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A HOMOLOGICAL VIEW IN DILATION THEORY
by
R. G. Douglas () and C. Foias

3 1. It is well known that in Dilation Theory ( [1o] , [2], [14] £ [5] or [_8] ) the

passage from the theory of one operator to that of several ones is difficult, often impossible

and rarely satisfactory (see for instance f]4]., Ch.l). Therefore an attempt to find an

algebraic background for the difficulties one encounters in this passage, in the framework

of which some obstructions could be explicitely determined, may presertssome interest.

The present note is a preliminary repport aimirg to delineate this algebraic approach, to

illustrate it by some specific example and to give sorin_e particular results.

s sequel we shall denote by?n (n=1,2,...) the category of all
ordered n - tuples 'z:z{T,,T,,n-,‘I;,gof mutually commuting . contractions on some (arbitrary)
complex Hilbert space H = Hy. If T= {T], ...,Tn} and 'C'={T’], ,Tr;}) are objects
off el by a morphism AT+ T' we mean an operator A:(Hl —> Hyrsuch that

Al <1, AT = TEA (e 82, )

)
An object w = {U], 55 Un& of ®, will be called hypo-projective

(resp. hypo-injective) if for any diagram

, P 5 A
(2“1) ; 5 r———azA (MSf- A-‘]i —> T )

such that P* (resp. ] ) is isometric, there exists a morphism B: w — T’(resp. T=9«) such

that the diagram

) P j r
22 T 2 ((2esp. a) L% i
L e e
is commutative. A hypo-projective resolution of an object T in %, is a seqiance
' i Z 7 7 ?
(2‘3) S —CM-(»( 1-::; i (= e ) i P—?‘C,_—i'(, ..»-7—&}__55‘(’_‘

of morphisms such that each Zi (j = 0,1,2,...) is hypo-projective, each P{"(j =10, 15,2,

is isometric and, moreover, the sequence (2,3) is exact, i.e.
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(2.4) Range P = Kernel Py =012, )

+1

If for a given T there exists a hypo—prolechve resolution such that er 10§ for all- N> m,

where m is some integer, we shall say that the projective dimension fdgofzissm. Plainly

pd (T) is the smallest possible m in the above definition. For all the remaining Tswe set
pd (T) = + oo . Hypo-inductive resol utions?- as well as the inductive dimension id () is de-

fined in an obvious dual manner, so that
25 pd(T) = id (T¥) where T= {1}, ... T°}
Also we notice that by these definitions , 7 is hypo-projective (resp. hypo-injective) if and
oply if pd (z) = 0 (resp. id(T) = 0). Finally we shail put
pd (€ ) =suppd (¥), d(8)= sub i,
whereT hungover all the objects of ¢,.
All the above definitions are obviously modelled after the usual defiﬁi—
tions in the theory of the homological dimension in Category Theory (see for instance el
Ch 1V, §9), with the only difference that instecd of projective (resp. injective) objects &)
we used hypo-projective (resp. hypo-injective) objects. [_However projective or injective
objects essentially do not exist in ~gn, indeed if HC*(O} and | denote the identity on e
then in the diagram . »
1& /
the operator B is necessarily 2- l and fhus it can not be a morphism in%, ]
3. In this note we shall show That in case n = 1, the basic results in the
usual dilation theory as developped in [14]'(see 4], Ch.1,&1-4, Ch.II,$1-2) can be restated
in the following concise manner :

For any object T =4T} of ﬁ] we have pd (T) = 0 (resp. id(z) = 0) if and

. Ky o o .
only if T (resp. T") is isometric ; moreover

(3.1) pd (g]) (=id (f])) =1.

Therefore the final goal of the present approach would be to compute

pd(fn) forall n=1,2,..., as well as to find geometrical characterizations for the t’s in¥,_
with the property _ z

pd (7) =k, id(T) = | (k,jepd ().

For the time being, we shall fix our attention only on £ , showing in

particular that

(¥ Letus recall that w is projective (resp. injective) in ¥ means that in the
definitions given by us one replaces the condition that o resp. J be isome-

g

tries with the weaker one &z,., ®*= J




D pd@) (= idEy) =+ 0

and that if’C=£T]‘T2} is an object ofgz_ such that V],\/2 (resp. VT ; V; ) are isometries,
then
(3.3) pd (T) € { 0,0} (resp. id(z) g{o,mj'),

where both values 0 and”are taken.

