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ESSENTIAL PARAMETERS IN PREDICTION
by

Ion Suciu and Ilie Valusescu

A time domain analysis of a certain stationary processes considered as
time evolutions in the state space of a correlated action is given. Using ;
a factorization theorem for L”-contractive analytic functions by means )
of the evaluations functions, in some conditions, a reduction of parameters
in the estimation of the pre;diction-ei'ror' operator is obtained.

Introductioh

In this paper we preséntr a time domain analysis for a éertain infinite variate
stationary processes whose corresponding spectral analysis can be done in a geometri-
cal model as in (3] . For this, we use the context of a correlated action analogous
to Wiener - Masani schema for the (finite) multivariate processes {5 ] : [6 } , the |
stochastic processes being assimilated as a time evolution in the state space of the action. |

In section 1 we attach to any correlated action {g & T 25 its measuring space l
as the Aronszajn reproducing kernel Hilbert space relative to [ . I section 2, for any
[ -stationary discrete prbéess, the shift operator is constructed and a geometribal
model for prediction (in sense of [ 3] )is attached. Section 3 is deyoted to prediction-
error operator. We obtain in Theorem 2 evaluations of this operator both in terms of
correlation and in terms of analytic function which factorizes the spectral distribution
of the process. In section 4 we establish some relations between the prediction-error
operator and the white noises contained in the process. In section 5, using a factorization
theorem for the Lz—contractive ahalytic functions by means oan contractive analytic

functions and an evaluation function, we show that, in certain cases, it is possible to

r_educe some parameters evaluation of the prediction-error operator.
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1. Correlated actions. The Aronszajn space

Let € be a separable Hilbert spare and ‘¢ be an X (5) - module. The map
from X (€ )x 4 into $ given by

(A h) —isiiAR

will be called an action of &L (&) -nto’tL. : ,
‘ We call a correlation of the action of L (E) onto 4 a map L x & —s X (E) |
given by % :

\ ¢ g) —> r 4 2]

which verifies :

, *

@) el .= Tien]l” o [ieslee ama [[a] =0
implies h = 0. : : : :

w [0 Ak, S By ] - 2 ARG,

? e

by

The triplet %833@, I B will be called the correlated action of z(ej onto H,

The space 8 will be called the space of parameters and ¥& the state space.
Denote A =& X 2}6 If we consider ?\f (al,kl), )2.: (az, hz), we shall
define a positive definite hernel on Ax N toc by the equality

1.1) X"[A,,Ah] = ( Fiﬁz,e\ﬂq;,QQ £
’ &
We have.

f Y[Ahlz‘]= QF[%,%J%,QJ = (qi7 P[e‘:{ ,%la,& =

- (P hdas,e) = ¥ D]

Hence

PENS——————

(1.2) XJLAh)‘L] S X[;m;\a’l

We also have

e XU,;\} (Fiﬁ,’?xla,a§>0 :

For any system (2, - . -,A) in _A and (C,,_..,c, ) in € we have




B T

> Jlayleg = 2 (Ml hlaa) e -
a8

1y3

= Z(F[&;,%ﬂccmbcg%\ ® Z (F[&,‘,%il Ao, Ai"”)=

L‘)

(4.4)
it E__A{Qu]a}a)zo '
}, 1 B

where we have dengted by Ai an operator in 1 CE") with = the property Aia = cia 3
for a fixed a in 8 : _
: From (1.1) - (1.4) it follows that X’[ r\i]lz] is a complex valued
positive definite kernel on el ’

To the positive definite kernel Y‘[—AHA‘z] we can attach the

Aronszajn reproducing kernel Hilbert space X. Let us recall the construction of this
space. In the space CA' of all functions defined on /\ with values in € we consider

the subspace J  spanned by (X') , where for any el X’ is the |
® /usA, _ /Uu :

a2

function from C i given by

(1.5) X(n= X"[f:k] ! re A
/7

We define on j\' a sesqui-linear form, as follows

gy ;ZC‘QSA.JZA"KA->¥= ZCU’T; yfjw,ﬂgl :
s i O R L «

Factorizing ? by <-,> =0, we obtain a prehilbertian space. By completion we
obtain a Hilbert space K which is the Aronszajn reproducing kernel Hilbert space, with

reproducing kernel . We shall call K the Aronszajn space attached to the corre-

lated action {E : ut } , or the measuring space of the action. i
6\!
Let us remark that for the elements with representants in J , the

scalar product has the form :

1.7) < ZCX/« ,Zols X,\ >[= ZCJ: (F’[ja,ﬂ;]a;,éﬂ
e 3 b &

where/«;z(c\;,*ﬂ;) ).:-.(B_-\,j.‘)
’ F 3 .

