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Summary

This thesis is devoted to the study of the asymptotic properties of the solutions of some

nonlocal diffusion problems. The objective is to characterise the first term in the asymptotic

expansion of the solutions for large time. The main strategy used in this thesis is based on

the scaling arguments. Mainly this means that we rescale conveniently the solutions and

reduce the analysis of the long time behavior to the compactness of the rescaled trajectories.

This method as far as we know has been introduced by Kamin and Vazquez [16].

Let us consider the simplest model that appears in our analysis. In Chapter 2 we study

the follow ing nonlocal equation: ut(x, t) =

∫
R
J(x− y)(u(y, t)− u(x, t)) dy, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.
(1)

We consider J : R→ R a nonnegative, smooth, even function with
∫
R J(s)ds = 1 and the

initial data u0 ∈ L1(R)∩L∞(R). Equations like (1) and variations of it, have been recently

widely used to model diffusion processes, for example, in biology, dislocations dynamics,

etc. We refer [2], [4], [8], [9] and the references therein.

As stated in [8], if u(x, t) is the density of a single population at the point x at time

t, and J(x − y) is thought of as the probability distribution of jumping from location y

to location x, then (J ∗ u)(x, t) =
∫
R J(x− y)u(y, t)dy is the rate at which individuals are

arriving to position x from all other places and −u(x, t) = −
∫
R J(y − x)u(x, t)dy is the

rate at which they are leaving location x to travel to all other sites. This consideration, in

the absence of external or internal sources, leads immediately to the fact that the density

u satisfies (1). This simple equation is called nonlocal diffusion equation since, in contrast

with the classical heat equation ut = uxx, the diffusion of the density u at the time t and

point x depend on all the values of u in a neighborhood of x. For a function J supported in

the interval (−1, 1) we easily can rewrite equation (1) as an integral over the space interval

(x − 1, x + 1). Regarding the well-posedness it is immediately that for any initial data
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u0 ∈ Lp(R), 1 ≤ p ≤ ∞ there exists a unique solution u ∈ C([0,∞), Lp(R)). Since the

operator Lu = J ∗u−u is linear and continuous on the Lp(R) spaces the solution is in fact

C∞([0,∞), Lp(R)). This is a classical well understood fact about equation of type (1).

The study of the long-time behavior of the solutions to equation (1) has been started

in [5] where the authors prove by using the Fourier representation of the solutions that for

large time t the solution u is closer and closer to the rescaled heat kernel. In Chapter 2

we prove the same results by a different argument. The main novelty is the method used:

scaling arguments. This method is usually used in the case of nonlinear problems to obtain

the first term in the asymptotic expansion of the solutions. In order to understand the

difficulties of applying this method to nonlinear problems we first analyze the linear case.

The main result in Chapter 2 is the following: For any u0 ∈ L1(R) ∩ L∞(R) and

p ∈ [1,∞] solution u(x, t) of equation (1) satisfies:

lim
t→∞

t
1
2

(1− 1
p

)‖u(t)−MGAt‖Lp(R) = 0 (2)

where

Gt(x) =
1√
4πt

exp (−x
2

4t
)

is the heat kernel and

M =

∫
R
u0(x)dx, A =

1

2

∫
R
J(z)z2dz.

As will be explained in Chapter 2 equation (1) has no regularising effect. So, one cannot

expect solutions to be more regular than the initial data is. This is way we impose the

initial data to belong to L1(R) ∩ L∞(R) instead of L1(R) as in the case of the classical

heat equation. Without this assumption we cannot guarantee that at positive time t the

solution is in Lp(R), p > 1, so to estimate these norms will not make sense.

The results in Chapter 2 are based on the paper [15].

Once we understood how the scaling arguments work for linear problem the second step

is to use the same methods to nonlinear problems. The results in Chapter 3 are the core

of this thesis. Let us explain the results in this chapter. We analyze the following nonlocal

convection - diffusion equation:{
ut = J ∗ u− u+G ∗ |u|q−1u− |u|q−1u, x ∈ Rd, t > 0,

u(0) = ϕ.
(3)
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Let us now be more precise about the assumptions on the kernels J and G. We assume

that J,G : Rd → R are non-negative functions with mass one, J being radially symmetric

and positive in a neighborhood of the origin. The well-posedness of these problems has been

previously considered in [14]. Using a Banach fix point argument it can be easily proved

that for any ϕ ∈ L1(R) ∩ L∞(R) there exists a unique solution u ∈ C([0,∞), L1(R) ∩
L∞(R)). Easily one can prove that the solution also belong to C1([0,∞), L1(R)∩L∞(R)).

More time regularity issues can be addressed but is out of the scope of this thesis.