Also we shall give a new proof of the Intertwining Dilation Theorem
( [l 3], [14}, Ch. H,{Z; or equivalently of the Lifting theore‘m[ﬂ), whicl, we hope, is more
amenable to matrix calculations occuring fn concrete problems of extrapolation, as well as
some simple corollaries of this theorem, which seem new and useful .

4. We start by characterizing the h:po-projective objects off] .

minimal isometric dilation of U (see [14], ChI, £4). Let P denote the orthogonal projection
of K into H (= Hu). In the definition of an hypo-projective object, we take T={V} , T =tuv
and A :I’M(: the identity en H). Thus there exists a contraction B: H > K such that

PB=1 and BU = VB.

Therefore for heH we have

fhil = (PBhIl <  (IBhIl < Lhil,
that is PBh = Bh, whence Bh = h and consequently
Uh =BUh =VBh =Vh.
It follows that U =V/H is an isometry. In case wis hypo-.iniecfive,wg {U*} is hypo-projec-

tive and the conclusion follows from the preceding argument .

w ={V} is hypo-projective (resp. hypo-injective) in f] :
Plainly it is sufficient to consider the caye when Vv¥is an isometry . Then
an straightforward reformulation of the hypo-injectivity of w= {V}shows that the corresponding

statement in Proposition 4.2. is equivalent to the following:

Let HO be an invariant subspace for T and A:.HO\-———a- K be a contraction such that A (T/Hg= VAR

Then there exists a contraction B: Hr> K such that BT = VB @iB/HO =A.

Proof : The proof will be accomplished in several steps one of which is
inspired by the previous inductive constructions [13], [7_]
Let

(4.1) e (T X)
- o =




denote the matrix of T with respect to the decomposition H = Ho@ H:: We shaill say that (%)
holds for S if the conclusion of the statement is valid for any A, V and T of the form (4.1.).
. : i step : If S is of the form « I], where 1, deiotes the identity on H]=H0'L

and KI<1, then G(y) holds for S. To this purpose, we seek a contraction B : HoéPH] > K of the

form
3- (A &)
such that
3 7;) x * /
! =i\
o) (S5} v )
i.e

@.2) Ax = VEA <A = (Via) Al
Now, by[], in (4.1.), X is of the form

4.3) i i ) E = (asmse),
/]

- where D = (-T 79%and L: H, +> (Bosih )" is a contraction ; also B is contrac-
Ox 0o 1 o

i
’ . . 1
tion if and only if AX = CDAx () for some convenient contraction

G (DAx K" == H. Thus, by (4.2.) and (4.3.), we must find such a contraction satis=
fying
= ; 72 *
(4.4) CDp (V=2) = (1-1a1*) e

SincellLII{1, ATo =V*A and V is an isome'q'y, we have

(V-—Z)* .DL* (o — =B A D LL*.DOE 2% >
,.Z(‘l\/~§)kD;;} (V-&) = (1-1x") A ’Do«; A% = |

= (V-2 DL (V-2) = (4- ) (D v =D )=

In general, for any comirackiom A : H—> K we denote by D, the operator

o 1/2 E , =
1 - ) ; thus in particular D,, = DTge L
(7]
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_ V*.DA*V‘" ;V*.bp; o(.:b V-;»}

i

(- «v)* );,f (1- V) 30 —

thus it is possible to Findien adequate C(see [4])

_Qnd step: I ( ke d; for the contractions S S . Sn’ then (%) holds

207
also for the any contraction of the form

S weion - e

S f Sar

9.05

¥:

Indeed applying (x %) to the compression to H @H ( of T we obtain a contraction

1
B/ HE =iAtand

B, Ho @ H] (when Hi denotes the space on which operates Si, i=1,2, .. 0)such thdt

B‘( os,) i \/*B,,

Repeating the same procedure (n - 1)-times We.finolly find B : HO@H]G). ; .@Hn with the
desired properties. :
3l e .Statement (x) holds For any finite rank strict contraction. Indeed such

an operator S can be put in the form

0‘.4 *® :.',_ X
S e e
o, . |
where all(fSore numbers, #j1<1, while O represents the O-operator on some (finite or infinite
dimensional ) Hilbert space. Then we apply the first two steps and finally again the 1stfep.
4th step : Now letThave the form (4.1.) with S an arbitrary contraction .
Let S'= WR be the polar decomposition of S, when R%0. Then there exists a sequence {W } i

of finite rank strict contractions such that Wn'——?W, - Wn — W (strongly, for n—===).

