Z)\|<\infty\right\} .\end{aligned}$
Obviously, $H^{\infty}\left(\Omega_{\mathrm{nc}}\right) \subset H^{\infty}\left(\mathcal{B}_{\Omega}\right)$, since $\mathcal{B}_{\Omega} \subset \Omega_{\mathrm{nc}}$. We will further detail this inclusion below.

Definition 2.17. For Ω either \mathbb{B}^{m} or \mathbb{D}^{m}, define
$\mathcal{M}\left(\Omega_{n c}\right)=\left\{f: \Omega_{n c} \longrightarrow \mathbb{C}_{n c}: f\right.$ is a non-commutative function which is also a bounded left multiplier for $\left.H^{2}\left(\Omega_{n c}\right)\right\}$
$\mathcal{M}\left(\mathcal{B}_{\Omega}\right)=\left\{f: \mathcal{B}_{\Omega} \longrightarrow \mathbb{C}_{n c}: f\right.$ is a non-commutative function which is also a bounded left multiplier for $\overline{H_{1, m}^{2}}$, if $\Omega=\mathbb{B}^{m}$, respectively $\overline{H_{m, m}^{2}}$ if $\left.\Omega=\mathbb{D}^{m}\right\}$.
where the multiplier norms are the natural ones.
Proposition 2.18. With the notations above, we have that

$$
H^{\infty}\left(\Omega_{n c}\right) \subseteq \mathcal{M}\left(\Omega_{n c}\right) \subseteq \mathcal{M}\left(\mathcal{B}_{\Omega}\right) \subseteq H^{\infty}\left(\mathcal{B}_{\Omega}\right)
$$

Proof. From the consideration above, we only need to prove the last inclusion. Consider $g \in \mathcal{M}\left(\mathcal{B}_{\Omega}\right)$, denote M_{g} the left multiplier with g and take $X \in \mathcal{B}_{\Omega} \cap$ $\mathbb{C}^{M \times M}, Y \in \Upsilon_{p}^{m} \cap \mathbb{C}^{N \times N}$. From Poposition 2.13, for any $e_{1}, e_{2} \in \mathbb{C}^{M}$ and $f_{1}, f_{2} \in$ \mathbb{C}^{N}, we have that

$$
\begin{aligned}
\left\langle\left(M_{g}\right)^{*} e_{1}^{*} K(\cdot, X)\right. & \left.e_{2}, f_{1}^{*} K(\cdot, Y) f_{2}\right\rangle=\left\langle e_{1}^{*} K(\cdot, X) e_{2}, M_{g} f_{1}^{*} K(\cdot, Y) f_{2}\right\rangle \\
& =\left\langle g(\cdot) f_{1}^{*} K(\cdot, Y) f_{2}, e_{1}^{*} K(\cdot, X) e_{2}\right\rangle^{*} \\
& =\left(e_{2}^{*} g(X) f_{1}^{*} K(X, Y) f_{2} e_{1}\right)^{*}
\end{aligned}
$$

hence $\left(M_{g}\right)^{*} K(\cdot, X)=K(\cdot, X) g(X)^{*}$ and since $\left\|\left(M_{g}\right)^{*} K(\cdot, X)\right\| \leq\left\|M_{g}\right\| \cdot\|K(\cdot, X)\|$ and $K(\cdot, \cdot)$ is a reproducing kernel, it follows that $\|g(X)\| \leq\left\|M_{g}\right\|$.

References

[1] B. Collins Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not. 2003, no. 17, 953-982
[2] B. Collins, P. Sniady Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), no. 3, 773-795
[3] E. G. Effors, Z.-J. Ruan Operator spaces, London Math. Soc. Monographs, New Series 23, Oxford University Press, New York 2000
[4] G. Folland A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995
[5] D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov, Foundations of Noncommutative Function Theory, arXiv:1212.6345
[6] D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov, Noncommutative rational functions, their difference-differential calculus and realizations, Multidimens. Syst. Signal Process. 23 (2012), no.1-2, 49-77
[7] A. Koranyi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. Math. 82 (1965), 332-350
[8] G. Pisier, Introduction to Operator Space Theory, Cambridge University Press, 2003
[9] M. Popa and V. Vinnikov, Non-commutative functions and the non-commutative free LvyHinin formula, Adv. Math. 236 (2013), 131-157 Adv. Math
[10] R. Speicher, A. Nica Lectures on combinatorics of free probability, London Math Soc Lecture Note Series 335, Cambridge Univ. Press 2006
[11] R. Speicher, J. Mingo, P. Sniady Second order freeness and fluctuations of random matrices. II. Unitary random matrices, Adv. Math. 209 (2007), no. 1, 212-240
[12] H. Upmeier, Toeplitz Operators and Index Theory in Several Complex Variables (Operator Theory: Advances and Applications, Vol. 81), Birkhauser, 1996
[13] D-V. Voiculescu, K. Dykema, A. Nica Free Random Variables CRM Monograph Series, 1, American Mathematical Society, 1992
[14] D. V. Voiculescu, Limit laws for random matrices and free products. Invent. Math. 104 (1991), no. 1, 201-220

The University of Texas at San Antonio, Department of Mathematics, One UTSA Circle, San Antonio, Texas 78249, and

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, Bucharest, RO-70700, Romania

E-mail address: Mihai. Popa@utsa.edu
Department of Mathematics, Ben Gurion University of Negev, Be'er Sheva 84105, IsRaEL

E-mail address: vinnikov@cs.bgu.ac.il

[^0]: * Research partially supported by the Romanian National Authority for Scientific Research, CNCS UEFISCDI, Project Number PN-II-ID-PCE-2011-3-0119.

