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On a model for the maximal function of an
n-hypercontraction

Ilie Valusescu ∗

Abstract. Starting from the characterization given by Agler [2] to an
n-hypercontraction of the class C0· as a part of the backward shift on a
Bergman space, parallel with results about maximal functions attached to
a contraction operator on a Hilbert space [20, 21], the particular case of
an n-hypercontraction is analyzed. The functional model from H2 given
by the maximal function of a contraction in the C·0 case and some connec-
tions between the maximal function and systems are recalled, and corre-
sponding results about the generalized maximal function attached to an n-
hypercontraction are given. Such a way, a functional model from a Bergman
space An for an n-hypercontraction of the class C0· is characterized and par-
tial results about the connections between the generalized maximal function
of an n-hypercontraction and systems are given.
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1 n-hypercontractions

The class Cn of the n-hypercontraction operators on a Hilbert space was
introduced by J. Agler [2], [1] where he proved that an n-hypercontraction
from the class C0. is modeled as a restriction to an invariant subspace of the
adjoint shift operator on a standard weighted Bergman space.

Let H be a Hilbert space and L(H) the C∗-algebra of all linear bounded
operators on H. For a fixed integer n ≥ 1 an operator T ∈ L(H) is called
an n-hypercontraction, if it verifies the inequalities

(1.1)
m∑
k=0

(−1)k
(
m

k

)
T ∗kT k ≥ 0
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in L(H) for all 1 ≤ m ≤ n.
Obviously Cn is a particular case of the class of contraction operators on

H. For n = 1 the contraction case is obtained.
Based on the inequalities (1.1), there exist n square roots operators in

L(H) if we take

(1.2) Dm,T =
[ m∑

k=0

(−1)k
(
m

k

)
T ∗kT k

]1/2
for 1 ≤ m ≤ n, which generalize the notion of defect operator for a con-
traction T ∈ L(H), DT = (I − T ∗T )1/2. Also the notion of defect space of
a contraction DT = DTH is generalized to n closed subspaces of H taking
Dm,T = Dm,TH, for 1 ≤ m ≤ n.

Actually Agler [2] introduced the notion of n-hypercontraction based on
hereditary polynomials p(x, y) in two noncommuting variables x and y of the
form

p(x, y) =
∑

cijy
jxi

and using the fact that if p is a hereditary polynomial of this form and b ∈ B,
where B is any C∗-algebra with identity, then p(b) is defined by

p(b) =
∑

cijb
∗jb.

In the particular case when T ∈ L(H) - the C∗-algebra of all linear bounded
operators in H we have

(1.3) (1− yx)m(T ) =
m∑
k=0

(
m

k

)
T ∗kT k.

Then T ∈ L(H) as an n-hypercontraction was defined having the property
that (1 − yx)m(T ) ≥ 0 for 1 ≤ m ≤ n, and the class of n-hypercontractions
on H was denoted by Cn(H). Also, T ∈ Cn(H) was called a strong n-
hypercontraction if Tm → 0 strongly as m → ∞.

The standard weighted Bergman space on the unit disc D, denoted by
An(D) is the Hilbert space of analytic functions on D

f(z) =
∞∑
k=0

akz
k

with the norm

(1.4) ∥f∥2An
=

∞∑
k=0

|ak|2 µn;k
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where ak are the Taylor coefficients of the function f and the weights are
given by

(1.5) µn;k = 1/

(
k + n− 1

k

)
,

which actually are the Taylor coefficients from the decomposition of the func-
tion (1− x)−n =

∑∞
0 µn;kx

k.
Equivalently, An(D) can be defined as the Hilbert space of square inte-

grable analytic functions on D corresponding to the weighted area measure

(1.6) dµn(z) = (n− 1)(1− |z|2)n−2dA(z),

where dA(z) = 1
π
dxdy, z=x+iy, is the usual planar normalized Lebesgue

area measure. Therefore the norm (1.4) on An(D) is equivalent with the
norm

(1.7) ∥f∥2An
= lim

r→1

∫
D̄
|f(rz)|2 dµn(z),

and An(D) can be seen as H2(µn).
Let us remark that in the particular case n = 1 the space A1(D) is the

Hardy space H2(D), dµ1 is the normalized arc measure on the unit circle T
and µn;k are the moments of the measure dµn defined by

(1.8) µn;k =

∫
D̄
|z|2k dµn(z) = 1/

(
k + n− 1

k

)
, k ≥ 0.

