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QUASIAFFINE TRANSFORMS OF COMPACT PERTURBATIONS
OF NORMAL OPERATORS

by

C. Apcstol, C. Foiagand C. Pearcy

1 Tet H1~-- and H2 be complex Hilbert spaces. If X is a (bdunded linear)

m
operator from H_ into H2 such that ker u'»X = {0} ker X = 0} , then X is

1
called a quasiaffinity. If A1 and A_ are operators on H | and H2 respectively , and
L

there exists a quasiaffinity X : Hf—-}HZ such that XA1 = AZX’ we say that A1 is

a quasiaffine transform of A;Z and we write A1 —~ A2' If both A1 —<A2 and A2 —QAl,

then-A1 and Az-,»are said to be guasisimilar. ZThese relations proved to be important
in the study of the remarkable class of C0 - contractions, where the relation A1 = A2
implies,A2 “4 A1 (cf. [5] x [6] ), Furthermore, if H is a separable, infinite
dimensional, complex Hilbert space, and Q is any quasinilpotent operator on H, it
was shown in [‘3] that there exist compact quasinilpotent operators K1 and K2 on
H such that K -{ Q < K Moreover, it is known f?] that the unilateral shift of -
infinitz multmhclty on H is a quasmfﬁne transform of any olgchc nonalgebralc strict
contraction on H. Aside from these facts, little is known about the relation ~< and
.its invariants. Thus one might ask whether one can have A1 -'< Az, where A1 and A2
have few properties in common.

The pui‘pose of this paper is to show that this is indeed the case. We prove
- that every operator on H has a quasiaffine transform belonging to the class (N+C )

cbnsisting of all those operators T on H which can be written in the formT = N + K,

where N is a normal operator and K is cdmpact. Furthermore it turns out that: K

can be made as small as desired. Uniortunately it is not the case that every operator
on H is quasisimilar to an oper‘ialtor in (N + C) as we show below (the Section 3).
Along the way to the proof of our main result, stated above, we show that if Tis
any Operator on H, whose essential spectrum 6’ (1):{03 then'there extst compact
operators K1 and K2 such that Kl N K2 . This generalizes the above mentioned
result of [ 3]

In the remainder of the Note, o (H) will denote the algebra of all (bounded

linear) operators on H. The ideal of compact operators in S (H) will be denoted by
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$£C (H), while the Calkin algebra X (H)/ &C(H) will be denoted by (X (H). For
Te £ H), "fjwill denote its image in CZ(H‘ . Let us also recall that by the essential -
spectrum o‘e(T) of T we mean the (usual) spectrum of "i’J in CL(H); also by I we

shall denote the identity operator on any Hilbert space.

2. We begin with the following

PROPOSITION 2.1. If TELMH) and 6u(T) = L0} , then there exist
" compact operators VKl' and KZ (on some appropriate Hilbert spaces) such that K1 A
-4K2:

» Proof. . We first observe that it suffices to prove that there exist a com-
pact K2 acting on some Hilbert space Hz and an operator X : H }-——}Hz such that XT =
= KZX and ker X = {0} (For if ker X*%£0} we can simply replace X by the
operator X : Hf> (range X) , and the other relation is obtained by the same argument
applied to T instead of T .) Next recall that by virtue of [8] (or of the main
theorem of [1]) we can write T = T_+ K, where T is quasinzilpotent and K _ is
compact. Furthermore, by virtue of Theorem 1 of [3] , there exist an invertible ope -
rator Xo’ : H—>H' (where H' is a subspace of H & HEPR..) and a quasinilpotent

compact operator K on H such that

KSKe ....)B cH e

and - - - e S S i ———— A >
XT = o) X
ol KBKe )X0
Now let Po denote the (orthogonal) projection of H@& H@ ..... onto the subspace
H' , and define the compact operator
K(’) « HEH®....... —> H
by K’ =X KX "1 p.. Then we can write
0 00 o0 o
}‘v-wKT._ﬂ XT=X (T +K )= [(K@KG} LR R
. o o o o ot o 0

