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Chapter 1

Introduction

When people look at an image or a video, they can immediately understand the

underlying 3d space, as well as identify and describe the key actors, actions and ob-

jects. Analyzing some of the processing involved in human visual perception may offer

insights towards building more robust and adaptable computer vision applications.

This thesis aims at building automatic visual sensing systems and integrate, when-

ever possible, elements of human visual perception. We firstly address a more general

problem, automatic video captioning, i.e. generating a natural-language sentence for

describing the content of a video. Then we focus on the perceptual analysis and au-

tomatic reconstruction of a more specific but extremely challenging visual category –

humans – and their associated 2d and 3d pose. Here we consider only the monocular

case, for both images and video sequences. These tasks have applications in fields as

diverse as video indexing, behavioral modeling, assisted therapy or self-driving cars.

We propose a video captioning model that leverages spatio-temporal attention

mechanisms and recurrent neural networks based on long short-term memory. We

integrate additional, potentially valuable, information by relying on spatio-temporal

video proposals and classifier responses for semantic categories. The task is chal-

lenging due to the large variety of semantic categories and textual annotations. Our

method produces competitive, state-of-the art results, while localizing semantic con-

cepts (subject, verbs, objects) with no additional supervision, over space and time.

Next, we present an experimental apparatus that aims to link human perception
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with quantitative measurements. We asked subjects to re-enact the 3d pose seen in

a single person image, following a short exposure time. We precisely tracked their

body movements and recorded their eye fixations using specialized equipment. We

provide an extensive analysis of eye movement consistency as well as quantitative and

qualitative performance of the pose re-enactment. Our data and insights are further

used to learn perceptual metrics that produce more stable and meaningful results,

when integrated with automated single person 3d pose estimation predictors.

Lastly, we extend single person 3d pose predictors towards an automated multiple

people sensing system that estimates the 2d, 3d pose and shape, as well as camera

scene translation of multiple people in natural images. The main challenges arise

from the variety of the human bodies, occlusions and partial views, as well, the close

interactions, and the ambiguity of monocular perspective projection. We leverage

a deep multi-task sensing network with an optimization step guided by detailed se-

mantic cues. We enforce a series of scene constraints, e.g., ground plane support and

simultaneous volume occupancy exclusion, that lead to state-of-the art results as well

as promising qualitative reconstructions in natural images.
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Chapter 2

Spatio-Temporal Attention Models

for Grounded Video Captioning

Automatic video captioning is challenging due to the complex interactions in dynamic

real scenes. A comprehensive system would ultimately localize and track the objects,

actions and interactions present in a video and generate a description that relies on

temporal localization in order to ground the visual concepts. However, most existing

automatic video captioning systems map from raw video data to high level textual de-

scription, bypassing localization and recognition, thus discarding potentially valuable

information for content localization and generalization. In this work we present an

automatic video captioning model that combines spatio-temporal attention and image

classification by means of deep neural network structures based on long short-term

memory. The resulting system is demonstrated to produce state-of-the-art results in

the standard YouTube captioning benchmark while also offering the advantage of lo-

calizing the visual concepts (subjects, verbs, objects), with no grounding supervision,

over space and time.

2.1 Methodology

Our approach to video captioning has two main components: first revealing the spatio-

temporal visual support of words in video and then guiding the sentence generation
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Figure 2-1: Overview of our approach for aitomatic video captioning and spatio-
temporal grounding of semantic concepts.

process by including semantic information in the learning process. We integrate a

soft-attention mechanism, operating over a pool of spatio-temporal proposals, into a

state-of-the-art recurrent network. The joint model learns to produce semantically

meaningful sentences while attending to different parts of the video. The semantic

information is obtained in two ways: (a) by learning to predict subjects, verbs and

objects (S,V,O) and (b) by using pre-trained state-of-the-art image classification and

object detection models. An overview of our modeling and computational pipeline is

shown in figure 2-1.