There exist a lot of references for Bergman space, but the most cited is
the book of Hedenmalm, Korenblum and Zhu [10].

For our purpose we consider the vectorial case, namely An(E) is the stan-
dard weighted Bergman space of E-valued analytic functions on D,

f(z) =
∞∑
k=0

akz
k, ak ∈ E,

where E is a Hilbert space. Therefore An(E) is the Hilbert space of all E-
valued analytic functions on D with the finite norm

(1.9) ∥f∥2An
=

∞∑
k=0

∥ak∥2 µn;k,

where µn;k are given by (1.8), or equivalently,

(1.10) ∥f∥2An
= lim

r→1

∫
D̄
∥f(rz)∥2 dµn(z),
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where dµn is the standard weighted area measure given by (1.6). Obviously
A1(E) is the Hardy space H2(E).

As usually, the shift operator on An(E) is defined by

(1.11) (Snf)(z) = zf(z) =
∞∑
k=1

ak−1z
k, z ∈ D

and it is a bounded operator on An(E). Since the weight sequence {µn;k} is
decreasing and limk→∞

µn;k+1

µn;k
= 1, it follows that the norm of Sn is 1.

Notice that S1 is the unilateral shift on H2(E), S2 is the Bergman shift
on the Bergman space A2(E) and that, in general, Sn is a weighted shift.

The adjoint operator S∗
n of Sn has the form

(1.12) (S∗
nf)(z) =

∞∑
k=0

µn;k+1

µn;k

ak+1z
k, z ∈ D.

Indeed, we have

⟨S∗
nf, f⟩An

= ⟨f, Snf⟩An
=

⟨
∞∑
k=0

akz
k,

∞∑
k=1

ak−1z
k

⟩
An

=

=

⟨
∞∑
k=0

akz
k,

∞∑
k=0

ak−1z
k

⟩
An

=
∞∑
k=0

⟨
akz

k, ak−1z
k
⟩
E
µn;k =

=
∞∑
k=1

⟨
akz

k, ak−1z
k
⟩
E
µn;k =

∞∑
j=0

⟨
aj+1z

j+1, ajz
j+1

⟩
E
µn;j+1 =

=
∞∑
j=0

⟨
µn;j+1

µn;j

aj+1z
j, ajz

j

⟩
E

µn;j =

⟨
∞∑
k=0

µn;k+1

µn;k

ak+1z
k,

∞∑
k=0

akz
k

⟩
An

,

and it follows that

(S∗
nf)(z) =

∞∑
k=0

µn;k+1

µn;k

ak+1z
k, z ∈ D.

An operator A is a part of an operator B ∈ L(H) if A is a restriction to
an invariant subspace E of B, A = B|E. Sometimes B is called an extension
of the operator A. Due to [7] and [18] it is known the following

Theorem 1.1. If S is the unilateral shift of multiplicity one and S∗(∞) is the
direct sum of a countably infinite number of copies of S∗, then an operator
T has an extension to S∗(∞) if ∥T∥ ≤ 1 and Tm → 0 as m → ∞.
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This result was applied by Agler [1] to a Bergman shift on A2(E), and
generalized in [2] to the case of n-hypercontractions, the main result being
the following theorem ([2], Theorem1.12).

Theorem 1.2. The operator T from L(H) has an extension to S∗
n if and

only if T is an n-hypercontraction of C0. class.

2 Maximal function

Let T be a contraction on a complex separable Hilbert space H. As usually,
byDT = (I−T ∗T )1/2, DT ∗ = (I−TT ∗)1/2 will be denoted the defect operators
of T , and by DT = DTH, DT ∗ = DT ∗H will be denoted the defect spaces of
the contraction T .

Using the factorization theorem of an operator valued semispectral mea-
sure, the maximal outer function {H,DT ∗ ,MT (λ)} in the particular case of
the semispectral measure attached to a contraction T was obtained [20] into
the form

(2.1) MT (λ) = DT ∗(I − λT ∗)−1, (λ ∈ D),

and was called the maximal function of the contraction T .
Analogously, the maximal function of T ∗ will be of the form

(2.2) MT ∗(λ) = DT (I − λT )−1, (λ ∈ D).

