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ABSTRACT

This thesis advances aerial scene understanding through innovative deep-learning ap-

proaches, focusing on semantic segmentation, depth estimation, and multi-task learning

with limited human supervision. It introduces a novel dual-stream convolutional neu-

ral network for object segmentation, achieving state-of-the-art performance in building

and road segmentation. Our research proposes new datasets and methods for road de-

tection, lightweight CNNs for real-time onboard UAV applications and unsupervised

depth estimation using real drone flights. To reduce manual annotation, this thesis in-

troduces SegProp, an automatic label propagation method, and introduces Ruralscapes,

a large-scale dataset for real-world semantic segmentation. Our work culminates with

the Dronescapes dataset, designed for multi-task learning in complex real-world scenes,

and a semi-supervised learning approach using a graph of neural networks and a multi-

task hypergraph model. The hypergraph framework leverages multiple representations

for holistic scene understanding with very limited human supervision.

Our research enhances aerial scene understanding through multi-task learning and

consensus-based approaches. It contributes to Computer Vision, Remote Sensing, and

Robotics by developing novel architectures, by introducing datasets and methodologies

for aerial imagery analysis. The research paves the way for autonomous drones capable

of understanding complex real-world environments.

Keywords – Aerial Scene Understanding, Unmanned Aerial Vehicles (UAVs), Aerial

Robots, Remote Sensing, Semantic Segmentation, Local-Global, Unsupervised Metric

Depth Estimation, Consensus Learning, Multi-task Hypergraphs, Multi-task Consen-

sus, Deep Learning, Artificial Intelligence, Robotics
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Chapter 1

INTRODUCTION

The field of Artificial Intelligence (AI) has witnessed remarkable advancements that can

be attributed to advancements in software algorithms, the availability of vast amounts of

data, and the exponential growth in computational power, especially graphics process-

ing units (GPUs) [1]. Robotics tackles the challenge of creating physical agents (robots)

capable of interacting with the real world, bridging the gap between digital intelligence

and tangible action and has been profoundly impacted by the rise of AI.

Peter Corke’s succinct description captures the essence of what constitutes a robot [2]

– ”a goal-oriented machine that can sense, plan, and act”. This definition highlights

the key components of robotic systems: perception, decision-making, and interaction

with the physical world. Among these components, perception, particularly in the form

of scene understanding, plays a crucial role in enabling robots to navigate and interact

with their environment effectively, presenting its own set of unique challenges. The

complexity of scene understanding stems from several factors. First, the visual world

is inherently diverse and dynamic, requiring systems to generalize across a vast array

of possible scenarios. Second, understanding a scene goes beyond mere object recogni-

tion; it involves comprehending spatiotemporal relationships, contextual cues, and even

predicting intent (forecasting). Finally, scene understanding must operate in real-time
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for many robotic applications, adding computational constraints to an already complex

problem.

This thesis introduces methods for gaining a comprehensive understanding of the en-

vironment through multiple visual cues. This holistic approach involves tackling mul-

tiple tasks to obtain complementary information and diverse visual interpretations, all

within the context of robotics and real-world applications. We consider both the three-

dimensional spatial structure and the temporal evolution striving for a semantic under-

standing that enhances navigation capabilities. Adding another layer of complexity, we

explore these concepts from an aerial perspective, which presents unique challenges

and opportunities. To achieve our goals, we leverage the consensus between multi-

ple information sources and combine data-driven learning methods. Recognizing the

critical importance and difficulty of obtaining high-quality data we focus on develop-

ing approaches that maximize the use of sensors while minimizing human intervention,

thereby addressing the complexities of the real world more efficiently.

Our work evolved from addressing individual tasks to developing comprehensive ap-

proaches for holistic scene understanding. It bridges the gap between supervised and

unsupervised learning by exploiting the consensus that emerges between multiple vi-

sual cues using minimal supervision. Our focus is on improving scene understanding

in the field of aerial robotics, as they present unique challenges that demand innovative

solutions. The main contributions this thesis makes are summarized below:

Local - Global Multi-stage Consensus Learning – Our journey began with satellite

imagery, where we introduced local-global multi-stage consensus learning for aerial

segmentation. This approach demonstrated the power of combining local object ap-

pearance with global contextual information for two important tasks in Remote Sens-

ing, building and road segmentation. We have also introduced the multi-stage multi-task

neural networks capable of simultaneous segmentation and geolocalization. In a similar

multi-stage manner, we also show improvement in road segmentation of varied widths

and difficult remote environments, with state-of-the-art performance.

Lightweight CNNs for real-time UAV deployment – The progression from satellite

to UAV-based research was a natural and necessary evolution, driven by the scarcity of
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comprehensive UAV datasets and the unique challenges posed by this domain. Recog-

nizing the computational constraints of UAV systems, we developed lightweight mod-

els suitable for onboard deployment, such as SafeUAVNets. These efficient architec-

tures constitute the processing units for all of our subsequent contributions proving their

adaptability and effectiveness for multiple tasks.

Hybrid (analytical and learned) approaches – We combined analytical and geometric

approaches with data-driven deep learning techniques, as seen in our depth distillation

method and UFODepth to cancel out each other’s limitations, for efficient unsupervised

metric depth estimation.

Learning with minimal human supervision – We developed novel semi-supervised

learning techniques, including our SegProp method that leverages spatiotemporal con-

sensus for automatic label propagation and the Neural Graph Consensus (NGC) model,

to effectively leverage limited labeled data. These methods substantially reduce the

need for extensive manual annotations, a critical advantage in aerial imagery analysis

where labeled data is often scarce and costly.

Multi-task Consensus Learning – Our research also introduced innovative multi-task

learning frameworks, evolving from the NGC model to the more complex model, the

Multi-Task Consensus Hypergraph. These approaches exploit interdependencies be-

tween various scene interpretations and sensor modalities, leading to more robust and

accurate scene understanding. By finding consensus among multiple tasks, we demon-

strated improved performance across all tasks simultaneously with less than 2% labeled

data.

Real-world UAV Benchmarks – To support and validate our research, we introduced

new datasets such as Ruralscapes for semantic scene segmentation, odometry datasets

for unsupervised metric depth estimation and Dronescapes for multi-task learning from

real UAV flights. These contributions provide valuable resources for the research com-

munity and establish new standards for evaluating aerial scene understanding methods.
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Chapter 2

LOCAL-GLOBAL MULTI-STAGE

CONSENSUS LEARNING

FOR AERIAL SEGMENTATION

2.1 Local-Global Consensus Learning

We study the importance of visual context in object segmentation in the context of

top-down view satellite images, which are taken under poor lighting conditions and

contain low-resolution objects, many times occluded. This domain also offers specific

scientific challenges to Computer Vision. The local appearance of objects in aerial

images is often degraded due to occlusions, illumination, shadows, and distance, leading

to poor resolution. In such cases, contextual cues provide semantic insights that improve

object recognition. We propose a dual-stream approach using deep convolutional neural

This section is based on the paper – Alina Marcu, and Marius Leordeanu. ”Object contra context: Dual
local-global semantic segmentation in aerial images.” In Workshops at the Thirty-First AAAI Conference
on Artificial Intelligence. 2017. [3]
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networks that combines the local appearance of the object with global information

retrieved from a larger scene. Thus, the object is seen both as a separate entity from the

perspective of its own appearance, but also as a part of a larger scene which acts as its

complement and implicitly contains information about it.