2. e sfationary processes

Let {8) SC, r} be a correlated action and XK be the attached Aronszajn

: . + a3
space. By a discrete r -stationary process we shall mean a sequence {:f } of
M

-—
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elements in 42 such that ['[ f,m f.m 1 depends only on the difference m-n and
not on m and n separately. ;

We define the map |+ £ —X(€) by
@.1.) rCfv\A-:- P[fo,fm]

Eorany n., npe Z_ andia. . csnlie ,ape E, we have : .

1

Z ( iy —M-\Xa"zas) Z ( P[{n >¥~\ ]a CL>

'l-\)

(F[ZA—FM )ZA :F'nJOL a) /O

¥

where A, éf(@} Aia ) for afixed a€ & |,

Henc‘M‘ an I(E —valued positive definite function on 2. The map M —> [ty from Z

into &£ CE)ais cailed the correlation function of the I -stationary process Skfnif”.

AT o

Let us denote by :

s et s f = ZM‘LAetcca el
K%=C.Q.m{hek ,Aglaf( ,ae&*, be 8.}
KD clm{hen | ;@Q o et 4

= A (a) 1= (@) (al @)
=G \/{y : 5<_:=~QQKM = se \/’1 :
It is easy to see that j( < ‘K’V\-Pl and
(2> M oe K & (5.0 X
When we consider two F -stationary processes ilf ?3"00 and -& g Z} s for

3
avoid any confusion, we denote these spaces respectively : zfe{ﬂ %{3 j wa
:K{ﬁ} ‘X 4”5 + ; A

THEOREM 1. There exists an unitary operator U on XK. .. , such that

for any -ac &, AeXLLEN and n € Z we have

2.3 )

U'Af‘(ﬂ, ﬁ{,‘) . K(d ’ A:Fmi 13 .

Proof . Let us define U on a densly subspace in K as follows :

Lr Z = (&
. X-(a;, ;-F'{B Z X.(a

We have : : %




Cot(r[zﬂ :€3+1>2A ;f""“l& l°>

\s

"\3

S ed; Z(A rwm,zm,qa ,05
ZCdZ(ﬁ PY':Q :?‘JA’&‘> .32,:-*‘:

,p

a Z X'(a ZH ie 3 Z— g(k’uzé}%)>¥

It is clear then that U can be defined on Ko 85a umtary operator

with required properties.
+4 @0
.

the shift operator U.

REMARK 2. Clearly UKn =-'Kn+1’ consequently U (Kne :Kn- 1

We shall call U the shift operator of the E —stétionary process
REMARK 1, Foranya € £ , K%  is a reducing subspace for

) =
K © X, and X _, reduces U. If we denote
n+l .n

@.4.) F-X ©X,
then we have

“j<°°= 5{—“@ j@j: U*

2.5.)

(Wold decomposition for the shift operator of the process).

REMARK 3. Let us consider X E=s 5(“ defined by

i Vee Yo £
.‘iw——’—”@F any a € & we have
: b
Ival'= <y oo fea 7™ (I f]a a> < fi Peos|- fat™

i.e. .
@.7) 1Va I* < Il Teor -t
and
2.8 ) 757 = Loy,
Moreover

(V e o >«5t £ ‘UMVQ NEal >Y =<UMX'(Q‘J$°3» X““"-ﬁ}?f




e

= L qu,:?m\ N {ca,&Q = ( FL:€°'£“]°5’O“)$ . (f:'CM = ’a>€ £

Therefore
. *x . M :
e femy =M OV me'Z,
Because }[(a, Af,)_ X;Aq”f‘) we have Car :
@.10 ) K= \4 NeE