We set S_n = WnR (n=1,2,...). Then

thus also

7
= (3-555) s (med= b,

(strongly, for n-—=se0),



therefore

Te e
T % B

0 S

where P denotes the orthogonal projection of H] = H:’ into (D.H;) , st ongly converges

Sl

(for n00) to T. By the preceding step, there exist contradictions Bn(n =1,2, ... suchithei

(4.5) Bl 2B, el B s R e ]
Clearly, we can assume that Bn — B  weakly for some contraction B ; therefore we can
infer that BnTn —> BT and VxBn—"‘?VXB (weakly, for n—wf»‘), thus, by (4.5.), B has
all desired properties.

This completes the proof.

Corollary 4.4. Let T] and T2 be some contractions on H, and H2 respec-

tively. Let U] and U2 be some isomeiries on K] and K2-, respectively, whére K] and K2

contains H] and H2 respectively. Assume that

(£.6) PV =Y U s TR

where P] and P2 denote the orthogonal projections of K] onto H] a_hg K2 onto H2, respectively

Let moneover A: H, —>H_ be a contraction such that AT] = TQA. Then there exists a contrac-

] 2
tion B+ K,—> K, such that
(4—'—7) Bly=Y, 8 and HB= AF,
Proof . We pass to the adjoints and consider A as valued in K] . Because
of (4.6.), H] and H2 are invariant to UT and U; , respectively thus U’f A = A ( U;/Hz).

Then we apply Proposition 4.3. and take once again the adjoints.

(see 14] , (Chie ll,§2). Proposition 4.3. cam be also deduced from this theorem and even
in an easy way (which we let to the reader to find ). However we believe that the direct
proof given above, making no use of the special structure of the minimal isometric dilation
of a contraction, is instructive and may be useful .

Corollary 4.5. Let TO and T] be contractions on H and H] respectively,




~and V be an isomeiry on K. Let A ; Ho > K and X :Ho*——’ H] be contractions satisfying

ATO = V*A and XTo = T]X . Then there exists a contraction B : H]*—“’ K satisfying BF] BV

and A =BX if and only if A & X*X. .

. - Proof The "only if" statement is obvious. Thus assume A®A < XX and set

H/ =XH and T’ = T]/H". Then setting AXf = Af for feH , we define a contraction from XH
o o o ) ) o

to K which can be extended by continnity to all of H2 . Moreover for f in Howe have

AGxS = AXT = ATF= VIAS = V3 AXS,
Therefore AfT; = V*A%and we apply Proposition 4.3. to A’obtqining an adequate con:
B": H]HK. Finally we set B = BX.

Corollarz 456 5et A Ho"—" G (El:d_Tc; g_rLHo, and S on be some con-

tractions such that ATO = SA. Then in order that for any contraction T on some HiClbedt space

H.‘)Ho, such that T/Ho = To’ there should exist a contraction B : H» G

such ’rhqf
[42) ‘ BT =snp ol . By = A
it is necessary and sufficient that ,
(4 9} A A 5 e SXM ( Son. all Spa=d2, .- ).

contraction satisfying (4.8.). Then, for every hg€Hg andn=1,2,...,
AR sl = T i e isn e
thus (4.9) is valid. : i
Conversely let T, To, A and S be as in th statement and let assume that

(4.9.) is valid. Let Ut on K, be the minimal isometric dilation of S, let

m
- ) U«r K+
" 20

and let P_,denote the orthogonal profection of K, onto G and q that.onto R. Then (see [14],

t P t
Chisilli63), : :

| Qgll = Lm 157gy (ge6),

thus there exists a contraction A”: Ho—~9 @QH) such tha A= R A . Since U” ( Q)= QS*,. it
Sl U_ie/ H'is an isometry in Hstichis thiat 'A(To = VX A'.. indeed, this follows from
the fact that

B T Py L e e s

%o (P /@) = o} :
therefore by virtue Proposition 4.3 there exists a contraction B”: H->(QH)  such that VB'= BF,
B//H0 = A”. Finally we set B = i B”. Then

and




Sgs

sp= R ULL B DB =P Y8 PR AT

The others desired properties of B are obvious.
5. Let us return to the approach considered in sec‘tionr; 2 anci3i . et
T =§T} be an object in ‘84. If it is not a hypo-projective (i.e. by proposition 4.1 and 4.2
|f T is not an isometry) let U on K be the minimalisometric delation of T. Let P denote the or-
thogonal projections of K onto H = HE . Then (see C?]or [14] S Chs e §1—2 ) KeH is invariant
to U and thus ;
| L e

are, by Proposition 4.2 hypo-projective objects in g We set P_= Pand P, = Ieopil=the
identitiy on K&H ) . Set moreover I,= {0} where Hil = {03 for ny 1. Then

Thow 2
._.__'M%O},M ol&—%f;———;z‘o.‘.)z._ao

is obviously a hypo-projective resolution, thus pd (Z)£1. (Obvioutly since T is not hypo-
projective we must have necessarily pd (T —1) This finishes the proof of the assertion on g)
underlmed in section 3.