We studied the role of local and global information separately (Figure 2.1). A model

trained only with local patches (L-Seg) is capable of accurately identifying the shape of

the object. However, it has a high false positive rate. On the other side, a model trained

exclusively with global patches (G-Seg) misses out on important details but responds

confidently in areas of high residential density and manages to remove the misclassifi-

cations of the previous model.

FIGURE 2.1: Models trained exclusively with local information identify object shapes but
yield high false positives (L-Seg). Global models miss details yet excel in high-density
areas, reducing misclassifications (G-Seg). Our approach leverages the complementary
roles of local and global information.

Based on these observations we develop two novel dual-stream architectures, by first

combining the L-Seg model and G-Seg model into a single local-global deep network,

termed LG-Seg (Figure 2.2 (Left)). The two pathways process information in parallel,

taking as input image patches of different sizes. The local stream focuses on capturing

the fine-grained details of the object’s appearance, while the global stream gathers a

broader semantic context from the surrounding environment. Although complementary,

both streams combined (through fully connected layers) reach consensus through an

end-to-end learning procedure for improved segmentation performance. Unlike others,

we intentionally chose two different types of networks with different image region sizes

as input, to encourage learning different representations along the two pathways.

The LG-Seg model is a dual-stream combined architecture, an adapted VGG-Net [4]

and an adapted AlexNet [5] joining into two last FC layers, which add up to ≈133M
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FIGURE 2.2: (Left) Our LG-Seg architecture (≈133M params) combines local and global
information in a dual-stream CNN with different input region sizes, encouraging diverse
representations along two pathways. (Right) Our LG-Seg-ResNet-IL uses residual blocks
and an intermediary contextual loss on the global branch, enhancing contextual under-
standing with greater efficiency than LG-Seg and just ≈23M params.

parameters. Given the substantial computational demands of the LG-Seg model, we

leverage residuals connections [6], since they are capable of bypassing extra levels of

depth and thus simultaneously combining shallow and deep pathways into a unified

multi-path neural network with filters of different sizes also acting in parallel, with a

reduced number of parameters, termed LG-Seg-ResNet. On top of this architecture,

we also introduce LG-Seg-ResNet-IL (Figure 2.2 (Right)) in which we added an extra

intermediate loss for the global pathway to enforce learning of global context in the

pathway receiving larger image patches. Thus we hope to improve the training time and

also the quality of segmentation in places where context matters more.

TABLE 2.1: Quantitative evaluation of our models on different datasets. From left to right
in order, we present results on the Massachusetts Buildings dataset and on our European
Buildings and European Roads datasets.

Method F-measure
Mnih et al. [7] 92.11
Saito et al. [8] 92.30
LG-Seg 94.23
LG-Seg-ResNet-IL 94.30

Method F-measure
G-Seg 62.71
L-Seg 82.66
LG-Seg 84.20
LG-Seg-ResNet-IL 83.87

Method F-measure

LG-Seg 70.46
LG-Seg-ResNet 72.07
LG-Seg-ResNet-IL 73.42

Our work addresses the task of object segmentation, particularly, objects with regu-

lar structures, such as buildings, and those with variable and continuous shapes, such

as roads. We also propose two new datasets, much larger than the most well-known

dataset at that time, Massachusetts Buildings [7]. Our experimental analysis demon-

strates the following. Firstly, we obtain state-of-the-art results on the public dataset

with both proposed architectures (Table 2.1 (Left)). Secondly, the complexity of the

proposed datasets is also reflected by the performance drop from 94% to 84% for build-

ing segmentation on the proposed European Buildings dataset (Table 2.1 (Middle)).

8



Lastly, we can also observe that in the case of objects with complex, continuous, and

varied structures (results on proposed European Roads), context is truly important since

the architecture with residual modules and explicitly modeled context obtains the best

results for the road segmentation problem, with a bigger performance increase, of 3%

compared to the initial LG-Seg model (Table 2.1 (Right)).

2.2 Multi-stage Multi-task Neural Networks

While our previous dual local-global networks demonstrated the importance of leverag-

ing both local and contextual information for tasks such as building and road segmenta-

tion, they were limited to treating each task independently and required separate train-

ing for each dataset. To overcome these limitations we introduce a novel multi-stage

multi-task (MSMT) neural network that tackles two crucial aerial tasks concurrently:

semantic segmentation and vision-based geolocalization.

Our proposed architecture (Figure 2.3) employs a shared encoder branch (UniEncoder),

followed by separate decoding branches (regression or segmentation) for each task

(LocDecoder). This design choice is inspired by our previous work, which showed that

processing different types of information through separate streams, especially when

branches solve two different scopes, is beneficial. The multi-stage aspect of our net-

work allows for progressive refinement of results. From a structural point of view, our

architecture uses encoder-decoder modules (similar to U-Net [10] but using dilated con-

volutions of progressively increasing rates at the central bottleneck level) at each stage,

having the same encoder structure re-used.

Our MSMT-Stage-1 model sets a new state-of-the-art benchmark on the Massachusetts

Buildings dataset, significantly outperforming existing methods (Table 2.2 (Left) mea-

sures F-measure with a relaxed factor of 3 pixels [11]). Notably, our approach achieves

This section is based on the paper – Alina Marcu, Dragos Costea, Emil Slusanschi, and Marius
Leordeanu. ”A multi-stage multi-task neural network for aerial scene interpretation and geolocaliza-
tion.” arXiv preprint arXiv:1804.01322 (2018). [9]
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FIGURE 2.3: Our proposed multi-stage multi-task (MSMT) architecture for semantic
segmentation and geolocalization in aerial images.

these results using only a single RGB image and class label, in contrast to methods

like [12] that employ network ensembles. The same can be observed for the Inria

dataset [13] on the testing dataset (Table 2.2 (Right) measuring IoU), surpassing other

competitors (results verified on the official leaderboard).
TABLE 2.2: (Left) Comparison to state-of-the-art buildings segmentation methods on the
Massachusetts Buildings dataset [7]. (Right) Comparison to state-of-the-art methods for
the task of building segmentation from aerial images on the Inria dataset [13].