It follows that Y_'y\ N';.\/, U] is the minimal unitary dilation of the

positive definite function n —s ['(n) frem zinto L (£).
The triplet Y‘.’K Ve _] will be called the geometrical model of

the F - stationary process { fn % e

REMARK 4. If we denote
@.11 ) 'K

n o -
then K = .’KO, ’3{; U K+, and if we denote by

LN N

U+=_ U-xh(*

then the Wold decomposition of U_ is

@.12 ) M =P DU F

_ s
M
i.e. ? ‘=j<+eU+ t‘K+and k‘“t ﬂ U+ ‘j<+
G \
- Hence all the geometrical elements of the prediction theory for the
process sl fnlj-*m can be obtained from its geometrical model { 'J(OQ i V) U] ;
Let Q b_e ‘the orthogonal projection of /K _ onto K ___ : i P the

: n
orthogonal projection onto :Kn, and P = I - Q. Then we have :

PQ =QP =Q
QE-P) = 0
(I—Pn) P = P(I—Pn) = I—Pn
PP P=P P= PP

n n n

2.13 )

In what follows we shall use the notation and the therminology from [3}
The main result of [3] (see Theorem 2) says that if F is an L CE)‘— valued semi-

spectral measure on T and [,‘K, V,E ] its minimal dilation, then there exists an




- 7 s
unique T beunded outer analytic function %_ & ?, @(A)i sich that

i Z
QB <. B

. (ii) For any other Lz—bounded analytic function fe. b . Q(A)B

for which F.sv.é F, we have also F_g_ =R e ' :

In order that F@ = F it is necessary and sufficient that

o :
; (1 UK, ={o}
: m=o :
~ where £K+ = N© vie ,and U is the unitary operator corresponding to the
o T . &

spectral measure E. :
The unique —bounded outer analytic function { &, j— @(A)_I,

W111 be called the maximal outer function attached to :he Z(E) -vglued semi-

spectral measure F.

If LXK_,V,U] is the geometrical model of the . [ -stationary
process { fnﬁf: , then we can attach a semi-spectral measure F as follows.
Consider ¥, the X(’K&) - valued spectral measure on K corresponding to the

unitary operator U™ . Then we have

3 U = { &l Ece)
amel df ot i @.14.) F= V%*EV

then we obtain an é{(&) -valued semi-spectral measure F on T. From (2.14.)

it results
. 7

(50t it
.15 ) [cmy = S e d Fee)

o

The o\( ( S) -valued semi-spectral measure F is well defined by
.’-90

(2.15 ) and it is called the spectral distribution of the process {fn 5

- =]

The maximal outer function SLE) 5} @(2373 attached to the spectral
distribution F is also called the maximal outer function attached to the process %. i 23

We remark that F@ has the spectral dilation [ *(F) \f e ]
where E* is the spectral measure of the multiplication by et on L &), F is given
» . by (2.4 ), V C§ ? N ; CP;_ being the canonical isomorphism between _Eg 5

and L (#), and P the orthogonal projection of XK Lonto EB o ?'
Also we remark that F = F@ if and only if:

2.16 ) a9 = Lok

If we use (2.13 ), we obtain for a€ £




g
@(0)@(0)& a) I| &oyef -=H(V a—)(d) ~=1~;f ”VQ u*ﬂ
\HO)
2 gty S
=o§1py\(9a~ze %(Im_) X H”’V ! Hm
ing | ’?Va- P ;U V%”k:

P

H ()

%PV

A

4 : ;-M * i
L 1BV FE TPV s
b A : s,

_ [ ?Va = PR,PVa I I P(1-R )Vl - IG-2) Vel

]

-~ Hence we have

2.17) I (1 ’\P_D'\fa = . ( @(0)4_@(0) a,a)

. : ' 5
‘'REMARK 5. For ae & and A€ X{ﬁ) we can interpret ||V Aa ”a,.
as the mean sqhare value of the parameter a in the present state of the process when

we act with A on the sﬁstem.

3. Prediction-error operator

‘The prediction probleins for the stationary process consist.in obtaining
informations about the process up to the moment p+r, r >0, from the "knowledge' of
the process up to the moment p, (the predlctlon of lag r) We can obtain informations
about the past and the present of the process acting on it with some specific experiences.
The rgsults of the experiences are measured in a "measuring system'' intimately related
to .the nature of the experiences. In our case the experiences' are contained in the cor-
related action {& ¥, MY} and the measuring system is given by the metric of the
attached Aranszajn space XK.