Therefore if we denote by Pj the orthogonal projection of HE H& ....onto the

subspace formed by all vectors whose first j components are equal to 0, we shall have

e e j - 7 ) "
——f(1.2) €= Ik, P, [|—>0 G—> o0 ),
Since K is quasinilpotent, it follows from a theorem of Rota [4] that for every
n=12,...., there exists an invertible operator Qn acting on H, such that Kn =
opl -4 Tl 1  is a t and can
= QnK Qn satisfies {{ Kn n = el Clearly Kn is also compact an Qn

&
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be chosen such that ” Qn H << 1. We ‘define now by recurrence a sequence

1 <j s j2< ..... of integers such that EEIRLNGUL
: : -1 4
(1.3) (sup. Q Il ye. = = 0 =1,2,...)
_ N1<l<m I ) dn L :
and subsequently we define the operator Y on H@® H@ ....by Y= Yl @ YZ@ ..... 3
where 2 |
' ' = =i = j (=120
(1.4) .E'Yi I . for 11 = r\p TR e
= e ot | By
Yi Qn for el |
Then Y is a quasiaffinity on H& H&@ ..... , and
YK@K@””)=G1@%@”gJK
where

{Tf=K
i
Suat
i n
Since each Ti’ is compact and

e 1.
in{elr that K2 = T1 @ T2 @
Y (P"n+1 = P3n+1

) is a compact operator, and moreover, by (1.3-4) we have

1

/.~ = 4 e ‘l .. =1 . y ‘ =
“YKO Y (an N P3n+1) ” = " YKo P‘}n S (an = P3n+1)”
é%; = A A
n

There fore' we infer that

: oD ;
oo Brarml i aoe = Kl s ! ¢
1{2 Y KoY (I P’l) £ - YKOY (Pﬁn P’n+l) . is a compact operator,

that YX T = K YX and that ker/f\YX = {OE . This completes . the proof.
0 2l e g

: COROLLARY 2.2. Let T be an algebraic operator on H. Then T is quasisimi-
lar to an operator belonging to the class (N+C).

Proof . Since the spectrum & (T) of T is finite it is easy to see that T is

similar to an operator T’ of the form

i .
T ; (A I+Q) @ SRR ®( Q,1+q),
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- where S(T) = {2,,,.. Gy ﬂm} and Q- ’Qn are nilpotent operators on some
suitable Hilbert spaces. By [3], Thom . 4{;; each Qj (1 <j= n)is quasisimilar
to a compact operator Kj' it follows that T° (and therefore T also) is quasisimilar
with

W _ s :
i (. DR < @ ( 3n1+Kn)—;\1169....@An1__+

\

where obviously the first operator is normal, while the second is compact.

3. Unfortunately , the preceding cvor'ollary is not valid for every operator
T o>n H. Indeed, in [3] , Thm.5 , we exhibited a quasinilpotent operator T on H
that does not commute with any nonzero compact operator. That this operator T is
not similar to any operator belonging to the class (N + C) follows directly from the

following :

PROPOSITION 3.1. If a quasinilvotent operator T on H is quasisimilar
to an operator belonging to the class (N+C), then T commutes with a nonzero compact
operator, |

"Proof. Iet A : H l""">H1 and B : Hll-—*-} H be quasiaffinities such that

3.1) TA=A (N+K), BT = N+K) B,

where H1 denotes the space on which operate N and K, and where N is normal and K
is compact. Clearly we can(and we shall)assume that H1 = H. Let En denote the spec-
tral projector of N corresponding to the plane set & = {'A, € CS IM)% } ey
m=1,2,,...). If rank En = +0¢ , there exists an isometry Vn on H such that

E =v_ V¥ . Itis clear that N = v NV is normal , that 6(N,,) & G, and that
n n n n n n !

TAV_ = AV N+ AKV ,
n nn- n

whence, passing to the Calkin algebra a(H),

e el ~
f<-—~@z.)§ g ﬁn = n’ﬁn .