Method F-measure
Deeplab [14] 89.7
Mnih et al. [7] 91.5
Saito et al. [8] 92.3
U-Net [10] 94.1
Saito et al. [12] 94.3
Marcu et al. [3] 94.3
Hamaguchi et al. [15] 94.3
MSMT-Stage-1 (Ours) 96.04

Method Austin Chicago
Kitsap

Co.
West
Tyrol

Vienna Overall

MLP [13]
IoU 61.20 61.30 51.50 57.95 72.13 64.67
Acc. 94.20 90.43 98.92 96.66 91.87 94.42

Mask R-CNN [16]
IoU 65.63 48.07 54.38 70.84 64.40 59.53
Acc. 94.09 85.56 97.32 98.14 87.40 92.49

SegNet MT-Loss[17]
IoU 76.76 67.06 73.30 66.91 76.68 73.00
Acc. 93.21 99.25 97.84 91.71 96.61 95.73

MSMT-Stage-1 (Ours)
IoU 75.39 67.93 66.35 74.07 77.12 73.31
Acc. 95.99 92.02 99.24 97.78 92.49 96.06

For the geolocalization task, we collected our own dataset from randomly sampled lo-

cations covering a city-wide area. As demonstrated by Costea et al. [18], roads serve

as a unique footprint of an urban area, therefore we decided to use road segmentations

(trained using MSMT-Stage-1). The second stage of our network takes the road seg-

mentation output as input and learns to map it to a specific location using two branches.

The regression branch outputs longitude and latitude coordinates, whereas the segmen-

tation branch innovatively frames localization as a segmentation problem, generating a

map with potential locations marked as dots. In our experiments, we proved that while

the segmentation branch generally outperforms the regression one, it can sometimes

produce multiple locations or fail to identify any (blank image). In such cases, we rely

on the regression output. To increase localization precision as a final refinement step we

use the Iterative Closest Point (ICP) algorithm [19], to align the road segmentation with

the OpenStreetMap [20] roads from the predicted location. In Figure 2.4 we present,
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from left to right, in order, the RGB input image, city-wide dot localization generated

by MSMT-Stage-2-LocDecoder-S-128, predicted roads (green) from the RGB image on

top of ground truth roads from the dot’s location (white), before and after alignment.

FIGURE 2.4: Qualitative results for geolocalization using MSMT-Stage-2-LocDecoder-
S-128 branch, the road segmentation map using MSMT-Stage-1 network and the roads
retrieved from OpenStreetMap, before and after alignment.

2.3 Multi-stage Ensemble of Deep Neural Networks

Building upon our Multi-Stage Multi-Task (MSMT) architecture detailed in the pre-

vious section, we address the challenging task of roadmap generation from satellite

imagery. This section presents our top-performing approach in the DeepGlobe chal-

lenge [22], where we achieved a significant improvement of over 4% compared to the

second-place contestant. An overview of our approach is presented in Figure 2.5.

FIGURE 2.5: Overview of our three-stage method for improved roadmap generation.

Our first stage builds upon the MSMT-Stage-1 architecture (the same U-Net-like ar-

chitecture with dilated convolutions at the central level) used to create an ensemble of

This section is based on the paper – Alina Marcu*, Dragos Costea*, Emil Slusanschi, and Marius
Leordeanu. ”Roadmap generation using a multi-stage ensemble of deep neural networks with smoothing-
based optimization.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pp. 220-224. 2018. [21]
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multiple such networks, each employing different dilation rates (and a different number

of parameters). This approach enables the model to learn diverse aspects of the scene,

enhancing the binary segmentation of roads. The varied dilation rates allow the network

to capture features at multiple scales, which is crucial for accurately identifying roads

of different widths and in various contexts. We train the following types of architec-

tures (with progressive dilation rates in parentheses) for road segmentation and form

two ensembles from them (Ensemble 1 - summation, Ensemble 2 - stage 2, learning):

(1) Max dilation 32 (1, 2, 4, 8, 16, 32), (2) Max dilation 48 (1, 2, 4, 8, 16, 32, 48)

and (3) Max dilation 64 (1, 2, 4, 8, 16, 32, 48, 64). The second stage introduces a

novel refinement process. We train a separate Max dilation 32 network to learn how to

improve road segmentations in a strictly supervised manner. The key innovation here is

the fusion of multiple road maps alongside the RGB image and also predicted intersec-

tion segmentation from a different trained network to improve road connections. This

allows the model to learn a consensus among these various representations, resulting in

more accurate and consistent road segmentation. This stage can be seen as an extension

of the geolocalization refinement step in our MSMT architecture but is now applied

specifically to road segmentation. The final stage incorporates previous work by Costea

et al. [21]. This step applies an optimization procedure to the segmented roads, treating

them as a graph. It aims to add missing links based on the inferred graph structure,

further improving the overall segmentation quality. This stage complements our deep

learning approach with classical computer vision techniques, potentially bridging gaps

in the neural network’s output.

We show consistent improvement on the DeepGlobe test set in both rounds of the com-

petition using our architectures trained in semi-supervised iterations (with predictions

on the testing data used in the second iteration) (Table 2.3 (Left)) with the best perform-

ing models being the learned ensemble as expected (Table 2.3 (Right)), surpassing the

state-of-the-art on this benchmark by ≈ 4%.
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TABLE 2.3: (Left) (Round 1) – Roads segmentation results on the official evaluation set
of 1,243 images for which no ground truth data was provided during the competition to
avoid cheating and overfitting. (Right) (Round 2) – Roads segmentation results on the
official testing set of 1,101 images. Results were reported after adding the missing links.
The results were provided by the submission site for both rounds. We report percentages.

Model Iteration IoU
Evaluation

Max dilation 32 1 59.24
2 59.75

Max dilation 48 1 60.39
2 60.58

Model
IoU

Evaluation
Baseline [22] 54.5
Ensemble 1 57.88
Ensemble 2 58.62

2.4 Lightweight CNNs for Bird’s Eye View

Scene Understanding

FIGURE 2.6: Our proposed SafeUAVNets for both onboard and offboard processing are
trained for depth estimation and plane orientation prediction.