\fngj: be a r -stationary process and &t = ’.K o o o idles
as in section 2.- Denote Pp the orthogonal projection of X, onJ{ When we say that
we know the process up to the moment p we mean that we know " the subspace IK more
precisely that we can measure the "'mean value' || X'(a’g)“ of the parameter a for any
element 5_ in Hp obtained by succesive - _tions on the process up to F/he moment p.
We can obtain the best information on the process at the moment p+l if we can find the
elements of the bestvapproximation in ,Kp for the elements in ‘Kp+1'

More precisely, we can formulate the prediction problems (of lag 1)
as follows : '

Forany a:€ & find :

(1) a sequence (al, ..... ’ak)m of finite systems in & , 4 sequence




of finite systems in X (&), a sequence (cl, ..... 5 C

systems of complex numbers and a sequence of finite systems (n TEERERE sn

_ ]
integers each of them less or equal to p, such that :

Pt

*I"IE’I“ ” Xv(a’ %,,,3 % % * Y(ak’z Ah;:g'"&i}”:” P” XV(O-,$ 3”

~(2) the mean value of the prediction error of lag 1

2

G@ = [ (I- ?r)?[(a,# N I .
; Pt :

Similaﬂy, we can formulate the prediction problems for lag r > 1.
In this paper we obtain some results concerning the problem (2).

We begin with the following :

THEOREM 2. Iet %‘fngi: be a discrete [ -stationary process.

There exists a pdsitive operator G-in X (&) such that for any integer p _we have :

o
(1) G is the infimum in the set of positive operators in £ (&) -

of the family of positive operators { rifp+1 -g, fp+l - g] 1 g €&fp15 A

e = F_[fpﬂ_f X g €.

(i) ¢ Any positive A in L (E€) which verifies

3.0 )

A= P\fpﬂ—g, fp+1-g] ge it

also verifies

(20) Forany aec& andA € £(&) wehave

6.1).
' (Gha, Kaj = ] @a=py X‘ I
| p Rty
3% For anya € &  we have
@.2.)  (Ga, a) = inf (Z Piﬁj,gi]au%)

\-,3—.:0

i/




~10%

where the infimum is taken over all finite systems

(4 ). If {E F, @(A)B is the max1ma1 outer functlon attached to the
E -stationary process { ?’ , then

(3:3.) G= @ @ee>

Proof. We define G by

.r_p+1

(3.4.) a=v*uP ¢ - By vty

Obf/iously G is a positive operator in X (E£). For any a€€ and A € é(( E) we

have

v *g* ptl

| a-p )Up+1 X(Aa £) “ R Y(Aa’ fpa) U
H(I‘ YJ( ) ’

and the assertion @%) is proved.

The assenlion
(40) is a consequence of (3.1.) and (2.17).

(GAa, Aa)

1l

(I-P po P VAa, Aa) = “(I—Pp) B s I 2

Il
]

To prove (30) we have :

- (Ga, 2 ) = V(I—Pp) Xy(a’fp_}_l) U | = inf. H y ; £ n 2

k€§K

= fae ' ” X s Z XN i
 Bpreeenas »,im € XX (a,t:pﬂ) (ak,gk)
m

gl, ------ ,-g (3 !' 5:0
al, ...... 2 e g
where we have denoted g = ¢ i anda_ =g
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To prove (10), let us consider g c'H’,p and a € §. If we denote

g0= fp+1, gl = -g, ao = a, a1= a, we have :

( ZPLg g]a a.) = r\‘_fpﬂ, fp+1] a, a_)-

f fd ] e Met ] w2+ (T e ] aa-
=( [}t i '

p+1— ? Ip-f’-l_g ] )

and from (3.2) it results that
et = 2
(Ga, a) < ( l K,fp+1 g, fp+l g ] a, a)

i.e. the assertion i) in (1°) is proved.
Let A be a positive operator in z ( £ ) which verifies (3.0). For

any a0=a, a, ,....,ame £ and go= —fp+1, gl, s ) gm c -Efp, if we

consider Ak = i (£) such that Ak a=a then :

* e
2SR

Zm (Piﬁgaﬂil a;,a;) = (F['ﬁ;,, P“]a q) Z(F’{j ;Fm-!“ a_)_
i(rﬂmsjﬂﬁa a}+Z(PLj 3]Aa,Aa) |

l3=|

[:l

(Fwi J?Ml]a 0!.-)"2(’—1[/‘\333.#}5“]&, )._

=4

i(riﬁﬂ,ﬁbgjaa) Z (rfAg; A%, & Yor

3 r&”’
=)

(rla S g2 ]as) 2 (Ana)

1=
J:

—

From (30) it follows that A < G, and the proof of (10) is finished.