Between the maximal function MT (λ), and the characteristic function of
the contraction T ,

ΘT (λ) = [−T + λDT ∗(I − λT ∗)−1DT ]|DT ,

there exists the obvious relation

ΘT (λ) = [−T + λMT (λ)DT ]|DT .

To the maximal function MT (λ) the following operator

MT : H → H2(DT ∗)

is attached by

(2.3) (MTh)(λ) = MT (λ)h.

Analogously, for the maximal function of T ∗ the operator

MT ∗ : H → H2(DT )
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is defined by

(2.4) (MT ∗h)(λ) = MT ∗(λ)h.

In some investigations , generalizing the C0. and C.0 case, an operator T
on H is called stable if T n → 0, and ∗-stable if T ∗n → 0, strongly as n → 0.
Actually, in the linear system theory, a system with the main operator T is
called stable, if it is stable and ∗-stable.

Proposition 2.1. If T is a contraction of the C·0 class, then its maximal
function {H,DT ∗ ,MT (λ)} is bounded, and the attached operator MT defined
by (2.3) is an isometry. Moreover, the Sz.-Nagy–Foias functional model [18]
reduces to a functional representation given by the maximal function MT (λ).
Namely, the imbedding of H into the functional model is given by

(2.5) H = MTH ⊂ H2(DT ∗),

and the functional representation of the contraction T is given by the back-
ward shift S∗ on H2(DT ∗)

(2.6) T∗u(λ) =
1

λ
[MT (λ)h−MT (0)h] = S∗u(λ).

Moreover, MT intertwines T ∗ with S∗,

(2.7) MTT
∗ = S∗MT .

Proof. Using the Sz.-Nagy–Foias notations from [18], the functional model
of a contraction is obtained by a unitary imbedding Φ of the dilation space
K of T into a functional space, where

K = M(L∗)⊕R and L∗ = UL∗,

L∗ = (U∗ − T ∗)H, M(L∗) = ⊕+∞
−∞UnL∗.

Also it is known that the space of the isometric dilation U+ = U |K+ is

K+ = M+(L∗)⊕R = H ⊕M+(L).

Of courseR = K⊖M(L∗) reduces to {0} if and only if T ∗n −→ O, i.e. T ∈ C.0

class. In this case Φ = ΦDT∗ - the Fourier representation of M+(DT ∗), taking
account by the unitary transformation of L∗ into DT ∗ and the fact that
P L∗M+(L) ⊂ M+(L∗) [cf. [18], Chap II, Theorem 2.1], where P L∗ is the
orthogonal projection of K on M(L∗). Therefore we have

H = ΦH = ΦDT∗H
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and by [20], Prop.1, it follows that
H = VMT

H, where VMT
= ΦDT∗P L∗|H.

The relation (2.6) is a consequence of the fact that T ∗ = U∗
+|H.

For any contraction T and h ∈ H we have
n∑

k=0

∥∥DT ∗T ∗kh
∥∥2

=
n∑

k=0

⟨
D2

T ∗T ∗kh, T ∗kh
⟩
=

=
n∑

k=0

(
∥∥T ∗kh

∥∥2 −
∥∥T ∗k+1h

∥∥2
) =

=
n∑

k=0

∥∥T ∗kh
∥∥2 −

n+1∑
k=1

∥∥T ∗kh
∥∥2

=

= ∥h∥2 −
∥∥T ∗k+1h

∥∥2
.

Since T is ∗-stable, the previous relation becomes
∞∑
n=0

∥DT ∗T ∗nh∥2 =

∥h∥2 , and taking into account that MT (λ) =
∞∑
n=0

DT ∗T ∗nλn, it follows that

the attached operator MT : H → H2(DT ∗) is an isometry.
The intertwining relation (2.7) is verified taking into account the form of

the maximal function of T .

S∗MTh(λ) =
1

λ
[MT (λ)h−MT (0)h] =

1

λ
[DT ∗(I − λT ∗)−1h−MT (0)h] =

=
1

λ

[ ∞∑
k=0

DT ∗T ∗khλk −DT ∗

]
=

1

λ

[ ∞∑
k=1

DT ∗T ∗khλk
]
=

=
∞∑
k=1

DT ∗T ∗khλk−1 =
∞∑
k=0

DT ∗T ∗k+1hλk = DT ∗(I − λT ∗)T ∗h = MT (λ)T
∗h,

which implies the intertwining relation (2.7).