So far we have focused primarily on analyzing satellite imagery, which provides a top-

down view of the Earth’s surface. While satellites offer global coverage from very high

altitudes, unmanned aerial vehicles (UAVs) have 6 degrees of freedom, capable of cap-

turing both top-down views and perspective views at much lower altitudes compared to

satellites. This flexibility allows UAVs to adjust their altitude for optimal resolution and

coverage, collect data at varying scales, from broad overviews to detailed close-ups and

provide real-time, on-demand imagery for critical applications. This section presents

This section is based on the paper – Alina Marcu, Dragos Costea, Vlad Licaret, Mihai Pirvu, Emil
Slusanschi, and Marius Leordeanu. ”SafeUAV: Learning to estimate depth and safe landing areas for
UAVs from synthetic data.” In Proceedings of the European Conference on Computer Vision (ECCV)
Workshops, pp. 0-0. 2018. [23]
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one of the first efforts in developing efficient solutions that use visual perspective cues

for semantic and structural scene understanding from 3D reconstructions of real envi-

ronments whilst also running onboard resource-constrained devices. We built upon our

previous architectures and developed two new variants of the MSMT-Stage-1 (or Max

dilation 32) neural network. The first, named SafeUAVNet-Large below, runs at ≈ 35

FPS on Nvidia’s Jetson TX2. The second, named SafeUAVNet-Small below, is a sim-

plified version of the first and runs at ≈ 130 FPS on an embedded device for an image

resolution of 240×320×3. Both architectures can be depicted in Figure 2.6.

We extract data from Google Earth [24] and reconstruct the scenes in 3D. We obtain

rendered RGB images and dense depth maps, with pixel-level values in meters, from the

perspective of a drone flying at low altitudes and at a 45-degree angle. The constructed

dataset offers a high degree of realism. Based on the surface normals, a set of semantic

annotations is constructed to delimit safe areas from unsafe ones, which can be further

used in a drone’s safe landing procedure, which we model and solve as a semantic

segmentation task. The quantitative evaluation demonstrated the efficiency of the two

architectures compared to well-known dense prediction architectures, both for the task

of segmenting safe, unsafe, or oblique (other) areas in the scene (Table 2.4 (Left)), as

well as for estimating depth in meters from an image (Table 2.4 (Right)).

We also examined the performance of models trained on synthetic data when applied

to real-world scenarios. Despite visual similarities, we found significant performance

differences between synthetic and real inputs. This highlights the need for training on

real-world data to ensure model effectiveness in similar challenging scenarios.

TABLE 2.4: Quantitative evaluation of our SafeUAVNets for (Left) The task of safe land-
ing detection, modeled as a segmentation task of horizontal, vertical and oblique planes
within a scene compared to well-known segmentation NNs. Results are reported in per-
centages with bolded values being the best. (Right) The task of depth estimation from
aerial images. Lower numbers are better.

Model mAcc. mPrec. mRec. mIoU
U-Net [10] 72.9 56.0 50.5 35.6
DeepLabv3+ [25] 84.0 75.3 73.9 59.7
SafeUAVNet-Small 82.3 72.8 69.3 55.1
SafeUAVNet-Large 84.6 76.1 74.8 60.7

Model RMSE Meters
U-Net [10] 0.041 9.63
DeepLabv3+ [25] 0.034 8.49
SafeUAVNet-Small 0.031 7.22
SafeUAVNet-Large 0.026 6.09
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Chapter 3

CONSENSUS-BASED

UNSUPERVISED METRIC

DEPTH ESTIMATION

This chapter addresses a critical challenge in autonomous aerial systems: accurate and

efficient metric depth estimation from monocular imagery. On top of that, compared to

the previous methods proposed in this thesis, we make a huge step towards efficiently

leveraging the temporal cues in video and derive metric depth in a completely unsu-

pervised manner. Traditional approaches to this problem have relied on either purely

geometric methods, which can be precise but lack robustness, or learning-based ap-

proaches, which often struggle with generalization and metric scale. The work pre-

sented in this chapter tackles these challenges through a series of novel contributions

that synergistically combine analytical methods with deep learning approaches. To ad-

dress the scarcity of relevant real-world data, we introduce two significant datasets – a

20-minute continuous UAV flight dataset covering two European mountain town resorts

and an extended 33-minute dataset encompassing a variety of scenes, including urban,

rural, and the Danube Delta. These datasets provide crucial benchmarks for evaluating

metric depth estimation methods in realistic scenarios.
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3.1 Depth Distillation: Finding Consensus between Kine-

matics, Optical Flow and Deep Learning

We consider the scenario of a flight within a given perimeter, with a focus on unsuper-

vised learning to estimate depth within the larger context of aerial scene understand-

ing. We introduce a hybrid model that combines an analytical, vision-with-odometry

approach with deep unsupervised learning techniques. While the analytical path is

mathematically precise, it lacks robustness in the presence of noise and numerically

fails in focus of expansion areas. On the other hand, the unsupervised data-driven ap-

proach is robust and smooth over time, but not as accurate and more importantly, not

metric. We employ a ”Teacher-Student” paradigm to distill the knowledge [27] of the

”Teacher” into a more compact ”Student”. By forming an ensemble from the two path-

ways (Teacher) and distilling them into a single net (Student) we manage to improve

both accuracy and lower the computational requirements.

This method distills the consensus between scene geometry, camera pose, kinematics,

and RGB imagery into a single neural network, achieving both computational efficiency

and high accuracy. Importantly, this approach is designed for deployment on embedded

devices, making it suitable for real-world UAV applications, since it builds on top of

the SafeUAVNets architectures used in the distillation process for depth estimation. We

present the overview of our approach in Figure 3.1 (Left) in which we combine sev-

eral complementary pathways for accurate metric depth estimation. Along one path, we

estimate consistent non-metric depth in an unsupervised way (DUnsup). Along a differ-

ent path, we use odometry and optical flow to estimate exact, metric depth (DOdoFlow).

DOdoFlow is used to scale DUnsup and make it metric. The two form an ensemble Teacher

used to distill a Student model for metric depth estimation. Along a third path, depth is

reconstructed with Structure-from-Motion software [28] (DS f M), which is made metric

This section is based on the paper – Mihai Pirvu, Victor Robu, Vlad Licaret, Dragos Costea, Alina
Marcu, Emil Slusanschi, Rahul Sukthankar, and Marius Leordeanu. ”Depth distillation: unsupervised
metric depth estimation for UAVs by finding consensus between kinematics, optical flow and deep learn-
ing.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3215-3223. 2021. [26]
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by aligning its predicted trajectory with the metric trajectory from GPS. DS f M, com-

puted offline, plays the role of reference metric or ground truth (even though is not

perfect) and is used for evaluation only.

FIGURE 3.1: (Left) Overview of our approach, combining several complementary path-
ways for accurate metric depth estimation. (Right) Our depth distillation procedure for
accurate metric depth estimation.

We introduce a novel dataset of two continuous UAV flights in two mountain town

resorts, Slanic and Herculane. We divide Slanic in two non-overlapping subsets, one

used for training the depth-distillation neural network and the other for testing purposes,

measuring how well a UAV would perform in the same scene on a new flight. Hercu-

lane is used only for testing, to estimate the generalization capabilities of the proposed

solutions, in different novel scenes, not seen during training.