2.1.1 Spatio-Temporal Object Proposals

We use the method from [15] to gather a pool of spatio-temporal object proposals. We

split each video into parts using a shot boundary detection method [12]. Around 1,000

spatio-temporal proposals are extracted separately for each sub-video and together

they form the pool of proposals for the whole video. These are then filtered and ranked

according to a series of heuristics that take into account their spatial and temporal

extent as well as the probability that they contain an object. We represent a video by
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m such descriptors corresponding to best scoring m spatio-temporal proposals. Given

a proposal, for each of its bounding boxes in the video frames, we extract the output

of the fc7 layer of the VGG-19. The feature descriptor for a proposal is obtained by

mean-pooling over all the bounding boxes.

2.1.2 Attention-based LSTM

Soft-Attention Mechanism. We incorporate a soft-attention mechanism into the

LSTM in order to allow the model to selectively focus on different parts of the video,

represented by a series of spatio-temporal object proposals, each time it produces a

word. The Attention-based LSTM learns to weight the proposals every time a word

is produced, thus being able to indicate what is the localized visual support used to

produce a particular word from the video description.

2.1.3 High-Level Semantic Description

For improved generalization of our model, we incorporate several types of semantic

information: image classifiers and object detectors responses as well as responses

from classifiers for subjects, verbs and objects that we learn ourselves. Generating a

textual description of a video requires identifying the actors and their interactions and

then constructing a grammatically well-formed sentence. For this purpose, in order

to generate a human-like textual description of a video, we first represent a video in

the form of a Subject(S), a Verb(V) and an Object(O) (similarly to earlier works [7]).

We then integrate this representation with state-of-the-art recurrent models, along

with spatio-temporal localization processes and object detection and classification

information. In order to learn a semantic high-level representation for each video, we

represent a sentence in a compact and simplified manner that preserves its main idea

by extracting a (S,V,O) tuple - e.g. the sentence A cat plays with a toy is represented

as (cat, play, toy)). We treat the three vocabularies separately and use Least Squares

Support Vector Machine (LS-SVM) as a classifier in a one-vs-all approach.
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2.2 Experimental Details

Dataset Description. We perform our experiments on the YouTube dataset [4]

which consists of 1,967 short videos (between 10s and 25s length) collected from

YouTube that usually depict only one main activity. Each video has approximately

40 human-generated English descriptions collected through Amazon Mechanical Turk.

Evaluation Measures. We report our results under BLEU [18] and METEOR

[11] metrics which were originally proposed for the evaluation of automatic transla-

tion approaches and have also been adopted by previous works in video and image

captioning.

2.2.1 Experimental Results

Quantitative Results. Results obtained with the proposed models are shown in

table 2.1. Our attention-based recurrent neural network model (LSTM-ATT) model

achieves competitive results compared to other methods. Adding semantic features

on top of this model improves the state-of-the-art results on the BLEU@n metric,

while also performing well on METEOR. The contributions of the SVO semantic

features alone and in conjunction with additional DET (detection) and CLS (clas-

sification) features are also presented. In the case of SVO features alone, the best

results are obtained with LSTM2-ATT(SVO) method for both evaluation metrics

(BLEU@4 52.0%, METEOR 32.3%), while when using the full semantic features, our

best performing method under BLEU is LSTM-ATT(SVO,DET,CLS) (50.6%) and

under METEOR is LSTM2-ATT(SVO,DET,CLS) (32.4%).

Qualitative Results. Our attention mechanism, built on top of spatio-temporal

object proposals, allows for a visual explanation of what the model ranked as the most

relevant visual support for emitting a particular word. This can be done by inspecting

the learned weights and their associated proposals. In figure 2-2 we show the proposal

with the highest associated weight that was used in generating a particular word.
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Ours: A man is pouring some sauce.

Ref: A man is pouring some sauce into
a pan.

Ours: A man is playing guitar.

Ref: A man is playing a guitar.

Ours: A man is shooting with a gun.

Ref: A guy is shooting a gun.

Ours: A dog is playing with a dog.

Ref: A dog is playing with a fly.