6. We start now studying ’rh\. category ‘5

object in <£,_ A then V] and V2 (resp \f: and V7 ) are isometries.

Proof. Let U] on K be the minimal isometric dilation of V] and let V2 be .

the contraction B obtained by virtue of Corollary 44.where we set A = V2, T, = T2 V . Then
there exists a contraction Q : H, +—> ,K] such that

> (6.4 Pi= T . amel Q= AV, , LR =R

where P, . denotes the orthogonal projection of K, onto H =Hand 1 denotes the identity on

H. Agmn as in the proof of Proposition 4.1., from (6.1.) it follows that Q =T,thus V] = U]/H
is an isometry . By sb'nenry, V2 must be also an isometry . For the second s’ratemenf of the Lenmmea,
we apply, the preceding argumeit to e«

‘ Lema 6.2, Let w= {V], VZ} be a hypo-projective (resp. hypo-injec-

tive) object ing, and let H' C H (= reduce both V. and V. . Thenw'= LV /H V., /H
: 1 2 2-

is also hypo-projective (resp. hypo-injective.).

Proof. Obvious. 5

Corollary 6.3 . For any oblecf r= {TJ, T S of ZL such that T,, T

(resp. Tf ’1);_ ) are isometries

(6.2.) FJ_ (t) 6{0) oo} (/':L_tzép d(t) e {0, ooj)

holds.




Proof . Obviously it suffices to proof the statement concerning pd (7).

Also it is obvious that what we have to prove is that n = 0 if pd () = n¢e. In this case,
anyway we have a hypo-projective object @ = {U] ’ UZS and a morphism P:w>7z such that P is
an isometry . Without loss of generality we can assume that K(=H.) D H (= H,) and that P is
the orthogonal projection of K onto H. We have. PU] T]P] - PU2 - T2P whence, since T,‘,T2

~ are isometries, by assumption and U] . U by Lemma 6.1., we have
neubu=lu b, ey, A= S, (Rett

and therefore U, b = PU L = T,‘&) U,_e‘: PU G = ’1;_8,
for all heH , i.e. H i invariant for U] and U2. Since ﬁmP = K©H is also invariant to U] and

U . Since T= gU AlE U2/H} , the conclusion follows

, it follows that H reduces U1 and U ]

2

from Lemma 6.2.

2

7In order to obtain a strong propesty of hypo-projective objects in %;_lef us

recall that if A] : A—>8 and A2 : B2A, are contractions and if A = A, A., there this

'II
factorization is called regul ar if :
(?'[} %DA»A,‘Q@ J?q‘a, ) a€.ﬂ}v:(DAtrﬁ)”® (DA'V.Q)_

(see C143, ch. Vi ,$3).
Lemma 7.1. Letwbe a hypo-projective object mfand let P :wroz=4T ng

be a morphism ( in %, ) such that P is lsomefrlc Then at least one of the factorizations T T2

and T -1 of T]T 2T] is regulor

proiec’rfon of K'(=Hy) onto H (= Hy). Lefw— ],V2 } and let
(72, e R

Plainly , U] = V]/K] is the minimal isometric dilation oFT], thus P] U] T]P], where P]

denotes the orthogonal projection of K, onto H. Therefore ( for instance by virtue of Coroliary

4'.4 ) there exists a contraction U2 on K] such that U]U2 U2U1 and P]U2 Tz'l] We set

10— T isa morphism ( g) and P ( as operator from H.

into K]) as isometric, there exists a contractiun Q : K*'>K-l such that
(7.3 Q=P amd Qvi=U,Q, VA = ULHOR
(= the idenfity on H). Thus from the

G = gU], UZS and since P

From the first relation (7.3.) we easily infer that Q/H = IH

second relation ,(7'3) it follows ;
QU Qv"ﬂ: Urh (fen atl mzo | Befl),

whence , by (7.2) Q/K "I = the identity on.K]) . But Q is the contraction and QK cK,.
4 .