But since

&(T) = Ge,@?..."*?f@_i{0}’ c:v(ﬁ“n) = O;(Nn) E o 7, iEe > relation

¥(3.2) implies AVn = 0, thus also RS

e s

] (5 B AE = 0.
¢——5:3)] A
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Obviously (3.3) is valid also if rank En £ +00 ; thus (3.3) is always valid for all
NE—E)R 20 s Therefore :
P o)

IZ% [ <llax - ane | +(\A’1‘vﬁnuf—:-uAu«1{N-NEn{[ + e mil e

= (Al (|~ - NE_|| ﬁ‘?—rll—— Hall—> 0 @-—>-0),

so that AN is compact. It follows that X = A (N+K) B is also compact and obviously
XT = TX. If X = 0, then N+ K = 0and T = 0 so the proof is complete.

4. The results of the preceding two sections are supplements to those of [:‘3] ;

In this section we shall give some useful supplements to the results of [7_] :

LEMMA 4.1. Let TE X ( (509 HT i<1, and let S be a unilateral shift of
(._Cam = ct‘- i@ €. ')('Z/fe/g,t' <; )zo?"z/z[/
multiplicity 1. If T is not polynomml@g;,xﬂ?/fa such that p (T) is compact) then there

exists an cperator To on a suitable (separable) Hilbert space, H0 such that
e ey T, s ;
(4.1.) “To[{<.‘ To—-{T T..® i

Plroof, Wetake1 < <1/((.'.d t T, = T'iet‘{f £ t
. ug/roo : e take {3 Il T{| and se 1 =pTa P fgreee
be a dense set in H. Then for every fj’ the map :

2

. b=> 3

£ QU £ (e )
2 i

is a compact (linear) operator from the classical Hardy space H into H such that

AS= T1 Aj’ where S is identified with the multiplication ¢xA) HQ%] (TAl<1 <Y

on H™, Therefore :

Klgepe--- )-— (//»4 //f—i) 7;,@ (;g@;;:@,-.. éﬁ’z@;ﬁ"’@,,_)

2 2
is a compact operator from H & H & ...... into H, such that .

T K=K-Sese ey

and

[x] '@ 5% ....)]  =H

(since the range of K contains the set { fl’ £

gr e }). We set |



Ho =i (Hee@ e . ... ) & kerK,

' : ot B '
and, denoting by P0 the (orthogonal) projection of H € He& ...... onto Ho’
we define i

T == P (Sdee ,...) | B, K = KIH..
o (b 0 o] [o] 0

Then Ko is a quasiaffinity and
(4.2) HTO | <1, B =R,

This proves the first two assertions of (4.1). Now for an arbitrary element f #0

of H we consider again the (compact linear) operator

A ¢ L > P(T) £
from H2 into H, which satisfies A_S = TA

¢ ¢ If there exists f & H, f # 0, such
that

% i 2 5 ‘ 1 . | i <
“3)  AH N KH ={0f,ker A ={0}, [then upon setting,

leé_»;w.m :
5 : 5 . 9
& (ho@clo )= Koho +Aféf» : (ho@CF & HO@H )s

; ot
we obtain a quasiaffinity X : H © H > H such that TX = X (T €B8), i.e. the
third assertion in (4.1.) Hence it remains to consider the case when (4.3) fails for
every f € H, £ # 0. This means that for every nonzero f & H, there exist

('f)f < Hz, «'.[’/‘f % 0, cand hf € HO, such that

}cww—ﬂ 449 @ @i=Kh f.

¢, = Mg (I<),

where /) /A) is a polynomial and 73( = ‘/‘7"" satisfies Z/J}#O for all complex /1)
(21 <(%) max{II7H, 1173 )| } #12). '

-1 -1 :
Then 7 f(T) and 7E(To) ‘ exist and consequently
-1 -1
Ty f = =
P ( A‘> R SRR

T



Thus in (4.4) we cah assume that Lf’;{- is a polynomial . Let 'Fn CHm=1,2 .50

be the set of those f € H, || f|| =1, for which there exists a polynomial
- .
ff/") == /]"} in (4.4) such that
by ey oo =
o i
‘\ J:O Al :