In Figure 3.1 (Right) we showcase our depth distillation procedure for accurate metric

depth estimation. We combine two label-free methods (unsupervised and analytical)

into a single result and evaluate it against the SfM reconstruction. In our experimental

analysis (Table 3.1), we proved that the distilled Student can significantly improve over

the Teacher on the test video from the first scene while remaining competitive in the

second scene, unseen during training.

TABLE 3.1: Absolute and relative errors on the areas where both DOdoFlow and DUnsup are
valid. We observe that these areas yield more stable overall results. Herculane has higher
errors mainly due to the higher height of the dataset. The distilled students (SafeUAVNets)
have the best results on the Slanic test set. Lower numbers are better and best are bolded.

Slanic Herculane
Metric (m) Relative (%) Metric (m) Relative (%)

DUnsup 21.06 15.31 31.61 16.60
DOdoFlow 19.56 14.39 24.97 12.72
DEnsemble 19.03 13.81 27.10 13.79
SafeUAVNet-Large 16.66 13.41 37.43 22.41
SafeUAVNet-Small 16.11 12.90 37.42 22.95
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3.2 UFODepth: Unsupervised Learning with

Flow-based Odometry Optimization for Metric Depth

Estimation

Building on the depth distillation concept, we present UFODepth, an unsupervised

learning framework for metric depth estimation that incorporates a novel flow-based

odometry optimization procedure. This method significantly improves the accuracy of

analytical depth estimation and demonstrates superior generalization capabilities across

diverse scenes using video data and odometry from real-world UAV flights.

FIGURE 3.2: Overview of our approach (UFODepth). We combine three types of losses
with an improved mathematical formulation for depth from optical flow, which results
in a more robust depth estimation across multiple and varied scenes while being able to
maintain real-time inference.

We correct the noisy odometric measurements by optimizing the alignment between the

derotated optical flow and the projected linear speed in the image. Then, we detail an

analytical depth estimation method based on optical flow and corrected camera veloc-

ities (DOdoFlow++). Subsequently, the improved depth and camera velocities obtained

analytically are used, as additional cost terms, for training our novel unsupervised learn-

ing architecture for metric depth estimation (UFODepth presented in Figure 3.2). We

This section is based on the paper – Vlad Licaret*, Victor Robu*, Alina Marcu*, Dragos Costea, Emil
Slusanschi, Rahul Sukthankar, and Marius Leordeanu.”UFODepth: Unsupervised learning with flow-
based odometry optimization for metric depth estimation.” In 2022 International Conference on Robotics
and Automation (ICRA), pp. 6526-6532. IEEE, 2022. [29]
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extensively experiment with a UAV dataset, collected from the real world, which we

significantly extend by adding completely novel scenes. The dataset extension consists

of approximately 33 minutes of additional flight time with odometry and GPS informa-

tion. It covers a variety of scenes in Eastern Europe such as urban, rural and the Danube

Delta (Figure 3.3).

FIGURE 3.3: Dataset samples from all video sequences in the extended dataset. Sample
frames (top) along with estimated trajectories overlaid on top of SfM reconstruction (bot-
tom). We show samples from previous work Slanic, Herculane [26], alongside the newly
introduced scenes - Oveselu, Olanesti, Chilia.

We outperform by significant margins different kinds of state-of-the-art approaches,

ranging from analytical and unsupervised solutions to transformer-based architectures

that require heavy computation and pre-training (Table 3.2). Even though small details

are lost, our method provides a globally consistent and accurate depth. One can as-

sume that the small receptive field (for DPT) and several visually pleasing features of

BMD (such as gradient-based scaling and blending for each patch) yield locally accu-

rate structure and foreground/background separation. However, they are not as suitable

for practical depth estimation tasks such as obstacle avoidance due to their intensive

computational requirements. Our resulting algorithm could be deployed on embedded

devices, being a good candidate for practical robotics use cases, such as obstacle avoid-

ance and safe landing for UAVs.

TABLE 3.2: Mean absolute and relative errors on entire map against DS f M ground truth
depth. Metric is represented in meters (m) and Relative as a percentage (%). Since we
report the errors, both metrics mean that lower numbers are better. Methods that do not
provide metric estimations are scaled towards DOdoFlow++ for a fair comparison. Overall
denotes the average over all scenes.

Method Slanic Chilia Olanesti Herculane Oveselu Overall
Metric Relative Metric Relative Metric Relative Metric Relative Metric Relative Metric Relative

DUnsup [30] 25.00 15.4 44.52 23.4 25.85 18.4 34.40 16.0 31.10 22.3 32.17 19.1
DEnsemble [26] 24.83 14.9 37.93 18.4 22.46 15.2 34.28 16.6 33.15 22.1 30.53 17.44
SafeUAVNet-Small [26] 26.34 16.7 46.11 23.7 26.76 19.5 41.30 19.8 32.76 23.8 34.65 20.7
DPT [31] 34.33 22.8 23.87 13.9 26.36 20.1 30.48 14.8 28.57 26.8 28.72 19.7
BMD [32] 42.09 33.1 46.83 36.5 33.75 31.4 80.44 44.1 38.83 41.4 48.4 37.3
PackNet [33] 34.36 21.4 43.82 25.4 31.34 22.9 42.64 20.1 33.41 25.2 37.11 23.0
UFODepth-RGB (ours) 21.52 14.4 49.90 27.6 25.28 18.5 32.52 16.2 30.80 23.0 32.0 19.9
UFODepth (ours) 22.36 14.9 33.56 17.0 21.98 15.4 26.45 13.0 26.73 19.4 26.21 15.9
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Chapter 4

TEMPORAL CONSENSUS FOR

SEMANTIC

SCENE SEGMENTATION

In the context of video semantic scene segmentation, it is impractical to manually label

each frame independently, especially considering that there are relatively few changes

from one frame to another in modern captured videos that have a high frame rate. There-

fore, the ability to perform automatic annotation of the entire scene would be extremely

valuable. Towards this direction, we introduce SegProp, a novel iterative flow-based

method for video semantic segmentation - densely annotating each pixel of every frame.

SegProp leverages sparsely annotated frames, alongside a large range of motion through

optical flow chains and propagates semantic labels to intermediary frames lacking anno-

tations. This method is grounded in spectral clustering, exploiting spatial and temporal

coherence to enhance label propagation. By doing so, SegProp significantly reduces the

annotation burden in video without sacrificing the quality of the generated labels.