A dual result can be found for T ∈ C0·, which implies T ∗ in C.0 class, and
we have

Proposition 2.2. If T is a contraction of the C0· class, then the maximal
function {H,DT ,MT ∗(λ)} is bounded, and the attached operator MT ∗ defined
by (2.4) is an isometry. Moreover, the Sz.-Nagy–Foias functional model [18]
reduces to a functional representation given by the maximal function MT ∗(λ).
Namely, the imbedding of H into the functional model is given by

(2.8) H = MT ∗H ⊂ H2(DT ),
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and the functional representation of the contraction T is given by the back-
ward shift S∗ on H2(DT )

(2.9) Tu(λ) =
1

λ
[MT ∗(λ)h−MT ∗(0)h],

Moreover, MT ∗ intertwines T with S∗,

(2.10) MT ∗T = S∗MT ∗ .

In what follows, some applications of the maximal function of a contrac-
tion will be presented, especially based on the results from [21].

Let H,U,Y be separable Hilbert spaces and A ∈ L(H), B ∈ L(U,H),
C ∈ L(H,Y), D ∈ L(U,Y). A linear system σ = (A,B,C,D;H,U,Y) of the
form

(2.11)

{
hn+1 = Ahn +Bun, (n ≥ 0)
yn = Chn +Dun,

where {hn} ⊂ H, {un} ⊂ U, {yn} ⊂ Y, is called a discrete-time system.
Usually the spaces H, U, Y are called, respectively, the state space, the

input space, and the output space, and the operators A,B,C and D are
called, respectively, the main operator, the control operator, the observation
operator, and the feedthrough operator of the system σ.

Let us consider the bloc operator matrix (colligation) S : H⊕U → H⊕Y,

(2.12) S =

[
A B
C D

]
:

[
H

U

]
→

[
H

Y

]
.

Then (2.11) can be written into the matrix form

[
hn+1

yn

]
= S

[
hn

un

]
.

The system σ will be called: passive, isometric, co-isometric, conservative,
if S is, respectively, a contraction, an isometry, a co-isometry, or unitary.

The operator valued function Θσ(λ) : U → Y, (λ ∈ D), attached to a
system σ by

(2.13) Θσ(λ) = D + λC(IH − λA)−1B (λ ∈ D),

is called the transfer function (or frequency response function) of the system.
The transfer function is the basic connection between state-space and

frequency-domain in the linear systems theory.
The references for the linear systems are very large, I mention here only

a few of them [7, 8, 11, 5, 15, 3]. The aim of this paper is not an exhaustive
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study on linear systems, but only to analyse some connections between the
maximal function and disctete linear systems.

If σ is a passive system, then Θσ(λ) is a contractive holomorphic function
on D, i.e. Θσ(λ) belongs to the Schur class S(U,Y).

For a system σ, the following subspaces of H are considered:

(2.14) Cσ =
∨
n≥0

AnBU (the controllable space),

and

(2.15) Oσ =
∨
n≥0

A∗nC∗Y (the observable space).

Generally we have H =
(
Cσ

∨
Oσ

)
⊕

(
C⊥
σ ∩ O⊥

σ

)
. The system σ is called

controllable if Cσ = H, observable if Oσ = H, and minimal if σ is both
observable and controllable. The system σ is simple if Cσ

∨
Oσ = H.

From(2.14) it follows that
(
Cσ

)⊥
=

∞∩
n=0

ker(B∗A∗n), and from (2.15) we

have
(
Oσ

)⊥
=

∞∩
n=0

ker(CAn). Hence the following characterizations occur: the

system σ is, respecively, controllable iff
∞∩
n=0

ker(B∗A∗n) = {0}, observable iff

∞∩
n=0

ker(CAn) = {0}, and simple iff
( ∞∩
n=0

ker(B∗A∗n)
)
∩
( ∞∩
n=0

ker(CAn)
)
= {0}.

In this paper we are mainly concerned on the system J given by the
following unitary operator (the rotation operator of T , or Julia operator)

(2.16) J(T ) = RT =

[
T DT ∗

DT −T ∗

]
.