Figure 2-2: Highest scoring proposals of our model for each emitted word in the
sentence. We only illustrate the grounding of the main words in the sentence and
ignore linking words. The complete sentence is shown in the right column together
with the closest reference from the human annotations. For each proposal we show a
single, randomly selected frame.

Method BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR

FGM [20] - - - 13.68 23.9
S2VT[21] - - - - 29.8
MM-VDN[23] - - - 37.64 29.00
LSTM-YT-coco [22] - - - 33.29 29.07
LSTM-YT-coco+flicker [22] - - - 33.29 28.88
Temporal attention [24] - - - 41.92 29.60
LSTM-E (VGG+C3D) [17] 78.8 66.0 55.4 45.3 31.0
h-RNN[25] 81.5 70.4 60.4 49.9 32.6
HRNE with attention[16] 79.2 66.3 55.1 43.8 33.1
GRU-RCNN [1] - - - 49.63 31.70
LSTM 78.0 66.4 56.7 45.4 31.2
LSTM(SVO) 80.1 68.1 57.5 45.8 31.2
LSTM(DET,CLS) 81.2 68.9 57.9 46.2 31.1
LSTM(SVO,DET,CLS) 80.8 69.3 59.3 48.3 30.7
LSTM-ATT 80.1 68.9 59.4 48.7 31.9
LSTM-ATT(SVO) 81.0 70.5 61.2 50.5 32.3
LSTM-ATT(DET,CLS) 81.9 70.9 60.9 50.5 31.6
LSTM-ATT(SVO,DET,CLS) 82.0 71.6 62.4 51.5 32.0
LSTM2-ATT(SVO) 82.4 71.8 62.5 52.0 32.3
LSTM2-ATT(DET,CLS) 80.6 68.1 57.4 46.0 31.8
LSTM2-ATT(SVO,DET,CLS) 81.5 70.8 61.5 50.6 32.4

Table 2.1: Comparison with previous works on BLEU@1 - BLEU@4 and METEOR
metrics. Values are reported as percentage %.
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Chapter 3

Pictorial Human Spaces: A

Computational Study on the

Human Perception of 3d

Articulated Poses

Human motion analysis in images and video, with its deeply inter-related 2d and

3d inference components, is a central computer vision problem. Yet, there are no

studies that reveal how humans perceive other people in images and how accurate

they are. In this chapter we aim to unveil some of the processing–as well as the levels

of accuracy–involved in the 3d perception of people from images by assessing the

human performance. Moreover, we reveal the quantitative and qualitative differences

between human and computer performance when presented with the same visual

stimuli and show that metrics incorporating human perception can produce more

meaningful results when integrated into automatic pose prediction algorithms.

3.1 Apparatus for Human Pose Perception

We propose an experimental apparatus that allows linking a partially subjective phe-

nomenon like the 3d human pose perception with measurement. Our approach is to
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(a) (b) (c) (d) (e)

Figure 3-1: Illustration of our human pose perception apparatus. (a) Screen on
which the image is projected as captured by the external camera of the eye tracker.
(b) Result of mapping the fixation distribution on the original high-resolution image,
following border detection, tracking and alignment. (c) Heat map distribution of all
fixations of one of our subjects for this particular pose. (d) Detail of our head-mounted
eye tracker and (e) 3d motion capture setup.

dress people in a motion capture suit, equip them with an eye tracker and show them

images of other people in different poses, which were obtained using motion capture

as well (fig. 3-1). By asking the subjects to re-enact the poses shown, we can link

perception and measurement. We use a state-of-the-art Vicon motion capture system

together with a head mounted, high-resolution mobile eye tracking system.

3.1.1 Experimental Design and Dataset Collection

Subjects and General Setup. We first analyze the re-enactment performance

of 10 subjects, 5 male and 5 female, who did not have a medical history of eye

problems or mobility impediments. Moreover, their profession did not require above

average neuro-motor skills (as required in the case of dancing, acting or practicing a

particular sport). We will refer to this group as the regular subjects. We also analyze

the performance of another 4 subjects, 2 males and 2 females, who were all final year

choreography students, focusing on modern and classical ballet. This group will be

referred to as the skilled subjects. The images were projected on a 1.2 meters tall

screen located 2.5–3 meters away.

