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Abstract

This thesis develops a Selberg trace formula for the Dirac operator on complete hyperbolic
surfaces of finite area, from which several results are obtained. First, we investigate the
spectrum of the Dirac operator on families of hyperbolic surfaces where a set of disjoint
simple geodesics shrink to 0, under the hypothesis that the spin structure is non-trivial
along each pinched geodesic. We derive a version of Huber’s theorem, a non-standard small
time heat asymptotic expansion and a Weyl law for the eigenvalues of the Dirac operator,
which is uniform in the degenerating parameter. The first main result is the convergence
of the Selberg zeta function associated to a non-trivial spin structure.

Secondly, we focus on the behaviour of the spectrum of the Dirac operator on a typical
hyperbolic surface of finite area. We work on the moduli space of surfaces of genus g with
k cusps endowed with the Weil-Petersson measure. In this moduli space there exists a
subset Ag,k for which P(Ag,k) → 1 as g → ∞ such that for every surface in Ag,k endowed
with a non-trivial spin structure, the rescaled number of eigenvalues of the Dirac operator
between a and b is of order b−a. This result refines the Weyl law as the upper bound does
not depend on the surface.
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Chapter 2

Introduction

This thesis aims at studying the spectrum of the Dirac operator on hyperbolic surfaces of
finite volume. To achieve this purpose, we develop and make use of a Selberg trace formula
for the Dirac operator, following the original idea of A. Selberg [44]. There are three main
ingredients necessary for this formula, which will be presented in the rest of the chapter.
Apart from the introduction, this work consists of two parts. Each one represents a paper
([46] and [36]) the author elaborated specifically for his doctoral studies. We would like to
mention that the version of the second paper present here is the one sent to the publishing
journal. The rest of the introduction is a crash course in hyperbolic geometry. We present
the definitions and notions one needs to know in order to understand the two parts of the
thesis.

2.1 Riemann surfaces

A Riemann surface is a connected, Hausdorf topological space endowed with a holomorphic
atlas. They arise naturally as domains of holomorphic functions. Throughout the second
part of the nineteenth century, many famous mathematicians were focused on proving
the uniformization of Riemann surfaces. This theorem states that every simply-connected
Riemann surface is biholomorphic to either the complex plane C, the unit disk D or the
Riemann sphere Ĉ. It is arguably the most important result in the field of complex analysis
of one variable. In 1907, two rigours proofs appeared independently, thanks to P. Koebe
[24] and H. Poincaré [39]. Modern arguments can be found in various books [15, 16, 22] as
well as short papers [3].

A remarkable consequence of this theorem is that it build a bridge between the fields of
complex analysis and hyperbolic geometry. Let us consider a Riemann surface M . Then
M̃ , its universal cover, is biholomorphic to either C, D or Ĉ. Moreover, we know that
M = Γ \ M̃ , where Γ is the fundamental group of our surface, and the induced action is
properly discontinuous, without fixed points.
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i) Suppose M̃ ≃ Ĉ. Then:

Γ ⊂ Aut(Ĉ) =
{
z 7→ az + b

cz + d
: a, b, c, d ∈ C, ad− bc ̸= 0

}
.

The group Aut(Ĉ) is also known as the group of Möbius transformations. Since each
map z 7→ az+b

cz+d
has at least one fixed point, we deduce that Γ can only be the trivial

group, hence M ≃ Ĉ.

ii) Suppose M̃ ≃ C. Then:

Γ ⊂ Aut(C) = {z 7→ az + b : a, b ∈ C, a ̸= 0} .

The map z 7→ az + b has no fixed point if and only if a = 1. Moreover Γ must be
discrete, hence the only possible options are:

Γ = {Id};
Γ = {z 7→ z + nb : n ∈ Z, for a fixed b ∈ C} ;

Γ =

{
z 7→ z + nb+mb′ : n,m ∈ Z, , for some fixed b, b′ ∈ C with

b

b′
/∈ R
}
.

Factoring the plane C through these groups we obtain C, a cylinder (which is biholo-
morphic to C∗ as well), and an elliptic curve.