It remams only to show that G does not depend on p. For 1 £k €« m

let us denote z A &P oandeim = f o= Z A ;
e n. p 0. . ptl o n.
s jk e S
= A = ; = Sp o .
where fn fp-!-l vl g o Ig ao a, a, a_ e &

00

m, :
Also denote Z ot and g’ =f _. Then we have :
i (o] pt2 ‘
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S Ry 8 e 3 Z Sl 2 Askzg’" fz,o Aié#’“ie]a{’q—k}
2 k=0 € de=o §
M e M

i '7 L ﬁmml re %o % )=

keo =0,

PN G S P

€ ;J.'-o ‘:| \= ©

)

!

2 (rtjh,ﬁe] e>® )

,&to Y-

It is clear that we can obtain any system {gklx from {gk g in the
same way, and follows that in (3) the infimum is taken on the same set even at the momeni
p, also at p+l. It results that G does not depend on p.

: The proof of the theorem is finished.

The operator G will be called prediction-error operator (of lag 1)

of the F —statlonary process l( f §—+: . From point (2 ) of the Theorem 2 it results
that Il Ga || is the minimum predlotlon-error for the parameter a. The point (1 ) tell
us that we can obtain simultaneously these errors by a minimizing procedure in the set
of\%sitive operators in fz (£ ). The expression (3.2) 1is an intrinsec computation for-
mula for the error in terms of actions and correlatlons while (3. 3) permit us to obtain
the pred1ct10n —error operator of the process SL Si: using the maximal outer function
attached to the spectral distribution,
~ Let us remark that in general
(Ga, a) <« inf ( [° &f - g, fp+1 -g 1 a, a).
: geH
Hence the estimation of the parameters given by the prediction ‘in K e (multivariate

prediction) is better as the estimation given by the prediction in(iK(iL (univariate

prediction).
4. Deterministic, white noise, and moving average processes
i o = - then
| If we take in (3.2) 8y By enn. gm 0,
we obtain
@15 0 <G < [Y0).

~ The [ -stationary process %.fn SM is called :

-0
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(i) deterministic if G= 0,
(i) white noise if G= (o)
REMARK 6. By Theorem 2, point (10), it results that the procéss

Fo . cla s s "
%,fn)} is deterministic if and only if

K __=X =X

-0 p 4 o0

is of white noise if and only if

PROPOSITION 1. The process thn?)‘w

wz) Rl P&)-gn’m

then the positive operator

Proot. t ["{t,11 = [0 e
'0) satisties (3.0) because :

Bgsss o= e e e 2l g € ¥,

therefore [ (0) < G. From (4.1) it follows then G = I o).
Conversely, if (G= [™(0) then for n # m we have [ {fn’ fm;] =10,

For this we can suppose n < m. From (3.0) it results

( "o 2 a) = @Ga, a) < ( Mif,* ef,t o Jaa) =

] 2 :
=( MO a2+ & ([0)a, s pBesl P LL 0 T avonll

Hence '
.5( M (0)a, a) 2 +2 Re ( F[fm, £ 7 a a)

for any £ 30, and
Re ([ £ ] a2) =0,

Analogously we obtain

Im(FLfm, fn's a, a) = 0

and follows that

[‘Y [fm’ fnl =0 for m # n

The proposition is proved.
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REMARK 7. The process {f ?3 is a white noise process if and
only if dF= [ (0) dt. In this caseX, = L (?), where ' = [t & | U is the
s et it 2 . ;
operator of multiplication by e “on L” (), and V. = 4/ ['(0). The function ®cay is,

in this case, the constant function ®@c¢aja= [[7(0) a.

-+ oo

We say that the process {fn %*"' contains the white noise { g 25
if ‘ B |
1) g€ &fsﬁ

2) Rel"[f -8, 8] 20
3) r[fp, gk'} 0 for k > p.

