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Chapter 1 - Introduction. This thesis focuses on the problem of human activity recognition

based on three-dimensional representations. This is an important problem, with numerous

applications in domains such as smart video surveillance systems, entertainment, video

retrieval, autonomous driving and human-robot interaction.

The difficulty of human sensing stems from the challenges of human body part detection

and from the coupling of the recognition and reconstruction tasks. For the former, one

needs to take into consideration the variability of human pose and shape, the scene diversity

and the background clutter. For the latter, one has to account for the inter- and intra- class

variability of different action types, and account for the prediction errors of the 3d human

pose reconstructions models used.

Chapter 2. We propose a fast, non-parametric framework for low-latency human action

and activity recognition. We illustrate the model for the 3d pose reconstructions from depth

sensors and show how this framework naturally supports low-latency recognition, one-shot

learning, and action detection in unsegmented video data, with high accuracy. Central to our

methodology is the Moving Pose descriptor–a novel frame-based dynamic representation

that captures not only the 3D body pose, but also differential properties like the speed and

acceleration of the human body joints within a short time window around the current frame.

We argue that due to physical constraints like inertia, or latency in muscle actuation, the

body movements associated with an action can often be well approximated by a quadratic

function, expressed in terms of the first and second derivatives of the body pose with respect

to time.

Inspired by this, for each frame of a video sequence we compute the Moving Pose

Descriptor (MP), as a concatenation of the normalized 3D pose P = [p1,p2, . . . ,pn] and

its first and second order derivatives δP(t0) and δ2P(t0). The derivatives are estimated

numerically by using a temporal window of 5 frames centered at the current one processed:

δP(t0) ≈ P(t1)−P(t−1) and δ2P(t0) ≈ P(t2) +P(t−2)− 2P(t0). For better numerical

approximation we first smooth each coordinate of the normalized pose vector, along the

time dimension, with a 5 by 1 Gaussian filter (σ = 1).

The proposed MP descriptor encodes pose and kinematic information to describe ac-

tion segments. In order to emphasize its discriminative power and for training flexibility
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(including one-shot learning) we use a non-parametric action classification scheme based on

k-nearest-neighbors (kNN). Our basic low-latency classification method for a test sequence

is as follows: at time t, after observing t test frames, let each of their kNN descriptors from

the training pool vote for its class, for a total of kt votes. For decision, we apply a simple

rejection scheme. If the accumulated vote of the most supported class cj is high enough

compared to the other classes, and enough frames have been observed, we report the class

with the largest number of votes, i.e. output cj if maxj s(cj, t) ≥ θ, with s an additive voting

model and θ a confidence threshold. We learn the value of the vote for each frame in the

training set, such that the more representative frames of a certain action are assigned a higher

discriminative power. Our full approach is to incorporate global temporal information within

a kNN framework to gate the search for nearest neighbors only to samples that are located

at a similar position in the training sequence, with respect to the first frame.

By combining discriminative local moving pose descriptors like MP with a temporal

aware classification scheme, we can now account for two important aspects in action

classification: the discriminative power of key poses as well as their local dynamics, and the

global temporal course of an action.

Tabela 1: Recognition comparison on the MSR Action3D dataset.

Method Accuracy(%)

Recurrent Neural Network [10] 42.5
Dynamic Temporal Warping [12] 54
Hidden Markov Model [9] 63
Latent-Dynamic CRF [11] 64.8
Canonical Poses [2] 65.7
Action Graph on Bag of 3D Points [7] 74.7
Latent-Dynamic CRF [11] + MP 74.9
EigenJoints [18] 81.4
Actionlet Ensemble [16] 88.2
MP (Ours) 91.7

Our system (see Table 1) improves over the current state-of-the-art by 3.5% on the MSR

Action3D dataset. This dataset consists of temporally segmented action sequences captured

by an RGB-D camera. The 3D skeleton, represented as a set of 3D body joint positions, is
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available for each frame, being tracked with the method of [3].

Chapter 3. We further develop representations not only based on human pose and we

generalize the Moving Pose (MP) formulation [20] and consider pairwise topological

relationships between simple features (e.g. 2D or 3D positions). We also exploit the

kinematic properties of these relations, by their first and second-order derivatives w.r.t time,

to form spatiotemporal sub-graphs as frame descriptors suitable for recognizing different

types of actions. Unlike the Moving Pose, these pairwise relations are formed at a higher

level of abstraction. Instead of measuring exact, real-valued geometry, we construct models

based on soft classifiers that respond to relationships between different human joints and

objects. We consider three types of topological relations: top-down, left-right and front-back.