Clearly, all other Riemann surfaces are covered by the unit disk D. This disk carries one

additional structure. It can be equipped with a complete hyperbolic metric g = 4(dx2+dy2)
(1−x2−y2)2

,
thus becoming the well known Poincaré disk. Moreover, we shall see that the group
Aut(D) acts through isometries as well. Therefore, if our initial surface M is covered by
D, it automatically inherits a complete hyperbolic metric.

2.2 Hyperbolic surfaces and spin structures

In what follows we restrict ourselves to the study of complete hyperbolic surfaces of finite
area. Two models of hyperbolic geometry are usually used: the Poincaré disk mentioned
earlier and the Poincaré half-plane

H :=

(
{(x, y) ∈ R2 : y > 0}, g = dx2 + dy2

y2

)
.

One can easily see that these two models are biholomorphic and isometric, using the
function:

f : H −→ D; f(z) =
z − i

z + i
,
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(a) Poincaré disk D (b) Poincaré half-plane H

Figure 2.1: Geodesics in two models of hyperbolic geometry

where a point z = x+ iy is identified with the pair (x, y).
On one hand, for D, the geodesics are straight lines passing through 0 and circle arcs

perpendicular on ∂D on both ends. On the other hand, the geodesics of H are vertical lines
or half-circles centred in points with y = 0 (see Figure 2.1).

For the rest of the introduction we will work with the half-plane. Its group of auto-
morphisms consists of those Möbius transformations which fix the upper half-plane y > 0.
Thus:

Aut(H) = PSL2(R) :=
{
z 7→ az + b

cz + d
: a, b, c, d ∈ R, ad− bc > 0

}
.

One can easily check that these applications are also isometries for the metric on H. There
are three standard examples of elements from this group:

i) Dilation: z 7→ λz, for some λ > 0;

ii) Translation: z 7→ z + 1;

iii) Rotation: z 7→ z cos θ+sin θ
−z sin θ+cos θ

, for some θ ∈ (0, 2π).

In fact, a classical result tells us that up to a conjugation, every element in PSL2(R) is either
a dilation (and is called hyperbolic), a translation (and is called parabolic) or a rotation.
The trace is invariant under conjugation, hence we can find out whether an element is
conjugated to either a dilation, a translation or a rotation by looking if its the absolute
value of its trace is larger than 2, exactly 2 or smaller than 2 respectively. Since rotations
have a fixed point, our fundamental group Γ can only contain hyperbolic and parabolic
elements. Moreover, if M is compact, then Γ can only contain hyperbolic elements.

2.2.1 Length spectrum

As we said earlier, if M is covered by D, it has a complete hyperbolic metric. With respect
to this metric, there are infinitely many closed geodesics on our surface. Indeed, every



Rares, Stan Chapter 2. Introduction

hyperbolic element preserves a geodesic δ in H, since it is conjugated to a dilation. The
projection of δ on M is a closed geodesic. There is a bijective correspondence between
classes of conjugation in Γ and oriented closed geodesics on M .

We say that an element γ ∈ Γ is primitive if it cannot be written as γ = µn, with
n ≥ 2. Additionally, we say that a closed geodesic η is primitive if γ is primitive, where
[γ] is the conjugacy class associated to η.

By length spectrum we understand the sequence of lengths of closed, oriented geodesics
on M . Since we consider oriented geodesics, each length appears an even number of
times. This sequence is the first important ingredient in the Sleberg trace formula. A very
important mathematical object related to the length spectrum is the Selberg zeta function:

Zε(s, (M, g)) =
∏
[γ]

∞∏
m=0

(
1− ε(γ)e−l(γ)(s+m)

)
,

where ε is a {±1} valued function (which depends on the spin structure) defined in the
following section, the lengths of the geodesics are taken with respect to the hyperbolic
metric g and the product is taken along all conjugacy classes of hyperbolic, primitive
elements γ ∈ Γ.