Each subject was required to stand still and look at one image at a time until it

disappeared, then re-enact the pose by taking as much time as necessary. For each
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pose projected on the screen, we captured both the scanpaths and the 3d movement

of the subject in the process of re-enacting the pose, once it had disappeared from the

screen. Once the 5s exposure time has passed, the subject no longer had the possibility

to see the image of the pose to re-enact, but had to adjust his position based on the

memory of that pose. We display a total of 120 images, each representing a bounding

box of a person. The images are mainly frontal. 100 contain easily reproducible

standing poses, whereas 20 of them are harder to re-enact as they require sitting on

the floor, which often results in self-occlusion. The poses shown were selected from

Human3.6M [9], from various types of daily activities.

3.2 Data Analysis

3.2.1 Human Eye Movement Recordings

Static and Dynamic Consistency. In this section we analyze how consistent

the subjects are in terms of their fixated image locations. We are first concerned

with evaluating static consistency, which considers only the fixation locations and

then with dynamic consistency, which takes into account the order of fixations. To

evaluate how well the subjects agree on fixated image locations, we predict each

subject’s fixations in turn using the information from the other subjects [6, 14]. This

was done considering the same pose as well as different poses. Fig. 3-2 indicates good

consistency.

To evaluate how consistent the subjects are in their order of fixating areas of

interest (AOIs), we used the hidden Markov modeling recently developed by [14].

The states correspond to AOIs that were fixated by subjects and the transitions

correspond to saccades. For each pose, we learn a dynamic model from the scanpaths

of 9 subjects and compute the likelihood of the 10th subject’s scanpath under the

trained model. The leave-one-out process is repeated in turn for each subject and the

likelihoods are averaged. The average likelihood (normalized by the scanpath length)

obtained is −9.38. Results are compared against the likelihood of randomly generated
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Figure 3-2: Static inter-subject eye movement agreement. Fixations from one subject
are predicted using data from the other 9 subjects both on the same image (blue)
and on a different image of a person, randomly selected from our 120 poses (green).

scanpaths and the likelihoods of scanpaths from another randomly chosen pose.The

average likelihood is much smaller for randomly generated trajectories (−42.03) than

for those of human subjects. Also, the likelihood of scanpaths obtained from other

images is considerably smaller −17.12 than the likelihood of scanpaths obtained from

the same image indicating that subjects are consistent in the order they fixate AOIs.

Which are the most fixated joints? We study whether certain joints are fixated

more than others and we want to know whether this would happen regardless of the

pose shown, or whether it varies with the pose. For this purpose, we consider the

number of fixations that fall on a particular joint. Fig. 3-3 shows the distribution of

fixations on body joints, averaged over poses. Notice that the wrists and the head

area are the most looked at, within a general trend of fixating upper body parts more

than lower ones.

3.2.2 3D Pose Re-Enactment

In this section we complement eye-movement studies with an analysis of how well

humans are able to reproduce the 3d poses of people shown in images.
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Figure 3-3: Fixation counts on each joint. The mean and standard deviation is
computed among the 120 poses by aggregating over all 10 subjects, for each pose.

Figure 3-4: Examples of subject re-enactment for two easy (left) and two hard (right)
poses. For each pose, the first re-enactment shown is from a regular subject, whereas
the second one is from a a skilled one.

How accurately do humans re-enact 3d poses?