In this particular case, the controllable and the observable subspaces of
H will be, respectively,

(2.17) C =
∞∨
n=0

T nDT ∗DT ∗ , O =
∞∨
n=0

T ∗nDTDT ,

and the corresponding orthogonals in the state space H will be

(2.18) C⊥ =
∞∩
n=0

ker(DT ∗T ∗n) =
∩
n

kerDT ∗n = {h ∈ H; ∥T ∗nh∥ = ∥h∥},

(2.19) O⊥ =
∞∩
n=0

ker(DTT
n) =

∩
n

kerDTn = {h ∈ H; ∥T nh∥ = ∥h∥}.
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Thus T |O⊥ and T ∗|C⊥ are isometric operators and

(2.20) C⊥ ∩ O⊥ = {h ∈ H; ∥T nh∥ = ∥h∥ = ∥T ∗nh∥} = H0,

where H0 is the subspace of the unitary part from the canonical decomposi-

tion [18] of the contraction T = T0⊕T1 =

[
T0 0
0 T1

]
into its unitary part and

the completely non-unitary (c.n.u.) part on H = H0 ⊕H1.
Also, let us remark that the transfer function of J is just the characteristic

function of T ∗, namely

ΘJ(λ) = −T ∗ + λDT (I − λT )−1DT ∗ = ΘT ∗(λ).

If we consider the system J∗ given by the unitary bloc matrix (the rotation

of T ∗), J(T ∗) = RT ∗ =

[
T ∗ DT

DT ∗ −T

]
, then the transfer function of J∗ will be

given by {DT ,DT ∗ ,ΘT (λ)}, the characteristic function of T .
Obviously RT ∗ = R∗

T , and the corresponding linear systems J and J∗ are
dual, namely, if J is observable, then J∗ is controllable, and conversely.

A characterization for the controllability (observability) of the system J

can be done with the maximal function of the main operator T as follows.

Proposition 2.3. The discrete linear system J is controllable if and only if
the operator MT defined by the maximal function of T is one to one, and J

is observable if and only if the operator MT ∗ defined by the maximal function
of T ∗ is one to one.

Proof. If the system J is controllable, then CJ = H, where CJ is given by
(2.17), or equivalently, C⊥

J =
∩
ker(DT ∗T ∗n) = {0}. That is, DT ∗T ∗nh = 0

for any n ≥ 0 if and only if h = 0. Taking into account that

MT (λ)h = DT ∗h+DT ∗T ∗λh+DT ∗T ∗2λ2h+ · · · ,

it follows that kerMT = 0.
Conversely, if kerMT = 0, then MTh = 0 if and only if h = 0, i.e.,

DT ∗T ∗nh = 0 for any n ≥ 0 if and only if h = 0, which implies that C⊥
J = {0},

or equivalently CJ = H, and the system is controllable.
Analogously can be proved the same facts for the system J∗, and taking

into account the duality of the systems J and J∗, the proof is finished.

Therefore the operators MT and MT ∗ corresponding to the maximal func-
tions MT (λ) and MT ∗(λ) of T and T ∗, respectively, contain the information
about the structure of the corresponding systems. Actually MT is the con-
trollability operator and MT ∗ is the observability operator for the systemJ.
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Starting from Aronsjain reproducing kernel Hilbert spaces [4] a caracter-
ization for Hilbert spaces with positive kernels was done. It is known that
if K is a Hilbert space of E-valued functions defined on a set S, then K is
called a reproducing kernel Hilbert space (RKHS) if the point evaluations
e(s) : K → E defined by e(s)f = f(s) are continuous for each s in S. In this
case there exists a function K : S × S → L(E) such that for each s ∈ S and
a ∈ E

(i) K(·, s)a ∈ K

and for each f ∈ K, a ∈ E, s ∈ S we have
(ii) ⟨f(s), a⟩E = ⟨f,K(·, s)a⟩K.
If K is a reproducing kernel for a Hilbert space K, then K is a positive

definite function on S, and conversely, any positive definite function K on S

is the reproducing kernel for a RKHS K.
As an example, H2(E) is a RKHS with the reproducing kernel

K(λ, µ) =
1

1− λµ̄
IE,

where λ, µ ∈ D and IE is the identity operator on E.
Also, the standard weighted Bergman space An(E) is a RKHS with the

reproducing kernel

K(λ, µ) =
1

(1− λµ̄)n
IE.