2.2.2 Spin structures

Let us came back to the group PSL2(R) for a brief moment. Every invertible matrix induces
an isometry on H in the following:[

a b
c d

]
−→

(
z 7→ az + b

cz + d

)
.

Note that a matrix A and λA for λ ∈ R∗ will induce the same isometry, hence:

PSL2(R) ≃ SL2(R)/{±1},

where SL2(R) is the group of invertible matrices of determinant 1. Thus, we have a natural
projection π : SL2(R) −→ PSL2(R). If we denote Γ̃ the preimage of Γ through π we obtain
the short exact sequence:

1 −→ {±1} −→ Γ̃ −→ Γ −→ 1.

More details are given in section 3.3, but for the moment, let us define a spin structure as
a group morphism χ : Γ̃ −→ {±1}, for which ι ◦ χ = id{±1}, where ι : {±1} −→ Γ̃ is the
natural inclusion.

Let us now consider an element γ ∈ Γ and denote γ̃ the preimage in SL2(R) of positive
trace. We define the class function ε as ε(γ) = χ(γ̃) (more details are given in section
3.3.4). It is a class function since the trace is invariant to conjugation. We say that a
spin structure is non-trivial if ε(γ) = −1 for every parabolic element γ ∈ Γ. This ε is the
second important ingredient in the trace formula.
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The third and final ingredient is the spectrum of D, the Dirac operator, a differential
operator of order 1 on a vector bundle, constructed using the spin structure (see section
3.3.2). In Rn, the square of the Dirac operator is exactly the the Laplacian acting on
spinors. In arbitrary curvature, the Lichnerowicz formula tells us that the difference be-
tween the square of the Dirac operator and the Laplacian is exactly one forth of the scalar
curvature. From the theory of pseudodifferential operators, we know that on compact
surfaces the spectrum of the Dirac operator is discrete. Bär [6] showed that, under some
technical conditions on the spin structure, the spectrum is discrete on hyperbolic surfaces
of finite area as well.

2.2.3 Selberg trace formula for the Dirac operator

We are now in a position where we can state the trace formula. The complete proof can
be found in Chapter 3. Consider {rj}j∈N the ordered sequence of eigenvalues of |D |. Let
u be an admissible (see Definition 3.22) function. If M = Γ \ H is a complete hyperbolic
surface with k cusps and a non-trivial spin structure, we have:

∞∑
j=0

u(ξj) =
Area(M)

2π

∫
R
ξu(ξ) coth(πξ)dξ +

∑
[µ]

∞∑
n=1

l(µ)εn(µ)ǔ(nl(µ))

sinh
(

nl(µ)
2

) − 2k log(2)ǔ(0),

where [µ] runs along all conjugacy classes of primitive, hyperbolic elements in Γ and ǔ is the
inverse Fourier transform of u. From a philosophical point of view one can say that it is a
bridge between classical mechanics and quantum mechanics. It relates closed trajectories
of classical particles (i.e., closed geodesics) to periodic states of quantum particles (i.e.,
eigenvalues and eigenfunctions of D). For this thesis, the above formula represents the
foundation on which we will build our applications. Compared to the classical trace formula
developed by Selberg [44], here the function coth appears instead of tanh.

2.2.4 Pinching process

A pinching process is obtained when the length of a simple closed geodesic on M shrinks
to 0. Rigorously we do this by choosing a family of complete hyperbolic metrics on our
surface, as explained in Definition 3.1. But intuitively, the process can be seen in Figure
2.2. At the limit, the geodesic η disappears so the surface is no longer compact. We
also mention that, because of the Gauss-Bonnet formula, the area of the surface remains
constant throughout this process.

A first result in this direction appears in Chapter 3 and says that the right hand-side
of the trace formula behaves well when the length of the geodesic shrinks to 0 (Theorem
3.24). From here, we obtain a Weyl law (Theorem 3.4) which is uniform in the pinching
parameter:

lim
λ→∞

ND2
t
(0, λ)

λ
=

Area(M)

2π
; uniformly for t ∈ [0, 1].
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This immediately implies that:

NDt(−ξ, ξ) = ξ2
Area(M)

2π
+ o(ξ2),

uniformly in t ∈ [0, 1] (the pinching parameter), where NDt(−ξ, ξ) is the counting func-
tion of Dt-eigenvalues between −ξ and ξ. The above result greatly improves the existing
estimates known [6, Theorem 2].