The main results of this chapter is the following one: For any ϕ ∈ L1(Rd) ∩ L∞(Rd)

the solution u of system (3) satisfies

lim
t→∞

t
d
2

(1− 1
p

)‖u(t)− Um(t)‖Lp(Rd) = 0, 1 ≤ p <∞, (4)

where the m is the mass of the initial data ϕ and

• for q > 1 + 1/d or B = 01,d, Um is the rescaled heat kernel solution of{
Ut = A∆U, x ∈ Rd, t > 0,

U(0) = mδ0.
(5)

• for q = 1 + 1/d and B 6= 01,d, Um is the unique solution of the following equation{
Ut = A∆U −B · ∇(|U |1/dU), x ∈ Rd, t > 0,

U(0) = mδ0.
(6)

Next, we say a few words about the above asymptotic profile Um. It is easy to check that

Um(t, x) = t−d/2fm

( x√
t

)
,

where the profile fm is the smooth solution of the equation

−A∆fm −
1

2
x · ∇fm =

d

2
fm − αB · ∇(|fm|q−1fm) in Rd,

with
∫
Rd fm = m and

α =

{
1, q = 1 + 1

d
,

0, q > 1 + 1
d
.

In the case when the nonlinear term is supercritical, i.e. q > 1 + 1/d, the first term in

the asymptotic behavior has been analyzed in [14] under the additional assumption that
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J ∈ S(Rd), the class of rapidly decreasing functions. There the main idea was that the

nonlinear part decays faster than the linear semigroup and then the first term in the long

time behavior is given by the linear semigroup. This has been already observed in [7] in

the case of the classical convection-diffusion system.

The aim of Chapter 3 is to give an answer to the critical case q = 1+1/d even though we

give a proof that both treats the critical and super-critical case. The method we employ is

the so-called four step method (see [16]), that consists in the analysis of some rescaled orbits

{uλ(t)}λ>0. Let us be a little more precise about the method we use. We introduce the

family uλ(t, x) = λdu(λ2t, λx). It follows that uλ satisfies the following rescaled equation{
(uλ)t = λ2(Jλ ∗ uλ − uλ) + λd(1−q)+2(Gλ ∗ uqλ − u

q
λ), x ∈ Rd, t > 0,

uλ(0, x) = ϕλ(x),
(7)

where ϕλ(x) = λdϕ(λx), Jλ(x) = λdJ(λx) and Gλ(x) = λdG(λx).

We first emphasize that property (4) is equivalent with the fact that for example at

t = t0 the rescaled family uλ(t0) converges to some function U(t0) in any Lp(Rd)-norm,

1 ≤ p < ∞. There are various problems that appear in this type of approach. We

first have to prove that the family {uλ}λ>0 is compact and hence, up to a subsequence,

converges to some function U . Secondly we have to characterize the limit function U . The

main difficulty in proving the compactness of the trajectories {uλ}λ>0 is the lack of any

information about the derivatives of function u. Let us recall the following energy estimate:

for any 0 < t1 < t2 <∞ the following holds

‖uλ(t2)‖2
L2(Rd)+λ

2

∫ t2

t1

∫
Rd

∫
Rd

Jλ(x−y)(uλ(t, x)−uλ(t, y))2 dxdydt = ‖uλ(t1)‖2
L2(Rd) ≤ C(t1).

(8)

This estimate is the nonlocal analogous of the classical energy estimate

‖u(t2)‖2
L2(Rd) +

∫ t2

t1

∫
Rd

|∇u|2dxdt = ‖u(t1)‖2
L2(Rd)

that holds for the classical convection-diffusion problem

ut = ∆u+ a · ∇(|u|q−1u).

We prove that estimate (8) is sufficient in order to obtain the compactness of the

trajectories {uλ}λ>0. This requires a new version of the classical compactness arguments

in the space Lp((0, T )×Ω), one which can be adapted to nonlocal evolution equations. Let
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us now recall a classical compactness result in the spaces Lp((0, T ), B), with B a Banach

space. Aubin-Lions-Simon Lemma [18, Th. 5] assumes that we have three Banach spaces

X ↪→ B ↪→ Y where the embedding X ↪→ B is compact. A sequence {fn}n≥1 is relatively

compact in Lp((0, T ), B) (and in C([0, T ], B) if p = ∞) if we can guarantee that {fn}n≥1

is bounded in Lp((0, T ), X) and ‖τhfn − fn‖Lp((0,T−h),Y ) → 0 as h→ 0 uniformly in n.

There are situations where we cannot bound uniformly a sequence {gn}n≥1 in a space

that is compactly embedded in Lp(Ω). Instead of that we have estimates on some Dirichlet

forms that vary with n, estimates that allow us to obtain the compactness of the sequence

{gn}n≥1 (see for example [3], [17] and [1, Th. 6.11, p. 128]). Let us now be more precise.

We choose 1 < p <∞ and Ω ⊂ Rd a smooth domain. Function ρ : Rd → R is a nonnegative

smooth radial function with compact support, non identically zero, satisfying ρ(x) ≥ ρ(y)

if |x| ≤ |y|. Set ρn(x) = ndρ(nx). Let {gn}n≥1 be a bounded sequence in Lp(Ω) such that

np
∫

Ω

∫
Ω

ρn(x− y)|gn(x)− gn(y)|pdxdy ≤M.

