Institute of Mathematics of the Romanian Academy,
Bucuresti, P.O. Box 1-764, RO-70700, ROMANIA.
Ph.D. in Mathematics (1998)
Senior Researcher at the Institute of Mathematics of the Romanian Academy
Evolution Equations and Control Theory, Partial Differential Equations and Mathematical Physics
Evolution Equations and Partial Differential Equations
- invariant measures, bifurcation and attractors for dissipative differential systems of Navier-Stokes type
- functional properties and inverse problems for the Euler equations of incompressible fluids
- geometric invariant approach to the bifurcation of the global attractor for Navier-Stokes type differential systems
- singular solutions for the Euler equations
- On a theorem of Nicolescu-Tihonov type for statistical solutions of the Navier-Stokes equations, Rev. Roum. de Math. Pures et Appl., 21 (1976), no. 7, 895-902.
- Remarques sur l'unicité de la solution stationnaire d'une équation de type Navier-Stokes, Rev. Roum. de Math. Pures et Appl., 21 (1976), no. 8, 1071-1075.
- Remarque sur les équations d'Euler dans un domaine possédant une symétrie de révolution, C.R. Acad. Sc. Paris, 284 (1977), Série A, 477-479.
- The linear first integrals of the Euler equations, J. Math. pures et appl., 59 (1980), 441-464.
- Sur les dérivées des opérateurs du type Navier-Stokes, Annali di Mat. pura ed appl. IV, 129 (1981), 131-142.
- Loss of stability of the globally unique steady-state equilibrium and the bifurcation of closed orbits in a class of Navier-Stokes type dynamical systems, in G. R. Sell, C. Foias, R. Temam eds., Turbulence in Fluid Flows. A Dynamical Systems Approach, The IMA Volumes in Math. and its Appl., 55, Springer, New York, 1993, 101-122.
- Investigation of the Foias-Saut normalization in the finite dimensional case, J. of Dynamics and Diff. Eqs., 10 (1998), no. 1, 189-207.