We have compared the re-enactment performance of regular and skilled subjects on

the same stimuli. We want to understand to what extent formal training in professions

requiring sharp neuro-motor skills and good body positioning self-awareness influences

perception and the capacity to re-enact poses, as measured under the widely used

metric, MPJPE. Table 3.1 shows re-enactment errors under the MPJPE for regular

and skilled subjects, respectively. It can be noticed that the overall completion error of

the skilled subjects is only 7.1 mm (under MPJPE) smaller that the overall completion

error of the regular subjects. The small difference in errors between the two groups
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of subjects suggests that: (1) the metrics used are not sensitive enough to the criteria

optimized by people perceiving and re-enacting 3D poses, (2) having superior mobility

and body coordination does not make a significant difference in the context of the

task analyzed here. Examples of re-enactment from both skilled and regular subjects

on 2 easy and 2 hard poses are presented in fig. 3-4.

MPJPE error (mm)
Method Easy Hard Both

Regular Subject 91.7± 35.9 156.7± 58.1 102.5± 58.1
Skilled Subject 83.9± 31.6 153.1± 65.6 95.4± 47.3

KDE 100.33± 39.54 267.42± 133.22 128.18± 89.45

Table 3.1: Subject re-enactment results as well as KDE prediction for easy poses,
hard poses and over all poses under the MPJPE metric.

3.3 Perceptual Metrics for Automatic 3d Human

Pose Estimation

In this section we focus on two aspects: 1) understanding the types of errors humans

make in pose re-enactment and compare them with those of automatically generated

poses, 2) learning perceptual metrics that more truthfully reflect the semantics of a

human pose.

3.3.1 Human vs Computer Vision Performance

We aim to reveal the quantitative and qualitative differences between poses re-enacted

by humans and poses estimated by a computer vision model and algorithm when

presented with the same visual stimuli. We consider a structured prediction model,

Kernel Dependency Estimation (KDE) [5], to learn a mapping from features extracted

from the image of a person to the 3d joint representation of his/her pose. For training

we use Human80K which is a subset of the larger Human3.6m, from which we selected

the 120 poses shown to subjects for re-enactment.
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What is the error difference between humans and a vision model (KDE)?

In table 3.1 we show the average re-enactment error for both skilled and regular sub-

jects and the average KDE prediction error under MPJPE metric. On easy poses,

the difference between skilled subjects and KDE predictions is 16mm while between

regular subjects and KDE predictions is 9mm. On the hard poses, however, the differ-

ence between subjects and KDE is significantly higher: 110mm in the case of regular

subjects and 113mm in the case of skilled subjects. This indicates that although

both human and algorithmic performances are diminished when presented with hard

poses, the algorithmic approach struggles considerably more than humans when the

poses are mainly seated and have severe self-occlusions.

3.3.2 Perceptual Metric Learning

In this section we present our proposal of learning a new metric that captures the per-

ceptual difference between poses. In this way, we aim to reduce the gap between the

human perception of pose similarity and what the commonly used metric (MPJPE)

evaluates. For this purpose we use the re-enactments of both skilled and regular sub-

jects to learn a perceptual metric over poses. To learn a perceptually relevant metric

from subject re-enactment, we use Relevant Component Analysis (RCA) [2] which

changes the feature space by a global linear transformation. It assigns high weights

to ‘relevant dimensions’ and low weights to ‘irrelevant dimensions’.

3.3.3 Perceptual Metric in Pose Estimation

In this section we integrate the newly learned perceptual metric in the KDE frame-

work. We train the model on Human80K [8] dataset using both a Gaussian kernel

KY (x, y) = e−
‖x−y‖22
2σ2 , and a perceptual kernel KY (x, y) = e−

d2P (x,y)

2σ2 on the target

variables, where dP (x, y) is the perceptual metric between poses x and y learned as

described in §3.3.2.

In table 3.2 we show the mean MPJPE and mean perceptual error for poses

estimated with a Gaussian kernel and a perceptual kernel, respectively. It can be
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noticed that those produced by the perceptual kernel are smaller under both metrics.

Method Mean MPJPE
Mean Percep-
tual Error

KDE - Gaussian 113.07± 72 18.44± 10.25

KDE - Perceptual 109.16± 66 14.92± 9.43

Table 3.2: Pose estimation errors under metric based on both an Euclidean and a
perceptual kernel.