This chapter is based on the paper – Alina Marcu, Vlad Licaret, Dragos Costea, and Marius Leordeanu.
”Semantics through time: Semi-supervised segmentation of aerial videos with iterative label propaga-
tion.” In Proceedings of the Asian Conference on Computer Vision. 2020. [34]
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FIGURE 4.1: SegProp – our novel method for automatic propagation of semantic labels
in the context of semi-supervised segmentation in aerial videos. Each step depicts the
contributions we make in terms of (1) the Ruralscapes dataset, (2) SegProp label propa-
gation method and (3) show efficiency in semi-supervised learning scenarios.

One of the motivations behind developing SegProp is the scarcity of comprehensive

video aerial datasets. Existing datasets often lack the resolution and dense annotations

necessary for training robust segmentation models. To fill this gap, we introduce Ru-

ralscapes, a new dataset comprising high-resolution (4K) images with manually anno-

tated dense labels every 50 frames, being the largest publicly available dataset for the

task of video scene segmentation from aerial flights at the time of publication.

We present our main contributions in Figure 4.1. In Step 1 we sample the UAV videos,

at regular intervals (e.g. one frame, every second). The resulting frames are then man-

ually labeled (Ruralscapes). In Step 2 we automatically propagate labels to the re-

maining unlabeled frames using our SegProp algorithm - based on class voting, at the

pixel level, according to inward and outward label propagation flows between the cur-

rent frame and an annotated frame. The propagation flows could be based on optical

flow (default), homography transformation, or another propagation method, as shown

in our experiments (Table 4.1). SegProp propagates iteratively the segmentation class

voting until convergence, improving performance over iterations. In Step 3 we mix all

the generated annotations with the ground truth manual labels to train state-of-the-art
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deep CNNs for semantic segmentation and significantly improve performance in unseen

videos (generalization to novel scenarios).

TABLE 4.1: Automatic label propagation results. We present Zhu et al. [35] (which has
only 1 iteration) vs. SegProp starting either from [35] or the initial anchor frames from
our algorithm with consistent improvements over multiple iterations.

Methods
Iterations

1 2 3 4 5 6 7 + Filt.

Zhu et al. [35] mF1 .846 - - - - - - -
mIOU .747 - - - - - - -

SegProp from [35] mF1 .846 .874 .877 .885 .888 .891 .893 .896
mIOU .747 .785 .790 .801 .805 .810 .813 .818

SegProp mF1 .884 .894 .896 .897 .897 .897 .897 .903
mIOU .801 .817 .819 .821 .821 .821 .821 .829

SegProp demonstrates remarkable performance in automatically annotating the remain-

ing 98% of frames in the Ruralscapes dataset, achieving an accuracy exceeding 90% in

F-measure. This accuracy significantly surpasses that of existing state-of-the-art label

propagation methods (Zhu et al. [35]). Moreover, SegProp’s modularity allows for the

integration of other methods within its iterative label propagation loop, resulting in a

further boost in performance over starting or baseline labels (Table 4.1).

In addition to its label propagation capabilities, SegProp is tested in a semi-supervised

learning setting (Table 4.2). Here, we train several well-known semantic segmentation

architectures on the frames automatically labeled by SegProp and evaluate their perfor-

mance on novel, unseen videos. The results consistently show a substantial improve-

ment over models trained in a purely supervised manner. This highlights SegProp’s

potential to enhance the efficiency of training CNNs for semantic segmentation with

limited annotated data.

TABLE 4.2: Quantitative results after training the neural networks on the generated labels,
including the labeled ones. We report mean F-measure over all videos from the testing
set, for each class: (1) - land, (2) - forest, (3) - residential, (4) - haystack, (5) - road,
(6) - church, (7) - car, (8) - water, (9) - sky, (10) - hill, (11) - person, (12) - fence and
the average over all classes. The best results for each class and each trained model, are
bolded. Results clearly show a significant performance boost over the baseline, when
training with SegProp (SP). We mark with ✗the purely supervised case and with ✓the one
in which we augment the labels with SP and train the NN with the mix.

Methods SP (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) All
Unet ✗ .681 .497 .834 .000 .000 .000 .000 .000 .967 .000 .000 .000 .248
[10] ✓ .757 .544 .838 .000 .556 .672 .000 .000 .900 .454 .000 .000 .393

DeepLab ✗ .500 .416 .745 .000 .220 .073 .000 .000 .909 .242 .000 .000 .259
v3+ [25] ✓ .570 .452 .776 .022 .369 .122 .007 .000 .926 .272 .004 .043 .297
SafeUAV ✗ .713 .475 .757 .000 .371 .640 .000 .000 .953 .260 .000 .003 .348
Net [23] ✓ .783 .488 .836 .364 .552 .748 .031 .428 .973 .176 .481 .610 .515
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Chapter 5

MULTI-TASK CONSENSUS

GRAPHS AND HYPERGRAPHS

FOR AERIAL SCENE

UNDERSTANDING

Our efforts so far have focused on improving one task at a time, but our ultimate goal is

to solve multiple simultaneously. Our motivation stems from the understanding that the

real world is not limited to being viewed through an RGB lens; instead, we have various

methods to interpret what we see, and with multiple sensors available, it makes sense

to leverage them to enhance our perception and understanding. Our world is intercon-

nected, with some tasks closely linked, and we aim to utilize similar information from

different sources. This led us to the following key questions: How can we efficiently

leverage these interconnections? How can we use multiple visual cues to predict other

more complex ones that cannot be easily derived? Can we develop a framework for

integrating various data sources and representations, to create a holistic understanding

of the scene, without the need for additional human effort? In this chapter, we present

our efforts to address these open questions.
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5.1 Multi-task Scene Understanding by Neural Graph

Consensus

We address the challenging problem of learning multiple visual interpretations of the

world by finding consensus in a graph of neural networks. As our answer to the afore-

mentioned open questions, we introduce Neural Graph Consensus (NGC) which inte-

grates various interpretations of dynamic scenes into a unified neural graph, encom-

passing 3D structure, pose, motion, and semantic segmentation of objects and activities

across space and time. Each graph node is a scene interpretation layer, while each edge

is a deep network that transforms one layer at one node into another from a differ-

ent node. Within this graph, multiple pathways converging on a node act as collective

teachers through consensual agreements, guiding individual edge networks to the same

node. This self-supervised training approach proves to be effective even in the context

of unsupervised learning, with unlabeled data.

We employ an initialization procedure for the graph by training each edge independently

in a supervised manner. Afterwards, the edges are trained using pseudo-ground truth

generated from the consensus among multiple paths that reach a particular node. We

employ the well-known ”Teacher-Student” paradigm for continuous learning. The paths

directed at a node function as an ensemble ”Teacher” for each edge, providing high-

confidence supervisory signals when there is strong consensus. The process is repeated

over several iterations, in which each edge becomes a ”Student” and also part of a

different ensemble ”Teacher” for training other students. By optimizing the consensus

among different paths, the graph achieves consistency and robustness across various

interpretations and iterations, even in the absence of labeled data.