PROPOSITION 2. If the process {fn%“" contains the white noise

{gn'l3 *: , then o

(4.3) G = [l g] < alft

Proof. From Theorem 2, point (10), it follows that it is sufficient to

show that _
f
(e 8)< Mlf, - f -] ., @€ ?ﬁfll‘).
Since E:f_fn, go] =0 for n < 0, it results that M [g, go] = 0 for any
g € dL7; . We have i )
Pl -et -] = Tl -@e)re, t - @) +g ] |
=T, - @) £ - )] + M[e, 8] +2Re M1 - €8,)8)
But
[ _Lfo - &8 ), gol =Re [ [fo —go', gol >
therefore ’

r‘[go: gO] £ F[fo"gs fO_ g_]

G{g}z ,F[go’ go]

COROLLARY 1. If the process {f_ IJ*"" is deterministic, then it

— OO

G{f ¥

does not contain any white noise.

420

PROPOSITION 3. If %f g*"’
then for any a € 8 we have A

contains the white noise process 51 g 2)
n
- &0




4.4 ) .

and

4.5)

-15 -

{3 £
){(a,gn) L n K -1

y y(a,gn) | & fomy XV‘(a,fn) |

~ Proof, Forany h € 3{{5_51 - andgy b € g we have

fgn-|

<y¥a,g)’ .Xv(b,h)>=( r[h,gﬁl a,‘b) 5 ( F[ZA ,gn] a,b).-":‘“

o Z (AI: i [f::, gn] a,b) =0.
. ksnag

From (4.3 ) and (3.1 ) we obtain

{3

”J@gn) “2 _—_‘( r‘[gn’ By A d) T L Plgo,go] & a). £ (G aa) €

_

{
it

X-:K‘{ga ,

2

41}(1-13n_1) Xd(a’fn)“ . A_ -7 | |

The proposition is proved.

4o , '
The [ -stationary process 11 fnzi is called moving average process

- o0

is spanned by :K{gi when {g 2} runs over all white noises contained in fnZ;'N

PROPOSITION 4. If le 15 is a movmg average process then

if
23 - Yoy
and consequently by (2.16) we have F = F@.
_ Proof. For any white noise % g, ™ contained. in &f IS let
\égg ; {g}] be its geometrical model Usmg (2.10) and (4.4) 1t results that
gy _ o 1#Y 113
U <)
ﬁi v {g’se =t k"\ X n-1 *

Hence

KUY :K{"’ceax SIS
13 o

From (2.2 ) it follows that

= 0]
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. In general it is possible that the process len‘i:cmntains no white noises
although it is nondeterministic. Also we can have X~ = §0} without llan " be a
moving average of its (interior) white noises. This is natural because the p;oa;essv
{fngi: can be influenced by some white noises whose relations which {fn 7]?: cannot
be controled with our correlated action {&,&, M i.

In a next paper, where we shall introduce the notion of complete correlated
action, we shall show that there exists an ""maximal'' white noise whose moving average

determine the prediction of the process. Hence we shall be able fo ».voof the Wold

' decomposition of the process in time domain.,

5. Evaluation functions. Réduction of parameters .

= ,
An outer L"-bounded analytic function VESE, Abis called an evaluation
function (of & in 81 ) if the operator V, from & in L2+ ( 51 ), (or H2 (84)) is

isometric. This name is justified because V,; embeds & in H'2 ( 81) such that

Awa = v a)(a). cap ae&
or simpler

b 8
Ama:a(A) \ aGSCHCSJ.-
- We remark that

PROPOSITION 5. The L2—bounded analytic function {8’ &, A(A)}is an evaluatior

function if and only if the Hilbert Space ' & is i‘somorphic to_a cyclic subspace for multi-

C . 2 }
plication by 2 on H ( 5‘1 ). i | |
In this case dim &; < dim & |

Proof. If §&,€,, A} is an evaluation function then V. & is isomorphic

to & , and (because A(A) is outer) \éé is a cyclic subspace of H2( 81 ¥ )

2
Conversely, if & is a cyclic (or isomorphic to a cyclic) subspace in H ( Si )s

then if we define

Mima = a (2) acec H (g,)

then we obtain an Lz—bounded analytic function {S, €, , Aty which is an evaluation
function. '