T ————————— —————

S liDie

Therefore Q must be the orthogonal projection of K onto K, . Now, from the last relation (7.3)
we infer that

' U= QK
is uniquely determined by H, T, and T, . Taking into account the main theorem of T2 we

can conclude that at least one of the factorizations T1 .T2 = T2.T] is regular.

Corollary 7.2. There exist an object 0 = ) U] ’U22 in%, such that

94 and U2 are doubly commuting isometries and such that pd (6) =00,

Proof . Let S be the unilateral shift of multiplicity one on some Hilbert

space G. We set U =50l, U2 =1®S , where | denotes the identity on G. Let Ker s¥=C eg
e i =Eand e, = Seo . Moreover let P denote the orthogonal projection of K =G&G

onioii=le @ie  +le @e + fa@e  +Cey®@ey. Then P Gt = {1, T}isa

morphism, where T, and T, ar%ieﬁned by T, = PU, AT = PU2/H . Then

(DW= Cewe +Ceove

]

\(DTzH)‘ Te @, + C e oe,

and
fhr,'rlg‘ ® brze’ :'ﬂeH}*(, (Ca@e;) ® (DTZH)"_# (DT1 H) @ (DEH)-

thus T

1 T, is not regular. By symmetry neither is T2 -1 regular and thus By virtue of Lemma
7], § = %U.‘, U2} is not hypo-projective. .
(?.4) /oo((‘f,_)(:' Lo((‘f:_)) s e

Proof . Obvious.

~are isometric and at least one of V],___2 is uni tary , then <« is hypo-projective.

Proof . letP: 6 = %U], U2§§I= {T]- - T2S be a morphism (in&é’z)
such that P is an isometry . Again without !=ss of generality we can assume that K (=Ho)
contains H (= HC) and that P is the orthogonal projection of K onto H . We can also astme
that V] is unitary. Replacing U1 by its minimal isometric dilation and U2 by any operator

obtained as in Corollary 4.4 (with an obvious change of notations ), we can also asume that

U] is isometric. Since PU] = T]P we have also

(#5) S )



AT

Thus from
(7.6)  WA%H= IVETARAD) = DA T e ni TR

(h=1,2, ...; heH) we infer (as in the proof of Corollary 4.6.), that there exists a contraction
AN: G(=H,) —H= (@QH)™ such that A */ ( & /H) where & denotes the orthogonal pro-

jection of K onto

R =) ULM K.
; m70
Since, if V, = Uy H )¢, we have

V:(’A/x (Q/ H) 5 VA’( AX:‘. A"(—DX‘: A/*(Q UA*/H);/]/%%/*{Q/H)’

" we infer that AV =V]/A/. Also, for by eH,

1
hOTt Rl = T BUST TR = B 1 USTUR = B 11U N

m=60 n-H 00

gl gt = an).

m-)oo

Here exists a contraction V2 on H%such that V (&/H) QT’; and

X %

A v,,”‘ (@ /H) S e U e R O
o \//xy,,*(Q/H),'

Consequenfly ¢'= sV] ; V2.§ is an object of fa . Also A : G —>K'is a morphism w «> ¢,

For this it remains to show that AV2 = V;A’ This follows from .

* . K A%

O s A e AT A Al
Now let § denote the orthogonal projection of K onto H?
and let
'y La ! 7
(#.6) vl e U
(

m 72,0
$|nce for h =\
" =m

m
1
Vum V Q’V,, 7 }7” = V4”MV,,/X£,

Eemil0El2 h’éH’)’we have, for any ny m,
and

4]

\/',‘rt/}/ai Q/'V,,,,—mﬁﬂb o, fm/),’\ gl,)

i x
the strong limits A'" and Vgx of the sequences

’ P ) m o “ 4 o2
& vr/mA,vYQ V‘l }M’ i { \/,4” "v/z Q v, | jm;,
respechve|y, exist and satisfy

A”\/ . %IIA ) \/9/” \/411 2 %h %ﬂ.




-12 -

—

g < % . . .
( For these constructions seeré] ). Setting now B = Afwe obtain the morphism B : w+»d with
all the desired properties.
It is clear that all the preceding results can be stated in an equivalent form

involving hypo-injectivity instead hypo-projectivity. In particular we have the following.

7 | pd @ w={U, U, U, U dometiis } = {0, o)

(8) { @) i w ={U U}, U 4T dometiies] = §0,08
Proof. Obvious.
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