Experimental analysis is conducted on a synthetic, but realistic, dataset that closely

replicates real UAV flights extracted from the CARLA simulator [37] (Figure 5.1). This

This section is based on the paper – Marius Leordeanu, Mihai Pirvu, Dragos Costea, Alina Marcu,
Emil Slusanschi, and Rahul Sukthankar. ”Semi-supervised learning for multi-task scene understanding
by neural graph consensus.” In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 3, pp. 1882-1892. 2021. [36]
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simulator produces high-quality, multi-representational data, enabling comprehensive

validation of our method. The paths simulate a drone trajectory, with small random

variations in all angles. While the training path is a grid-based, traditional surveying

flight, the test path aims to capture as many viewpoints as possible, to increase com-

plexity.

FIGURE 5.1: Samples from the synthetic dataset (train, first row, evaluation, second row)
we collected using the CARLA virtual environment.

Our experimental analysis (Table 5.1), based on a pre-configured graph structure, which

means we applied a sub-optimal approach to determine the best set of edges for each

task, demonstrated the effectiveness of the method in improving results for six complex

tasks over two learning iterations, not just at the NGC mean ensemble level, but also at

the level of a single edge with ≈ 1.1M parameters [23].

TABLE 5.1: Quantitative results for our proposed NGC on 6 representations, over 2 iter-
ations of unsupervised learning. We show the best results over NGC ensemble teachers
(bolded) and single edge students (bolded). Note the consistent iterative improvements.

Iteration 0 Iteration 1 Iteration 2
Representation Evaluation Metric EdgeNet NGC Distil. EdgeNet NGC Distil. EdgeNet

L1 ↓ (meters) 4.98 3.48 4.28 3.29 3.95
Depth Pixels ↑ (%) - 79.30 60.66 79.69 61.90
Surface L1 ↓ (degrees) 8.48 7.79 8.28 7.45 7.67
Normals (C) Pixels ↑ (%) - 74.18 53.59 74.61 53.94
Surface L1 ↓ (degrees) 11.88 8.82 10.75 8.52 8.67
Normals (W) Pixels ↑ (%) - 79.95 57.88 81.12 61.14

Accuracy ↑ (%) 90.01 91.81 90.19 92.45 92.83
Semantic Segmentation mIOU ↑ (%) 48.40 49.78 49.80 52.58 51.59

Pixels ↑ (%) - 79.46 69.62 81.49 71.95
Wireframe Accuracy ↑ (%) 96.17 96.55 96.54 96.61 96.55

Pixels ↑ (%) - 77.71 72.57 78.02 73.46
Position L2 ↓ (meters) 25.75 15.53 20.02 12.07 15.55
Orientation L1 ↓ (degrees) 3.84 2.50 3.39 2.20 3.00
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5.2 Multi-task Hypergraphs for Aerial Understanding

Building on the NGC concept, we introduce a novel hypergraph structure for multi-

task learning and show its effectiveness in more challenging scenarios with even less

human supervision than before. We apply our model in two distinct domains (Fig-

ure 5.2): 1) complex real-world scenes captured in the Dronescapes dataset, which we

introduce, a large real-world video collection recorded with UAVs, and 2) the NASA

NEO dataset [40], a comprehensive Earth Observation dataset spanning 22 years. The

Dronescapes dataset, with its multiple representations, is ideal for multi-task learning,

while the NASA NEO dataset presents challenges such as missing data and temporal

distribution shifts.

FIGURE 5.2: Overview of our semi-supervised multi-task hypergraph for multi-domain
applications using real-world UAVs flights or Earth Observations.

This model goes beyond the pairwise relationships in NGC, incorporating higher-order

connections, through multiple types of hyperedges (Figure 5.3) that capture more com-

plex interdependencies. Similar to NGC, in our hypergraph, each node is an interpreta-

tion layer of the scene. The basic processing units of the hypergraph are direct neural

links (DNL) which represent the RGB→Task edge. The neural links that connect an

input node to an output node are simple edges (E), while the others, that connect mul-

tiple nodes to an output node form complex hyperedges. Each hyperedge is modeled

This section is based on the paper – Alina Marcu, Mihai Pirvu, Dragos Costea, Emanuela Haller,
Emil Slusanschi, Ahmed Nabil Belbachir, Rahul Sukthankar, and Marius Leordeanu. ”Self-supervised
hypergraphs for learning multiple world interpretations.” In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 983-992. 2023. [38] and a small part on
Mihai Pirvu, Alina Marcu, Maria Alexandra Dobrescu, Ahmed Nabil Belbachir, and Marius Leordeanu.
”Multi-Task Hypergraphs for Semi-supervised Learning using Earth Observations.” In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 3404-3414. 2023. [39]
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using a lightweight neural network [23] (SafeUAVNet-Small). Previous works use only

edges, while we introduce different types of hyperedges to capture more complex re-

lations between different layers. Given input nodes: A, B, C, and outputs D and E,

we form four types of hyperedges of different complexities: pairwise edges (E), dual-

hop edges (DH-E), ensemble hyperedges (EH), aggregation hyperedges (AH) and cycle

hyperedges (CH). We have demonstrated on multiple tasks that these hyperedges far

exceed the performance of simple edges (Figure 5.4 (Left)).

FIGURE 5.3: Types of edges and hyperedges in the hypergraph.

FIGURE 5.4: (Left) Evaluation of edges and hyperedges, on the Dronescapes dataset
(Figure 5.5 (Left)), for multiple tasks: 1 - semantic segmentation (sseg); 2 - depth esti-
mation (depth); 3 - surface normals (norm). We report mean IoU (% - higher values are
better (↑) for the task of semantic segmentation and L1 error * 100 (lower is better (↓))
for depth and normals estimation. Bolded results highlight the mean performance gain of
training hyperedges over edges. The meaning of the training sets are in Figure 5.5 (Right).
(Right) Proposed learned ensembles architectures.

Multiple paths can reach the same node to form ensembles from which we obtain robust

pseudolabels and leverage the power of semi-supervised learning in the hypergraph over

multiple iterations by adding novel unlabeled data. Different from previous ensemble

formation methods (aggregation by mean, median or distance-based) we introduce four

types of ensembles, all with an initial learnable candidate selection model, which keeps

only the relevant candidates before combining them: S-LRFW learns one fixed weight
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per candidate. S-NNDW dynamically outputs a weight per candidate, depending on the

input, while S-NNDPW dynamically outputs a weight for each pixel of each candidate.

Instead of linearly combining the candidates S-NND learns a direct non-linear mapping

from candidates to output (Figure 5.4 (Right)). All are learned end-to-end.