In what follows, some positive definite kernels expressed in terms of the
maximal functions MT (λ) and MT ∗(λ) are analyzed and some applications
are given

Proposition 2.4. Let {DT ,DT ∗ ,ΘT (λ)} and {DT ∗ ,DT ,ΘT ∗(λ)} be the char-
acteristic functions of the contractions T and T ∗, respectively. There exist
the following relations

(2.21) KT (λ, µ) =
I −ΘT (λ)ΘT (µ)

∗

1− λµ
= MT (λ)MT (µ)

∗

and

(2.22) KT ∗(λ, µ) =
I −ΘT (µ)

∗ΘT (λ)

1− λµ
= MT ∗(µ)MT ∗(λ)∗,

where MT (λ) and MT ∗(λ) are the maximal functions of T and T ∗, respec-
tively.
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Proof. It is known ([18], Chap.VI, (1.4)) that the defect function of the char-
acteristic function {DT ,DT ∗ ,ΘT (λ)} is obtained by

⟨f, f⟩ − ⟨ΘT (λ)f,ΘT (µ)f⟩ = (1− λµ)
⟨
(I − λT ∗)−1DTf, (I − µT ∗)−1DTf

⟩
,

hence ∆2
ΘT

(λ, µ) = I−ΘT (µ)
∗ΘT (λ) = (1−λµ)DT (I−µT )−1(I−λT ∗)−1DT ,

and taking into account by (2.2) it follows that

I −ΘT (µ)
∗ΘT (λ)

1− λµ
= MT ∗(µ)MT ∗(λ)∗.

An analogous calculus leads to

∆2
ΘT∗ (λ, µ) = I −ΘT (λ)ΘT (µ)

∗ = (1− λµ)DT ∗(I − λT ∗)−1(I − µT )−1DT ∗ ,

and by (2.1) it follows that

I −ΘT (λ)ΘT (µ)
∗

1− λµ
= Θ1(λ)Θ1(µ)

∗.

REMARK. Taking into account the dual property of the characteristic
function ΘT (λ)

∗ = ΘT ∗(λ), the properties (2.21) and (2.22) become, respec-
tively,

KT (λ, µ) =
I −ΘT ∗(λ)∗ΘT ∗(µ)

1− λµ
= MT (λ)MT (µ)

∗

and

KT ∗(λ, µ) =
I −ΘT ∗(µ)ΘT ∗(λ)∗

1− λµ
= MT ∗(µ)MT ∗(λ)∗.

Taking into account Proposition 2.3 we have the following

Corollary 2.5. The discrete linear system J is controllable if and only if the
positive kernel KT (λ, λ) given by (2.21) is strictly positive, and J is observable
if and only if the kernel KT ∗(λ, λ) given by (2.22) is strictly positive.

Other applications of the previous positive definite kernels can be done
in the analysis of the structure of some invariant subspaces, and characteri-
zations in terms of the maximal functions can be obtained.

If T is a contraction of the class C0·, then T ∗ is *-stable, and by Propo-
sition 2.1 the functional model of H is the space H from H2(DT ) and T is
a part of the the backward shift S∗ on H2(DT ). Obviously H⊥ is an in-
variant subspace for the shift operator S on H2(DT ), and it is characterized
by Beurling theorem like a product of H2(DT ) with an inner function. For
H we have the following characterization given with {H,DT ,MT ∗(λ)}, the
maximal function of the contraction T ∗.
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Proposition 2.6. If T is a contraction of the C0· class, then the functional
model H ⊂ H2(DT ) of H is a reproducing kernel Hilbert space with the kernel

K(λ, µ) = MT ∗(λ)MT ∗(µ)∗,

where {H,DT ,MT ∗(λ)} is the maximal function of T ∗.

Proof. If f ∈ H, then f = MT ∗h, h ∈ H. For any a ∈ DT we have

⟨f(λ), a⟩ = ⟨MT ∗(λ)h, a⟩ = ⟨h,MT ∗(λ)∗a⟩ .

By Proposition 2.1, since T ∈ C0·, i.e. T ∗ ∈ C·0 and M∗
T is an isometry, it

follows that

⟨f(λ), a⟩ = ⟨MT ∗h,MT ∗MT ∗(λ)∗a⟩ = ⟨f,MT ∗MT ∗(λ)∗a⟩ = ⟨f,K(·, λ)a⟩H2(DT ) .

Therefore H is a reproducing kernel Hilbert space with the kernel
K(λ, µ) = MT ∗(λ)MT ∗(µ)∗.