Let Ps be the projection from Hz( 81) on 5‘1 . If there exist alG 81 such
% /

that ‘ _
aeg
(al, Pgiq_ ) = 0

then (al, )Ma) = 0 for n = 0,1,2,...., and from cyclicity it follows that &y = 0, and
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Pg g = 51. Therefore dim € < dim & .
i 'THEOREM 3. For any Lz—contractive analytic function { & § ; @) there

exist an evaluation function §{ & s & LAY S and a contractive analytic function
Y€, g‘) [1(2) { such that
(5.1.) : @(;\) —1 M(A)‘A(A.)
b x 1/2 I 5
Proof, Ley,j:v: us denote B A A .;D@— D, € and G =Fo ‘;,D@,

A2elD

If we consider
2

E. = E +D dt"
- X ® @ - ’
then obv1ously F is an a‘qf;)—valued semi-spectral measure on J7 , which has
[L (%), Vv D . E *] asa spectral dilations such that V,® D)€ < L e

2
- Thus F is the semi-spectral measure attached to an L”-contractive functmn By {31

Theorem 2, there exists an Lz—contractlve outer function Aca such that
; > 4 ) J

F = F . Since
A R ‘ 2 * *
== + = - =
FA(T) F@(qm D) Vo LAl =-N_ V=1
it results that Vz VA = I, hence { £, 64 " A(,\)}is an evaluation function..
Because | F@ < FA » Proposition 2 (see [ 3] ) implies that there exists a

contractive analytic function { 5, ; F, M _75 such that
@AY = P DA A

The proof of the theorem is finished. Bt
Let { € ,8, [} be a correlated action and {f 34“ be a I -stationary process

in . We recall that we have denoted by [7Cm) the correlation function, F the spectral

distribution, and {_ £ @(A)} the maximal outer function attached to the process

&R

PROPOSITION 6. If {fn}“O is a moving average and  Fo)= I, then its

maximal outer function 1€, F, & § is an evaluation function, and
' g

(5.2.) Ga, a) = [[a(e)]
& F

' 2
where the function a () is the image ot a by the embeding of & in H- @,

Proof. By Proposition 4 we have F = F @ ° and because

*— — oot prened -
it follows that § £ F, @1} is an evaluation function, and using (3.3).

¥ st 2 %
(Ga,a?ﬁ= (@(o) @(oaa)a,)s—: I @(o)&//$= Il aco) llf
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PROPOSITION 7. Let {f 13 and Signls‘*” be [ -stationary processes in &,

3
i# G 18}

G, be the prediction -error operators, {£,F, 8y and { & ?’i @f,u}’p_ga_

their corresponding maximal outer functions. If there exists a contractive analytic function

§ §7 F, P} such that

(5.3.) @cay = M B'cxy

' a3
then G4”$ G :

Proof. For any ae& we have
3! ¥* o, . A ‘@2 ”:L.<
(G a,a) =(@f0>@@a) a) =l @Dl = Il Mcay@or all <

gyl @loral*= (G, a)
=4 ,

e

hence G |
‘. In this way we say that if we can determine either contractive factors or multi-
' plies for @[A) , then we can obtain either increases or decreases for the predictione
-error operator G. In particular we have the following corollary which may be useful in

testing.

COROLLARY 2. If there exists an outer scalar function &m in H2 such that
either '

(5.4.) g())\/; = M, (M @cr> ar @Ay = M, Q) gcm \71,

where 4 F & > M) and | €, , F, M, (] are contractive analytic functions,

\/; £ Eigryi \/;,: E— 5‘2' are isometric operators, then either

‘ P
(5.5 % G > exp [ El?r é{eg,g [ At ]

2 AT '
(5.6.) G.< €x,o[;l-"_§€o(7[§'/d¢]..

If the process {f S : is a moving average, and 5 0) =1 then we have
seen that in the functional model given by the embeding V of & in HZ F) the
error is obtained by [[a( 0) / g In the next we shall show how the Theorem 3 permit:
us an eventual reduction of parameters in the error calculation.