Poses with similar MPJPE error can look perceptually very different if a subset

of the joints have very large errors. In figure 3-5 we show an example when the

computer vision model prediction obtained using the perceptual kernel, although not

perfect, appears qualitatively better than the one obtained using the Gaussian kernel.

We also show the distribution of error per joints for the two predictions. Notice that

even if most of the joints in the two predictions have similar errors, there are 4 joints

(left elbow, left wrist, right elbow, right wrist) with extremely large errors, making

the pose perceptually very different from the one shown in the stimulus image.

(a) (b) (c) (d)

Figure 3-5: a) Test image, b) Prediction of KDE with Gaussian kernel, c) Prediction
of KDE with perceptual kernel, d) Per joint error distribution for the prediction
obtained with the Gaussian and perceptual kernel, respectively.
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Chapter 4

Monocular 3D Pose and Shape

Estimation of Multiple People in

Natural Scenes The Importance of

Multiple Scene Constraints

Human sensing has greatly benefited from recent advances in deep learning, para-

metric human modeling, and large scale 2d and 3d datasets. However, existing 3d

models make strong assumptions about the scene, considering either a single person

per image, full views of the person, a simple background or many cameras. In this

chapter, we leverage state-of-the-art deep multi-task neural networks and parametric

human and scene modeling.. We perform experiments on both single and multi-

person datasets, and systematically evaluate each component of the model, showing

improved performance and extensive multiple human sensing capability. We also

apply our method to images with multiple people, severe occlusions and diverse back-

grounds captured in challenging natural scenes, and obtain results of good perceptual

quality.
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4.1 Multiple Persons in the Scene Model

Figure 4-1: Processing pipeline of our monocular model for the estimation of 3d
pose and body shape of multiple people. The system combines a single person model
that incorporates feedforward initialization and semantic feedback, with additional
constraints such as ground plane estimation, mutual volume exclusion, and joint in-
ference for all people in the scene. For monocular video, the 3d temporal assignment
of people is resolved using a Hungarian method, and trajectory optimization is per-
formed jointly over all people and timesteps, under all constraints, including image
consistency, for optimal results.

Problem formulation. Without loss of generality, we consider Np uniquely detected

persons in a video with Nf frames. Our objective is to infer the best pose state

variables Θ = [θfp ] ∈ RNp×Nf×72, shape parameters B = [βfp ] ∈ RNp×Nf×10 and

individual person translations T = [tfp ] ∈ RNp×Nf×3, with p ∈ Np and f ∈ Nf . We

start by first writing a per-frame, person-centric objective function Lp,fI (B,Θ,T)

Lp,fI = Lp,fS + Lp,fG + Lp,fR +

Np∑
p′=1
p′ 6=p

LfC(p, p′), (4.1)

where the cost LS takes into account the visual evidence computed in every frame

in the form of semantic body part labeling, LC penalizes simultaneous (3d) volume

occupancy between different people in the scene, and LG incorporates the constraint

that some of the people in the scene may have a common supporting plane. The term

Lp,fR = Lp,fR (θ) is a Gaussian mixture prior similar to [3]. The image cost for multiple

people under all constraints can be written as

LfI =

Np∑
p=1

Lp,fI (4.2)
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If a monocular video is available, the static cost Lf is augmented with a trajectory

model applicable to each person once the temporal assignment throughout the entire

video has been resolved. The complete video loss writes

L = LI + LT =

Np∑
p=1

Nf∑
f=1

(
Lp,fI + Lp,fT

)
(4.3)

where LT can incorporate prior knowledge on human motion, ranging from smooth-

ness, assumptions of constant velocity or acceleration, or more sophisticated models

learned from human motion capture data.

In order to infer the pose and 3d position of multiple people we rely on a paramet-

ric human representation, SMPL [13], with a state-of-the-art deep multitask neural

network for human sensing, DMHS [19]. In practice, we cannot assume a constant

number of people throughout a video and we first infer the parameters B,Θ, T inde-

pendently for each frame by minimizing the sum of the first two cost functions: LS

and LC . Then, we temporally track the persons obtained in each frame by means of

optimally solving an assignment problem, then re-optimize the objective, by adding

the temporal and ground plane constraints, LT and LG. An overview of the method

is shown in fig. 4-1.