Obviously Fn is closed, and by our negative assumption

00 SE e
Chm e e sl - I
N=A
By virtue of the Beire Theorem there exists a 'ball" B = {f €H; |[f ”
= : o <P < S
e -t |l <,0} C E, wheref € H, Iffl =1, 0<P< land m are
suitably chosen. Let now g € H, = g # 0. Then

o= ugu‘l g
f= 2 € B
e v el el

so that by chosing conveniently the polynomials Cf?{_, and ¢ o , the polynomial
o

L,DQ}E ffﬂ?) ??r [A) is of degree < 2n, and
w(?’); LA //;//[//fo ”/7/////% G g 7 1]

Thus we can assume also that the polynomlal KV?‘@ occuring in (4 4) can
always be chosen of degree SN: =2n. Let I denote the linear quotient space
H/KOH0 and let r‘I.' denote the linear transformation on fi induced by T. Obviously
(4.5) el =0

for all f € H, f #0 and some adequate polynomial P = ‘{3; # 0 of degree =N
For any f"é }‘1, E - 6, among all nonzero polynomials gccuring in (4.5), there
exists a unique polynemial 70{ , with 1eading\ coefficient equal to 1. and dividing ali
the others. Clearly the degree of ?. is = N. Let N ( = N) be the greatest
degree of these polynomlals <f«- and let (ff be of degree N Let now E & ﬁ,

f # O be arbitrary. Then the linear space m spanned by the elements f T Eo’
'i'z fo, Sieisiats ‘t" ,’f‘f, Tzf .. is of (hnear) dimension = 2 N Therefore applying
classical linear algebrj arguments to T/??’) we easily obtain that ?; divides C,’g

so that (’0; (T) f = 0. This means that for the polynomial LIDO = ({)f # 0) we
G <

have



e
(4.6) GMHSK H.

By the closed graph theorem, we infer from (4.6) that there exists an operator Z

mapping H into Ho" such that ﬁ"O(T): Ko Z, hence that T is polynomially compact.

The proof is thus complete.

PROPOSITION 4.2. K TE &£ H), [(TI<1 and T is not polyno-

mially compact, then T has a quasiaffine affine transform which is a unilateral shift

of infinite multiplicity.

Proof. Let Sbeasin the proof of the preceding lemma. We apply first
=E00%, ; v
this lemma to o T, where B= = @ + I T} ). We obtain thus an operator
T acting on a suitable Hilbert space H_ such that (l i1 H<‘B and such that

TO@P St T,
By virtue of [8] , Lemma, p.31, we have
S iSED ... —<[3s
thus also '
@a7y - - T @& S@....... ) AT,

We next choose a sequence {fl A fz, ik

the operator from H2 into Ho defined by

A : cpr———><f>(T>;. (pe t*)s

S

finally we define Bj =1+ “A ” ) AJ G =1,2,....). For convenience
in what follows, we shall write S@ SG} .as
)
S = @ Tk (where Sjk = S for all j, kY ‘
k=1
acting - on s :
e = )k@: ij (where eij = H for all j, k).

x.(}é@’ D) = (?% = a‘f}f’) : %2 T (o -

} dense in H0 and denote by Aj G =d525 00




el
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It is clear that X is an injective (bounded linear) operator from H,, into Ho & Hoo y
and that
; : ‘ . /

(T @8, )X =X 8 .

Thus, in order to complete the proof it remains only to prov'e that

G ) s B S H
For this purpose, let u = ho @}Gi_%-ké H @H,, be orthogonal toXH __ . Then,

= .
in particular, . '

0

for all 306 H:2 and j,k = 1,2,...., whence

-

R ¢ e
(4.8). %jk Bj ho G, k=1,2,....) »
Since = * 2 oo G=1,2,..... ),
~ . 2l S )l
we infer, by virtue of (4.8), that
' (4. 9) , Bj* h =0 G=1,2,..... )
In particular, (4.9) implies that
,£)=h, B )@ + || A - @ h,Rya+]]a]l y=0 Forall j =
(ho ; J,)v (ho Jﬂ I ” J” _) ( ] @ ) ( = '3 “ ‘)__ Rt
¥= 1,2,.... and therefore hO = 0. Thus, by (4.8), we have alsq(u = 0. The proof is

now complete.
REMARK 4.3. It appears Iikely that the conclusion of Proposition 4.2 remains

valid if we replace the ‘assumption that the operator T is not polynomiélly compact with

4

the weaker assumption that T is nonalgebraic (i.e. that there is no poiynomial pA)E O
such that ]b (T) = 0)..