TABLE 5.2: Comparison to previous multi-task graph-based methods – (Left) On the
Dronescapes dataset, we show considerable improvements by adding the proposed hyper-
edges (denoted with HE in the table) on top of existing work that uses only edges within
their graph structure. (Right) On the NEO dataset, we evaluate on the Test Set of different
ensemble models, for each output node (1) - AOD, (2) - CM, (3) - FIRE, (4) - LAI, (5) -
LST DAN , (6) - LST NAN , (7) - WV . The best numbers are bolded, while the second best
are underlined.

Method
IoU(↑)

Barsana Comana Norway Mean

NGC [36] (Mean) 41.53 40.75 27.38 36.55
NGC (Mean) + HE 42.61 42.17 27.96 37.58
NGC [36] (Median) 39.25 37.41 27.01 34.56
NGC (Median) + HE 44.34 38.99 22.63 35.32

CShift [41] (Mean) 43.91 42.13 29.68 38.57
CShift (Mean) + HE 44.71 43.88 30.09 39.56
CShift [41] (Median) 43.30 40.62 29.51 37.81
CShift (Median) + HE 46.27 43.67 29.09 39.68

S-LRFW 46.51 45.59 30.17 40.76
S-NND 45.53 42.92 28.37 38.94
S-NNDW 45.48 43.25 26.36 38.36
S-NNDPW 48.21 44.85 28.94 40.67

Ens. Type (1) (2) (3) (4) (5) (6) (7) ARPI (↑)

NGC [36] 0.44 12.97 12.15 5.44 -50.2 -39.0 2.21 -8.01
CShift [41] 1.86 13.07 8.66 6.64 -43.5 -28.0 2.65 -5.52

S-Mean 3.31 14.71 12.42 8.97 -9.50 -2.48 5.93 4.77
S-LRFW 4.85 11.15 8.62 8.45 0.21 4.90 5.84 6.29
S-NND 6.67 13.20 10.56 9.68 0.69 3.57 7.86 7.46
S-NNDW 4.79 14.80 12.39 9.50 0.25 4.91 6.03 7.52
S-NNDPW 5.74 6.51 11.21 8.26 1.33 5.62 4.98 6.24

We evaluate the performance of our learned ensembles on our proposed Dronescapes

dataset, for the task of semantic segmentation (Table 5.2 (Left)) and on all the output

nodes from the NEO dataset (Table 5.2 (Right)). On Dronescapes, we bring a perfor-

mance boost by adding hyperedges and also by allowing the ensembles to learn. Both

NGC [36] and CShift [41] models use only edges and relatively simple non-parametric

ensemble models at nodes (NGC - simple average and CShift - non-parametric pixel-

wise kernel weighted average). Our experiments show that learning parametric ensem-

ble models, even a simple linear one, improves significantly (above 2% on average)

over previously published work. Performance is reported on the Train Unlabeled (iter

3), which includes only the test scenes. We show a similar improvement pattern on the

NEO dataset where all of the learned ensembles with selection offer a positive relative

improvement compared to previous methods without selection (NGC and CShift).

TABLE 5.3: Iterative learning performance on the Dronescapes dataset, at the level of the
direct neural links for each task. The evaluation was done on the test scenes (averaged).

Type Semantic Depth Normals
IoU (↑) Cons. (↑) L1 (↓) Cons. (↑) L1 (↓) Cons. (↑)

DNL

supervised 25.04 88.85 - - - -
(iteration 1) 32.79 94.04 21.66 5.89 12.40 98.32
(iteration 2) 37.26 95.72 17.34 7.06 11.93 98.87
(iteration 3) 40.31 98.13 16.64 30.26 11.71 99.30
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We also show that leveraging pseudolabels generated from ensemble predictions over

multiple learning iterations continuously improves model performance, even at the sim-

plest edge (DNL) (Table 5.3) with improvements not only in terms of accuracy over

multiple tasks but also at the level of temporal consistency.

We introduce Dronescapes, a new, large-scale UAV video dataset with diverse scenes

and automatically generated annotations for multiple tasks (Figure 5.5 (Left)). All video

sequences include GPS information, linear and angular velocities, and absolute camera

angles (except for the out-of-distribution scene of Norway). The total video length is

about 50 minutes, with 4K frames and odometry provided at 10 Hz. We collect a total

of 10 widely varied scenes that we split into 7 training and 3 test scenes (dataset split

details in Figure 5.5 (Right)). There is a large variation in spatial distributions of classes

among the different Dronescapes scenes, which range from rural (Atanasie, Gradistei,

Petrova, Barsana, Comana), to urban (Olanesti, Herculane, Slanic) and seaside (Jupiter,

Norway), while also being geographically far apart. This dataset provides a challeng-

ing testbed and to the best of our knowledge, is the first one for evaluating multi-task

learning approaches in real-world scenarios with real UAV flights.

FIGURE 5.5: (Left) Sample frames from each of the 10 scenes from our Dronescapes
dataset. The scenes framed with green borders represent training scenes for which we

have access to a small fraction of manual annotations during training. The others depict
unseen, test scenes with semantic distributions that are closer to the training set (in blue)

or out-of-distribution (red). (Right) Dronescapes dataset split.

These contributions collectively address the challenges of learning comprehensive scene

representations from aerial perspectives with minimal supervision. By leveraging the

power of hypergraphs, ensemble learning, and iterative semi-supervised training, this

work pushes the boundaries of what is possible in multi-task aerial scene understand-

ing. The methods developed here have broad implications for various applications,

from autonomous UAV navigation to long-term environmental monitoring and climate

change studies.
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Chapter 6

CONCLUSIONS

This thesis addresses key challenges in aerial scene understanding, offering both prac-

tical solutions and theoretical contributions applicable to various robotics fields, specif-

ically from the aerial perspective. We acknowledge that the complexities of aerial

scene understanding are far from fully solved and propose several directions for fu-

ture research. These include expanding from 2D to 3D world representation, leveraging

synthetic data and domain adaptation techniques, integrating a wider range of sensor

modalities, improving semantic understanding through open-set learning, advancing

cross-domain adaptation and generalization, exploring adaptive and continual learning,

and exploiting advanced architectures such as transformer-based models.

We also address ethical considerations, particularly regarding safety and privacy in UAV

data collection. We adhered to drone flight regulations in Romania, prioritizing safety

by conducting flights in sparsely populated areas and at higher altitudes. Privacy con-

cerns were mitigated by obtaining consent where possible and informing individuals

about the research purpose of the flights. We conclude with reflections on the current

AI landscape, emphasizing the responsibility of AI experts to shape public perception

and understanding of AI’s trajectory, stressing the importance of maintaining AI safety,

conducting interdisciplinary research, and fostering informed discussions to build trust

and reach a global consensus on AI as a tool for human progress and empowerment.
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