4.2 Experiments

We numerically test our inference method on two datasets, CMU Panoptic [10] and

Human3.6M [9], as well as qualitatively on challenging natural scenes (see fig. 4-

2). Given a video with multiple people, we first detect the persons in each frame

and obtain initial feedforward DMHS estimates for their 2d body joints, semantic

segmentation and 3d pose.

Human3.6M is a large-scale dataset that contains single person images recorded in

a laboratory setup using a motion capture system. We select 3 of the most difficult

actions: sitting, sitting down and walking dog to test our single-person model. We use

the official left-out test set from the selected actions, consisting of 160K examples.
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Haggling Mafia Ultimatum Pizza Mean
Method Pose Translation Pose Translation Pose Translation Pose Translation Pose Translation

DMHS [19] 217.9 - 187.3 - 193.6 - 221.3 - 203.4 -
2d Loss 135.1 282.3 174.5 502.2 143.6 357.6 177.8 419.3 157.7 390.3
Semantic Loss 144.3 260.5 179.0 459.8 160.7 376.6 178.6 413.6 165.6 377.6
Smoothing 141.4 260.3 173.6 454.9 155.2 368.0 173.1 403.0 160.8 371.7
Smoothing
Ground Plane

140.0 257.8 165.9 409.5 150.7 301.1 156.0 294.0 153.4 315.5

Table 4.1: Automatic 3d human pose and translation estimation errors (in mm) on the
Panoptic dataset (9,600 frames, 21,404 people). Notice the value of each component
and the impact of the ground-plane constraint on correct translation estimation.

Method WalkingDog Sitting Sitting Down

DMHS [19] 78 119 106
Semantic Loss 75 109 101
Multi View 51 71 65
Smoothing 48 68 64

Table 4.2: Mean per joint 3d position error (in mm) on the Human3.6M dataset,
evaluated on the test set of several very challenging actions. Notice the importance
of various constraints in improving estimation error.

We show results in table 4.2. We obtain an improvement over DMHS by using the

proposed semantic 3d pose and shape feedback.

CMU Panoptic Dataset. We selected data from 4 activities (Haggling, Mafia,

Ultimatum and Pizza) which contain multiple people interacting with each other. In

total, we obtain 9,600 frames that contain 21,404 people. We do not validate/train

any part of our method on this data.

Evaluation Procedure. We evaluate both the inferred pose, centered in its hip

joint, under mean per joint position error (MPJPE), and the estimated translation

for each person under standard Euclidean distance. We perform the evaluation for

each frame in a sequence, and average the results across persons and frames.

Ablation Studies. We systematically test the main components of the proposed

monocular inference system and show the results detailed for each activity in table

4.1. Compared to DMHS, our complete method reduces the MPJPE error signifi-

cantly, from 203.4 mm to 153.4 mm on average (-25%), while also computing the

translation of each person in the scene. The translation error is, on average, 315.5
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Figure 4-2: Automatic 3d reconstruction of multiple people from monoc-
ular images of complex natural scenes. Left to right: input image, inferred
model overlaid, and two different views of 3d reconstructions obtained by our model
(including ground plane). Challenging poses, occlusions, different scales and close
interactions are correctly resolved in the reconstruction.
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mm. The semantic projection term helps disambiguate the 3d position of persons

and reduces the translation error compared to using only the 2d projection term.

Temporally smoothing the pose estimates decreases the translation error further. Im-

posing the ground plane constraint makes the most significant contribution in this

setup, decreasing the total translation error from 371 mm to 315 mm (-15%). Our

method produces perceptually plausible 3d reconstructions with good image align-

ment in scenes with many people, some only partially visible, and captured under

non-conventional viewing angles.

We have presented a monocular model for the integrated 2d and 3d pose and

shape estimation of multiple people, under multiple scene constraints.
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