Then as proved in [3], [17], [1, Th. 6.11, p. 128], sequence {gn}n≥1 is relatively compact in

Lp(Ω). Our main contribution is to use this compactness argument instead of the compact

embedding X ↪→ B in the Aubin-Lions-Simon Lemma and to obtain a new compactness

criterion in Lp((0, T )×Ω). The main compactness tool that we prove and use in Chapter 3

is given in Theorem 3.2.1. We prove that if {fn}n≥1 is a bounded sequence in Lp((0, T )×Ω),

1 < p <∞, that satisfies

np
∫ T

0

∫
Ω

∫
Ω

ρn(x− y)|fn(t, x)− fn(t, y)|pdxdydt ≤M (9)

and

‖∂tfn‖Lp((0,T ),W−1,p(Ω)) ≤M (10)

then {fn}n≥1 is relatively compact in Lp((0, T )× Ω).

The results in Chapter 3 are based on the paper [12].

In the last chapter of the thesis we consider a different model of convection-diffusion

where the two involved kernels that appear in the diffusive/convective part compete. We

analyze the following equation
ut(t, x) =

∫
R
K(x− y)(u(t, y)− u(t, x))dy

+

∫
R
G(x− y)f

(u(t, y) + u(t, x)

2

)
dy, t > 0, x ∈ R,

u(0) = ϕ,

(11)
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in the particular case when f(u) = u2. This model has been proposed in [6] as a regular-

ization of the following nonlocal advection equation inspired by the peridynamic theory

ut(t, x) =

∫
R
G(x− y)f

(u(t, y) + u(t, x)

2

)
dy.

The general model in [6] assumes that K is a nonnegative even function and G is an odd

function. We consider here kernels K and G that are integrable. For simplicity we assume

that K has mass one. We will analyze the well-posedness of system (11) and the long

time behaviour of its solutions. The results presented here hold under the assumption that

kernel K dominates G, i.e. for some positive constant C = CGK the following holds

|G(x)| ≤ CGKK(x), ∀ x ∈ R. (12)

For any u0 ∈ L1(R) ∩ L∞(R) we prove that there exists a unique local solution u ∈
C([0, Tmax], L

1(R) ∩ L∞(R)) of equation (11), a solution that conserves the mass of the

initial data. Moreover, under the smallness assumption on the initial data ‖ϕ‖L∞(R) <

1/CGK the solution is global, preserves the sign of the initial data and satisfies

‖u(t)‖L1(R) ≤ ‖ϕ‖L1(R), ‖u(t)‖L∞(R) ≤ ‖ϕ‖L∞(R).

Once the well-posedness of the global solutions has been established we obtain the decay

of the solutions of system (11). We prove that

‖u(t)‖L2(R) ≤ C(‖ϕ‖L1(R), ‖ϕ‖L∞(R))t
− 1

4 , ∀t > 0. (13)

Moreover, if the initial data satisfy ‖ϕ‖L∞(R) ≤ 1/(2CGK) the following estimate holds for

any 2 ≤ p <∞

‖u(t)‖Lp(R) ≤ C(‖ϕ‖L1(R), ‖ϕ‖L∞(R))t
− 1

2
(1− 1

p
), ∀t > 0. (14)

The above condition on the smallness of the L∞(R)-norm of the solution is similar to

the Courant–Friedrichs–Lewy (CFL) condition that appears in the study of the stability

of the numerical approximations for conservation laws, see [10, Ch. 3]. This guarantees

that the diffusive part controls the nonlinear convective term. The difference with the

previous works on nonlocal convection-diffusion equations [14, 13, 12] is that in this case

the convective term

Tu =

∫
R
G(y − x)(

u(t, y) + u(t, x)

2
)2dy
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does not satisfy the dissipative condition (Tu, u)L2(R) ≤ 0. Thus, extra assumptions should

be imposed to the initial data, so on the solutions, to control this term by the diffusive

part.

The last result of this chapter concerns the first term in the asymptotic expansion of

the solution u. We introduce the following quantities

A =
1

2

∫
R
K(z)z2dz and B =

∫
R
G(z)zdz.

The main result concerning the asymptotic expansion for the solutions of system (11) is

the following one. Let us assume that K ∈ L1(R, 1 + x2) is positive in a neighborhood of

the origin. For any ϕ ∈ L1(Rd) ∩ L∞(Rd) with ‖ϕ‖L∞(R) ≤ 1/(2CGK) solution u of system

(11) satisfies

lim
t→∞

t
d
2

(1− 1
p

)‖u(t)− U(t)‖Lp(Rd) = 0, 1 ≤ p <∞,

where U is the solution of the viscous Burgers’ equation{
Ut = AUxx − B

2
(U2)x, t > 0, x ∈ Rd,

U(0) = mδ0,

and m is the mass of the initial data ϕ. In this case U can be computed explicitly by using

Hoph-Cole transformation.

The results in Chapter 4 are based on paper [11].
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Soc. (JEMS), 6(1):1–15, 2004.

[18] Jacques Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. (4),

146:65–96, 1987.

10