5. We pass now to our main result.

THEOREM 5.1. Forany T € ?&”(H) and any € > 0 there exists a quasi-
affine transform N + Kp where N is a normal operator and Kis a compact operator

IKll=<& g

such that v
e _
We beg J/ in by proving first the theorem for the particular case in

Proof .




S0

which T is polynomially compact. In this case, since O, (T) is finite, T is similar

to an operator of the form.

( AAI+Q1)EB ...... @(Q\MI+QH)
whefe the 23')5 are mutually distinct complex numbers, while the operators Qj
satisfy (TQ(QJ_) = { O} =1, wesia , n). Thus it is sufficient to prove the state-
ment for each operator Qj G =1,..., n). By virtue of Proposition 2.1 any such

operator has a compact quasiaffirc transform.. Therefore the case we are now
considering is reduced to that of a cémpact operator. IIsing the spectral decompo-

sition of T we easily obtain that T is similar to an operator of the form T & T2

1
where T1 acts on a finite dimensional space while the spectral radius of T2 is éi{:—

By virtue of a theorem of Rota f4] , T is similar to an operator T, . of norm <

-.6 and obviously T’z is also compact. Oi the other hand, since T1 acts on a finite
dimensional space, it is clear that there exists a normal operator N1 and an operator
Tl’ similar to T, such that ”T’1 S || <€ . Therefore T is quasisimilar (even
similar) to N + K where N = N1 @ 0 is normal and K = (T’1 - Nl) @ T’2 is compact
with norm <¢&

Turning now to the case in which T is not polynomially compact, the theorem
reduces, by P-roposition 4.2, to the case T =S @ S@ ...... , where S is a shift §
of multiplicity 1. If the theorem is true for S, then for every n =.1,2,...., there .

9
exist a quasiaffinity Xn from a suitable Hilbert space Hrl into H , and an operator

T =N +K on H, where N is normal and K_is compact, such that
R n n n n

= <
= £ _ .
“ K | o 1 S
Setting
. ] o o0 _1 ,r)
N= @ N, K= BK and x= B a=+lix|) %
N=1 n n=g n 7N=7 . n s M

we obtain TX =X (N + K), where X is a quasiaffinity, N is normal and K is a
compact operator satisfying ||K|| < £ . Thus it remains to prove the theorem for
the unilateral shift of multiplioi[;y one. g

Concerning the unilatefal shift of multiplicity one, we shall work from now

] : e 2
on with its canonical realization on 1, namely

2
;:\S‘)?: (Osals. . iforall x = (alytow s )y & 17,
Also we s-hall consider operators T and X on 12 defined by
= W, e
Tx = (0, 40(4,%9{‘.“ ..... ) and _ES&J = { §,a/,)§201&) ..... ) =



T
- for all Q(o(oeoz- & U vioes T iha
or all x = (o, &y o35 - .- ) , Where M1,., an 7 9=, are some
bounded sequence of positive members, which will be chosen latter. OCbviously X is

a quasiaffinity; moreover SX = XT if and only if £ =& w4, foralln=1,2,...

27 274/
that is
gl R (il
2741 Wy w, - - vy,

Consequently, T is a Quasiaffine transform of S whenever
CRREE IR LTS R )

Let €7 0 be fixed. It is sufficient to construct the bounded sequence 4 W, }:17
such that (5.1) holﬁs and that T = N + K, where N and K are normal and respectively
) o oo
~ compact operators on /fz, and where ([K [[ =€ . For this purpose let 'l‘_,/,?q },72:7

be any : (strictly) increasing sequence of integers divisible by 8 and such that

40401
g:L

(5.2) = + 256 .