Let us consider the factorization of the maximal outer function { g s 5 5 @( ,131_‘
attached to the [ -stationary process {f IS given by Theorem 3

@(ry = P Aé? :
where {g) EhA(,\)Sis the evaluation function, and &Ei’?, M} is a contractive analy-
tic function. We additionaly suppose that & <V, & . In this case {1&,,F, My is
anouter contractive function. Indeed let M be the contraction from L2 ( 5,; ) to L2 ),

(see [4] , chap V, sec.2). Then because

Lfni' a e
Ze @, W&



=9

we have for any a € &
o

i N 1.'01.'2: R (:'n'l' g

Vigt= MGG = % a =T N Ra ey el

It folléws that s i :
Ol el e

therefore {&,, %, Mt is an outer contractive function,
We consider the correlated action {E‘ , @6, '} as follows : for /41 el (E,) and
£ € P we put %
(5.7 ) ‘ At =(AE)NF
and [ '
(5.8 ) [ L$.9] “?Elrwﬁl}s, ;
Clearly that { £, #, r;} is a correlated action of ¥ (&) ontod? and the [ -statio-
nary process 51 fnl)*” is [;' —stationary process too.

-0

If we define V = \% f 8 and consider
: +
%=V U'VE, < Keo
then denoting U, = U[ )2 we obtaln that the trlplet {3< 1,U} is the geometrical
model of the F1 -stationary process \f % . Let G’ be the prediction -error opera-

tor, F be the spectral dlstrlbutlon and {é’ @(A)}be the maximal outer function

$i5 29 >

attached to the Iz -stationary process | f i"”
THEOREM 4. The function {5 EF @ (Ay & coincides with the outer contractive

analy'tic function {é; 5 Fa ML) 2.‘ given by Theorem 3. Moreover, for any a ¢ &

we have
(Ga, a) = (G’a coy , acoy )|
Proof. From {3], Theorem 2, it is sufficient to show that F@ = FM or
equivalent ' 1
’ : 4 it ¥ it
(5.9 ) df = dFE =7 M@ e dt |
For any analytic polynomial p and alé E we have
1w N 27 C[
2 K _
éxf,(em o((r;!ma,,a,)f’ ”} Ipcety I M ce™ ay I e
2 % 2
s = Q =
=1 pria, |l 2 oy g B, ”Lﬁrrf) ! F \/:@ . ”Lz[f)
r'S
2,
[| pcoy Pva, // = Ppvyva | <«
uf%PVqL(:U i r o

Oo oo



=90 =
¢ Ly

< llpVa, U;w= ilf\/i’aiil,;<;~ Sl,mce) a((F(z‘)a a)

It follows that F

.1.
£
M S Fl’ and, because F

is the semi-spectral measure of an

it results from the factorization theorem that

analytic function,

Conversely, for any analytic polynomial p, and a,k € & we have
3 ' W

§ l PCE“*)\LJ (%ff) ) at)g = S l;p(e"tblx‘d ( Fe)ya, ,a,) =

4 o

~

1
L

. J % o

=fiptmdingd = lpina, ”‘x = j [ pee®)|"d (F(#ya,,a,)
! 7(00 o2 o ) 4
- But F@ ~ is the maximal semi-spectral measure such that

F <« T, hence F@ < F@_
Now we have 1
e 21 | .
Slp(ea”’“o“(-‘q(t)a“ai S | pee™) oZ(F@u)a”ai):
[e] ) o
| o eapnelt = dptel o=
L e 1,6

- ) i 2, { e % e X it
¢ it dt =L () pee’s ["(raee Rty a,, 0,  dt -
- & fupedspices a, gt = ) (; it ’l'
fh e it |

S /r,[el-{-) /LG{ (@(t)élu ai‘)

4]

I

4

Therefore F@ < FM and by (5.10) we have (5.9 ).
i

Using (3.3 ) we obtain for any a € €

2 4 2
- (G a, a)6= | @0y //5~ = My ANy ”}‘ = /| @toyAcoya ”.—7—“ =4

= |\@1(o) Q(o) ”; = (G’a(o))ac::))

Such a way, the factorization theorem given by (5.1 ) permits us the reduction
of the parameters in prediction up to &

Following this way, on can construct a minimal subspace E in & which gives

us the predlctlon, hence we can exhibit the set of essentlal parameters for the prediction
+0<)
of the process { fn 3

e
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