Figure 2.2: Pinching process

Finally, the main theorem of the next chapter is the convergence of the Selberg zeta
function defined above during a pinching process (Theorem 3.5):

lim
t→0

Zε(s, (M, gt)) exp

(
−

κ∑
j=1

π2

6lt(ηj)

)
= Zε(s, (M, g0))2

κ(1−2s),

uniformly on compacts in C, where gt is the hyperbolic metric on M at time t ∈ [0, 1].

2.2.5 Counting eigenvalues on random surfaces

Chapter 4 is concerned with the spectral properties of the Dirac operator on a typical
hyperbolic surface of finite area. Since similar results are already known in the case of the
Laplacian, let us briefly explain them. In [35] Monk studied the distribution of eigenvalues
of the Laplacian on a random compact hyperbolic surface. She worked with the Weil-
Petersson volume, which induces a probability measure onMg, the moduli space of surfaces
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of genus g. The main result is that for a typical hyperbolic surface X and 0 ≤ a ≤ b one
has:

N∆
X (a, b)

Area(X)
= O

(
b− a+

√
b+ 1

log g

)
,

where N∆
X (a, b) is the counting function of ∆-eigenvalues between a and b on the hyperbolic

surface X. In [25] Le Masson and Sahlsten extend this result to hyperbolic surfaces of finite
area, provided that the number of cusps k = k(g) is of order O(gκ), for 0 < κ < 1/2. Under
the same hypothesis for the number of cusps, we obtain that (Theorem 4.1):

ND2

X (a, b)

Area(X)
= O

(
1

4π

∫ b

a

coth(π
√
r)dr +

√
b+ 1√
log g

)
.

This result is obtained in collaboration with Laura Monk. As in [35], the proof consists of
applying the Selberg trace formula for a specific family of functions.
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[24] P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven, Nachr. Ges. Wiss.
Göttingen (1907), 191–210 and 633–649.

[25] E. Le Masson, T. Sahlsten, Quantum Ergodicity for Eisentstein series on hyperbolic
surfaces, http://arxiv.org/abs/2006.14935.

[26] Lizhen Ji, Spectral degeneration of hyperbolic Riemann surfaces, J. Differential Geom.
38 (1993), no. 2, 263–313.

[27] M. Lipnowski, A. Wright, Towards Optimal Spectral Gaps in Large Genus, http:

//arXiv:2103.07496.

[28] J. Marklof, Selberg’s Trace Formula: An Introduction. Hyperbolic geometry and ap-
plications in quantum chaos and cosmology, 83–119, London Math. Soc. Lecture Note
Ser., 397, Cambridge Univ. Press, Cambridge, 2012.

[29] R. Mazzeo, R. B. Melrose, Analytic surgery and the eta invariant, Geom. Funct. Anal.
5 (1995), no. 1, 14–75.

http://arXiv:2306.16121
http://arXiv:2209.15568
http://arxiv.org/abs/2006.14935
http://arXiv:2103.07496
http://arXiv:2103.07496


Rares, Stan BIBLIOGRAPHY

[30] R. Mazzeo, R. B. Melrose, Pseudodifferential operators on manifolds with fibred bound-
aries, Asian J. Math. 2 (1998), no. 4, 833–866.

[31] P. McDonald, The Laplacian on spaces with cone-like singularities, MIT Thesis, 1990.

[32] S. Minakshisundaram, A. Pleijel, Some properties of the eigenfunctions of the Laplace
operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256.

[33] M. Mirzakhani, Growth of Weil–Petersson Volumes and Random Hyperbolic Surfaces
of Large Genus, J. Diff Geom, 94 (2013), no. 2, 267–300.

[34] L. Monk, Geometry and Spectrum of Typical Hyperbolic Surfaces, PhD thesis, Univer-
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