Py

o
Obviously we can chose by recurrence another sequence ‘{ 7,,1},”;/» of integers > 0

such that
; . ,
p, +1 i (g7 0 ! 2 p, +1 q P ' 9
1 el k 1 ke
G f ) = L A R ( = ) : >1
pﬁ, k pf;
pl - pk

(k =1,2,...). Finally we define

k
145 mk
for m +1 < j < m +p
: +
P +1 & k R
p ]
Moo e+l ;
j D + 1.5 = + +
] e e e ] e T T
m i
k+1 - . ==
+ + = j=
e far B Fila il Ve ey



e

where k= 0,1,2,.

{(pﬁrl

.. Then the infimum in (5.1) coincides with

( ;
P
p

a1

‘<WW\jk £ 1 2 _/"j) L,O that by (5.3), it ig 21 > 0. Thus: (5.1) is

Vo o7

fulfilled. Let now K be the operator defined by

Rty e keods, kyoty 5. ... ) for all (o o ,
where
: o0
kj =0 . for j ¢ ‘{mk}
ke amiwatortike 800 vnvin
m k
k
. i 2 '
Obviously X’ is a compact operator on /e such that
Lo 1
G e i
| P

Moreover T-K’ is an orthogonal sum of operators Tk (e = V5250t

ka 7 ‘mk_l by the matrix GNhere obviously the entry Ek_i
4& 0
Al & O
T
\‘\ O
150
At
P
H;ri
Pic \
N 2. N
o ; ~ 0
+
SR
40

p.-1

k_ 0

i e

\\ \\
"5
()
P 2

:

-----

) acting on

occurs 4~ 'b;mfd)ﬂ
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W By virtue of a remarkable theorem of Bepgi(l2le -, Fhm, 1.1

there exists a normal operator N. on C mk - mk—l such that

k
200
- = = =3 0
i, 5, Vo (k =>co ).

' ; i » . s oy
Thus setting K, = T,_-N,_and K" = K, @ K, @ s we obtain that K is
compact and :

vy 200 e
5.5 K = s
. (5.5) ” /[ ‘V—El
It follows that:T = (Nl & Nz@ ..... B K»”, where the explicit orthogonal

sum is normal, and K = K’ +K”7 isa compact ope rator which by virtue of

(5.2), (5.4) and (5.5) , isof neym = & . The proof is now complete.

REMARK 5.2. In Theorem 5.1 we cannot get rid of the compact operator K.
Indeed, if S is any unilateral shift and N any normal operator, then there is no non-
zero operator X satisfying SX = XN, This follows at once from the fact that if X

satisfies the preceding relation, then for any element h of the space on which acts S P

Peandend we have

ghn - || iéi\xu. R el T HN’%&H

=Xl ‘fKS*h\l -l X] [ $ h”-}g
R

N

M_Mwm

REMARK 5.3. Let T be the weighted shift constructed during the proof of
Theorem 5.1 . Then T = N + K, N is normal, K is compact and [|K|[ =& .,

Moreover if TX = XlNl for some operators X1

X1 = 0. Indeed, thwemsts aquas1aff1n1ty X such that SX = XT, Where S is the

canonical unilateral sh1ft on {Z (see the final part of the proof of Theorem 5.1).

and Nl’ where N is normal, then

Therefore, by virtue of Remark 5.2, XX_. = 0, whence X1 = 0. Finally let us remark

1
also that
(5.6) 5, (T = {ae€; Al=a}
To prove (5. 6) we notice that T%* = x¥s¥ and ¢ensequently that the

point spectrum ()%(’Iﬁ of A’Iv1< contains that of S’f“ , that is



o i

%) > {ne C; 1al<a .

Since SX = XT, T has no point spectrum, so that (T being in the class (N+C)))
{}\GC;IA I<1} must necessarily be included in ‘%(T).

: Therefore in order to prove (5.6) it will be sufficient to verify that || "i‘/“ =
=4 orif T,denotes the weighted shift whose weights ’w‘r{ are defined by W,L/ =
=min'[ W 1} @ = 1,2,....), where u/n are the weights of T, then || T//|£4 and
obviously T - T’ is compact, being the orthogonal sum of finite rank operators of

s —> 0. s (T(| = 17Y=l = L.
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