Let us look at the 2D case, the same formulation being immediately extended to 3D. Given a

pair of feature points (i, j), with locations pi = (xi, yi) and pj = (xj, yj), there are two types

of topological relationships modeled with a categorical predictor using logistic functions,

Rx(xi, xj) and Ry(yi, yj). Rx and Ry are soft binary classifiers that respond to left-right and

top-down topological relationships:

Rx(xi, xj) =
1

1 + exp(−wx(xi − xj))
Ry(yi, yj) =

1

1 + exp(−wy(yi − yj))
. (1)

Given the locations of human body joints and objects in the scene, there are exponentially

many possible subsets of relations to consider. It turns out that only a small group of relations

are effective for classification. Finding this small set requires an efficient search procedure

in a very large space of possible sets. For example, given 20 body joints, the number of

possible relations (all three types) in our case is 570, so there are 2570 possible MR frame

descriptors (or sets of relations). Let D be the set of all possible MR’s, of size 2570. We

formulate the task of finding the optimal descriptor d∗a for a given class a as maximizing the

empirical expected difference between the soft classification response on positive sequences

and the response on negative ones:
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d∗a = argmax
d∈D

 1

Na

∑
s∈S(a)

C(s, d)− 1

N¬a

∑
s∈S(¬a)

C(s, d)

 . (2)

Our proposed approach is to start with a stochastic method, extended from [6], to

estimate the relevance of each relation and joint separately, and then form, in a greedy

manner, an initial Moving Relations descriptor, with good performance on all action classes.

Starting from this common MR d0, we then follow an evolutionary search strategy, by

adapting the Genetic Algorithm (GA) proposed in [5], to learn different descriptors d∗a that

are optimized for each action class.

Tabela 2: Recognition comparison on the CAD-120 dataset.

Method Accuracy(%)

Moving Pose [20] 67.5
Koppula et. al. [4] 83.1
Discovered Moving Relations without GA (Ours) 93.3
Discovered Moving Relations with GA (Ours) 99.2

Our experiments demonstrate the power of MR, which in combination with a modified

kNN classification scheme, significantly outperforms more sophisticated current methods.

Unlike most methods, ours is robust to missing features and applicable to such situations

with no modification.

Chapter 4. In this thesis chapter, we propose a deep multitask architecture for fully

automatic 2d and 3d human sensing, including recognition and reconstruction, in monocular

images. The system predicts the figure-ground segmentation, body-part labelling at pixel

level, and estimates the 2d and and 3d pose of the person in the scene. Conceptually,

each of our stages of processing produces recognition and reconstruction estimates and

is constrained by specific training losses. Each task consists of a total of six recurrent

stages which take as input the image, the results of previous stages of the same type (except

for the first one), as well as inputs from other stages (2d pose estimation feeding into

semantic body part segmentation, and both feeding into 3d pose reconstruction). The inputs

to each stage are individually processed and fused via convolutional networks in order to
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produce the corresponding outputs. The 2d pose estimation task is based on a recurrent

convolutional architecture similar to [17]. Given an RGB image I ∈ Rw×h×3, we seek to

correctly predict the locations of NJ anatomically defined human body joints pk ∈ Z ⊂ R2,

with k ∈ {1 . . . NJ}.

For semantic body part segmentation (body part labeling) we assign each image location

(u, v) ∈ Z ⊂ R2 one of NB anatomical body part labels (including an additional label for

background), bl, where l ∈ {1 . . . NB}. At each stage t, the network predicts, for each pixel

location, the presence probability of each body part, Bt ∈ Rw×h×NB . During the first stage

of processing, we use convolutional representations based on the image and the 2d pose

belief maps J1 in order to predict the current body labels B1. For each of the following

stages, we also use the information present in the body labels at the previous stage, Bt−1,

and rely on a series of four convolutional layers ctB that learn to combine inputs obtained by

stacking image features x and Bt−1.

The 3d reconstruction module leverages information provided by the 2d joint and body

part labeling feature maps J t and Bt. Additionally, we insert a trainable function ctD, defined

similarly to ctB, over image features, in order to obtain body reconstruction feature maps

Dt. The module follows a similar flow as the previous ones: it reuses estimates at earlier

processing stages, Rt−1, together with St and Dt, in order to predict the reconstruction

feature maps Rt. The processing stages and dependencies of this module are shown in fig.

0-1.