3 On a model for n-hypercontractions

As was mentioned before, an operator T ∈ L(H) is an n-hypercontraction if
verifies the set of inequalities

(3.1)
m∑
k=0

(−1)k
(
m

k

)
T ∗kT k ≥ 0

in L(H) for all 1 ≤ m ≤ n, where n ≥ 1 is a positive integer.
It is obvious by (3.1) that for 1 ≤ m ≤ n there exist n square roots

operators Dm,T in L(H) given by (1.2), which generalize the notion of defect
operator DT = (I − T ∗T )1/2 for a contraction T ∈ L(H). Also the notion
of defect space of a contraction DT = DTH was generalized to n closed
subspaces of H taking Dm,T = Dm,TH, for 1 ≤ m ≤ n.

Parallel with the results obtained for characterization of the functional
model H from H2(DT ) with the maximal function {H,DT ,MT ∗(λ)}, given
by (2.8) and (2.9) in the C0· case, in the following an extension is made for
the n-hypercontraction case. To do this, based on (3.1) and (1.2), let us
consider generalized maximal functions attached to an n-hypercontraction T
on H, {H,Dn,T ∗ ,Mn,T (λ)} and {H,Dn,T ,Mn,T ∗(λ)}, where

(3.2) Mn,T (λ) = Dn,T ∗(I − λT ∗)−n

13



and

(3.3) Mn,T ∗(λ) = Dn,T (I − λT )−n.

Also, the operators Mn,T : H → An(DT ∗) and Mn,T ∗ : H → An(DT ) will be
introduced by

(3.4) (Mn,Th)(λ) = Mn,T (λ)h, h ∈ H, λ ∈ D

and

(3.5) (Mn,T ∗h)(λ) = Mn,T ∗(λ)h, h ∈ H, λ ∈ D.

We are going to prove in the case of an n-hypercontraction from C0· class,
the case considered by Agler [2], that some results obtained for MT (λ) and
MT ∗(λ) can be extended for Mn,T (λ) and Mn,T ∗(λ). Namely the Proposition
2.2 is generalized in terms of Mn,T ∗(λ).

Proposition 3.1. Let T be an n-hypercontraction of the C0· class, then
the operator Mn,T ∗ associated to {H,Dn,T ,MT ∗(λ) by (3.5) is an isometry
from H into An(Dn,T ), modeling H as a subspace H of the Bergman space
An(Dn,T ), satisfying the intertwining relation

(3.6) Mn,T ∗T = S∗
nMn,T ∗ .

Proof. Taking account by the definition (1.2) of Dm,T we have for 1 ≤ m ≤ n
and h ∈ H

∥Dm,Th∥2 = ⟨Dm,Th,Dm,Th⟩ =
⟨
D2

m,Th, h
⟩
=

=

⟨
m∑
k=0

(−1)k
(
m

k

)
T ∗kT kh, h

⟩
=

m∑
k=0

(−1)k
(
m

k

)∥∥T kh
∥∥2

.

Using the known binomial coefficients formula
(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
it folows

that for each h ∈ H we have

(3.7) ∥Dm+1,Th∥2 = ∥Dm,Th∥2 − ∥Dm,TTh∥2 .

Putting T jh instead of h in (3.7) and summing for j = 0, 1, · · · , k − 1 it
follows that

k−1∑
j=0

∥∥Dm+1,TT
jh
∥∥2

=
k−1∑
j=0

(
∥∥Dm,TT

jh
∥∥2 −

∥∥Dm,TT
j+1h

∥∥2
) =

= ∥Dm,Th∥2 −
∥∥Dm,TT

kh
∥∥2

.

14



Since
∥∥Dm,TT

kh
∥∥ → 0 as k → ∞ it follows that

(3.8) ∥Dm,Th∥2 =
∞∑
k=0

∥∥Dm+1,TT
kh
∥∥2

.

Giving values 1 ≤ m < n, since ∥D1,Th∥2 = ∥h∥2 − ∥Th∥2 it follows, using
again the binomial coefficients relation,

∥h∥2 − ∥Th∥2 =
∞∑

k1,··· ,kn−1=0

∥∥Dn,TT
k1+···+kn−1h

∥∥2
=

∞∑
k=0

1

µn−1;k

∥∥Dn,TT
kh
∥∥2

.

Therefore

(3.9) ∥h∥2 − ∥Th∥2 =
∞∑
k=0

1

µn−1;k

∥∥Dn,TT
kh
∥∥2

.

If we put T jh instead of h in (3.9), then for each h ∈ H we have

∥∥T jh
∥∥2 −

∥∥T j+1h
∥∥2

=
∞∑
k=0

1

µn−1;k

∥∥Dn,TT
k+jh

∥∥2
.

Giving again values for j = 0, 1, · · · , p− 1 and summing up we obtain

∥h∥2 − ∥T ph∥2 =
p−1∑
j=0

∞∑
k=0

1

µn−1;k

∥∥Dn,TT
k+jh

∥∥2

and taking account that

∞∑
j=0

∞∑
k=0

∥∥Dn,TT
k+jh

∥∥2
=

∞∑
k=0

1

µn;k

∥∥Dn,TT
kh
∥∥2

,

for p → ∞ it follows that

∥h∥2 − lim
p→∞

∥T ph∥2 =
∞∑
k=0

1

µn;k

∥∥Dn,TT
kh
∥∥2

=

∥∥∥∥∥
∞∑
k=0

(
k + n+ 1

k

)
Dn,TT

k

∥∥∥∥∥
2

=

=
∥∥Dn,T (I − λT )−nh

∥∥2
= ∥Mn,T ∗h∥2 .

Thus, since T is of C0· class, we obtain that ∥h∥ = ∥Mn,T ∗h∥, and Mn,T ∗ is
an isometry.
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Now, by (1.12) we have for each λ ∈ D

(S∗
nMn,T ∗h)(λ) =

∞∑
k=0

µn;k+1

µn;k

Ak+1hλ
k,

where Ak are the Taylor coefficients of the function

(Mn,T ∗h)(λ) = Mn,T ∗(λ)h = Dn,T (I − λT )−nh =

=
∞∑
k=0

(
k + n− 1

k

)
Dn,TT

khλk =
∞∑
k=0

( 1

µn;k

Dn,TT
kh
)
λk.

Therefore

(S∗
nMn,T ∗h)(λ) =

∞∑
k=0

(µn;k+1

µn;k

1

µn;k+1

Dn,TT
k+1h

)
λk =

=
∞∑
k=0

( 1

µn;k

Dn,TT
k+1h

)
λk = (Mn,T∗Th)(λ),

and the intertwining condition (3.6) is verified.

Similarly with Proposition 2.6 where the functional model H of H from
H2(DT ) is a RKHS with the kernel given by the maximal function MT ∗(λ),
the functional model of H from An(Dn,T ) will be characterized by Mn,T (λ)
as follows.

Proposition 3.2. If T ∈ L(H) is an n-hypercontraction of the C0· class,
then the functional model of H, H = Mn,T ∗H from An(Dn,T ), is a reproduc-
ing kernel Hilbert space with the kernel given by

(3.10) K(λ, µ) = Mn,T ∗(λ)Mn,T ∗(µ)∗, λ, µ ∈ D.

Proof. For each function f ∈ H, f = Mn,T ∗g, and each element d ∈ Dn,T ,
taking account by the fact that Mn,T ∗ is an isometry from H into An(Dn,T ),
we have

⟨f(µ), d⟩H = ⟨Mn,T ∗(µ)g, d⟩
H
= ⟨g,Mn,T ∗(µ)∗d⟩

H
=

= ⟨Mn,T ∗(λ)g,Mn,T ∗(λ)Mn,T ∗(µ)∗d⟩An
= ⟨f,Mn,T ∗(λ)Mn,T ∗(µ)∗d⟩An

.

Therefore H is a RKHS with the kernel given by (3.10).
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Other applications of the extended maximal functionsMn,T (λ) andMn,T ∗(λ)
and the attached operators Mn,T and Mn,T ∗ given by (3.4) and (3.5), can be
done in linear system theory as well as in studying the structure of invariant
subspaces for the shift operator Sn and S∗

n on the Bergman space An(Dn,T ).
Such a way, similarly with the fact that the operators MT and MT ∗ attached
to the maximal functions of a contraction are the controllability and observ-
ability operators for the linear sistem corresponding to the rotation operator
RT , the operators Mn,T and Mn,T ∗ defined by (3.4) and (3.5) will be the
controllability and observability operators of a specific linear system hav-
ing as the main operator an n-hypercontraction of the C0· class. Also the
controllability and observability gramians given by Cn,T = M∗

n,TMn,T and
On,T = M∗

n,T ∗Mn,T ∗ are of interest in the study of the structure of a system.
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