The design allows us to tie a complete training protocol, by taking advantage of multiple

datasets that would otherwise restrictively cover only some of the model components:

complex 2d image data with no body part labeling and without associated 3d ground truth,

or complex 3d data with limited 2d background variability. In detailed experiments based

on several challenging 2d and 3d datasets (LSP, HumanEva, Human3.6M), we evaluate the

sub-structures of the model, the effect of various types of training data in the multitask loss,

and demonstrate that state-of-the-art results can be achieved at all processing levels.

Chapter 5. Finally, we introduce fine-grained action and emotion recognition tasks defined

on non-staged videos, recorded during therapy sessions of children with autism from the

multi-modal DE-ENIGMA [14] dataset. The sessions are either therapist-only or robot-
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Figura 0-1: Our multitask multistage 3d reconstruction module Rt, combines 3d processing
with information from semantic modules, St.

Figura 0-2: Qualitative comparisons for segmentation and reconstruction between our RGB
model (top row) and the ones of a commercial RGB-D Kinect for Xbox One system (bottom
row). Our model produces accurate figure-ground segmentations, body part labeling, and 3d
reconstruction for some challenging poses.
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assisted; the former are captured for control purposes, while the latter are those of interest

for this chapter. In robot-assisted sessions a child and a therapist sit in front of a table on

which a robot is placed. The therapist remotely controls the robot and uses it to engage the

child in the process of learning emotions. The sessions consist of a ‘free-play’ part (where

the child plays with toys of his choice), and an actual therapy part. The therapy is based on

scenarios in which the therapist shows cards depicting various emotions (happy, sad, angry,

etc.) which are also reproduced by the robot, and the child must match the emotions to those

performed.

The therapy scenarios cover a wide variety of body gestures and actions performed by

children. We have annotated a total of 3757 sequences, with an average duration of 2.1

seconds. The annotation of therapy videos relies on an extensive web-based tool developed

by us that can (i) select temporal extents and (ii) assign them a class label. Features that

improve the annotation experience such as shortcuts for precise temporal adjustments,

current selection replays, previous annotations filtering and visualization, or user session

management, are also included.

The experiments presented in this chapter use a subset of 2031 annotated sequences

spanning over 24 classes common to all children. Even if the selected classes refer to children

behavior, some of them relate to the therapist, e.g., Pointing to therapist, Turning towards

therapist. We refer to those as interacting sequences. Among the annotated sequences,

around a third (749 out of 2, 031) are interacting sequences.

Our long term goal is to automatically interpret and react to a child’s actions in the chal-

lenging setting of a therapy session. In order to understand the child, we rely on high-level

features associated to her/his 3d pose and shape. We use the previously introduced DMHS

and improve it on the 3d pose estimation taks of partially visible people (i.e. DMHSPV).

We rely on a feedforward-feedback model presented in the paper [19] to combine

human detection, 2d and 3d pose prediction from DMHSPV with a shape-based volumetric

refinement based on a SMPL body representation [8] – DMHS-SMPL-F and the temporal

smoothed variant DMHS-SMPL-T.

We experiment with several skeleton-based action recognition models and perform

ablation studies with different types of 2d and 3d human body reconstructions. We use a
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cross-validation setting on children where we consider only the upper-body joints of the

human skeleton.

Pose Feature MP - Child MP - Child + Therapist
Kinect [15] 46.96% 47.49%
DMHSPV 32.92% 34.95%

2D [1] 40.83% 44.14
DMHS-SMPL-F 43.53% 45.07%
DMHS-SMPL-T 44.20% 45.68%

Tabela 3: Comparative results for different pose estimation methods for action classification
when using the Moving Pose framework. We also investigate the impact of modeling the
therapist in the classification accuracy.

A video selection from [14], including those 7 children used for action classification

experiments, was also annotated with continuous emotions in a valence-arousal space by 5

specialized therapists. We pre-process the data as in [13] to obtain per frame values for each

annotator and align them to obtain a reliable ground-truth valence/arousal signal.

Emotion Axis Pose Feature RMSE ↓ PCC ↑ SAGR ↑

Valence Kinect 0.116 0.184 0.787
DMHS-SMPL-T 0.099 0.169 0.844

Arousal Kinect 0.111 0.345 0.973
DMHS-SMPL-T 0.107 0.388 0.977

Tabela 4: Continuous emotion prediction. Using 3d skeleton estimates of DMHS-SMPL-T,
we obtain better or similar results compared to the 3d skeleton produced by Kinect.
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