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ON INTERTWINING DILATIONS IV.
, by

Gr. Arsene and Zoia Ceausgescu

~

Abstract. We give a generalization of the theorems of the existence (see [9]}
and the uniqueness (see [3] ) of the contractive intertwining

dilations in the presence of some representations of a C*- algebra

1. Let H (G = 1,2) be some (complex) Hilbert spaces and let Se(H )

denote the set of all (11near bounded) operators from H, into H2 For a Hilbert space H.

1
84 (H) will stay for £ (H, H). If Te £ (H H ) is a contraction, then we denote

=@ - T*T) M2 o ;DT =B 55 I Fora contraction T e ZL(H), U € £ (K)

Dy
will be the minimal isometric dilation of T; in ethezfvords :
K=HOD O ® ......
T 90
= oo
and U e

(Fox this and for any fact connected with the geometry of isometric dilations of con-
tractions see [9] ch. I and II). \ _

i T (4 f(H) G = 1,2) are two contractions, I (T T?_.) will be the set ef all operators
Ace .f (H,, Hl) such that T

1 2
of Tj’ and P]_ the (orthogonal) projection of Kj onto Hj j = 1,2). For a contraction

A= AT). TetU; ¢ ;C(Hj) be the minimal isometric dilation

A € I(Tl’ Tz), a contractive intertwining dilation ((Tl’ T2) = CID) of A will be a
contracl:ion~ B ¢ I(Tl, Tz), such that PIB = APZ' ‘

The existence of a (T Tz) - CID for every contraction of I(Tl’ TZ)

1’
was proved by B. Sz.-Nagy and C. Foiag in 1968 (see [9] , ch.II, th.2.3); recently
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T. Ando, Z. Ceausescu and 'C. Foiag proved in [3] that the uniquness of the (Tl’ Tz) -
CID is equivalent with the fact that one of the factorizations Tl' A or A. T2 be re-
gular (in the sense of [9] sehs VT §3). A generalization of this criterium is used in
[6] for the uniqueness problem of the liftings of operators which commute with shifts
(see [4] for the existence-problem). In [5] itis given a generalization of the
existence theorem of [4] for isometries(instead of shifts); the uniquness in this case
asked for an uniqueness theorem of liftings involving representations of C* - algebras.
In this note we formulate such a theorem (see section 2 below) and
| _ use it for a generalization of the uniqueness criterium of [3] , in the presence of
representations of a % algebra. |
A We take this opportunity to express our gratitude to Professor C.Foias
for posing the problem and for helpful diséussions concerning this matter. We also
thank D. Voiculescu for discussions concerning Theorem 2.1,
’ ' In the sequel let,Q, be a A algebra and 5) : QLH) a represen-
tatlon of A . We use the terminology of [7] concerning representations of c*
algebras. So, for any set MC C f (H), M’ will be the commutant of »C and for a
pro:jection P = PHoe Ba (0.)] : we denote by S)P (or. 5’ Ho) thé subrepresentation of P
given by P, If g:’ LQ - ':E(.Hj) ( =1,2) are representations of Q we denote by
I( S %, ) the set of operators A : H, e H such that A € I( £, 5 x))
every xe.Ql; § and g, -are disjoint (g, & @ ) if I( 80 {0} . We use
without quotations the properties of I( [ fl) of disjointness or of equivalence of repre-
sentations as they are 'preserited in [7] ,f§2 and 5.

The typical situation in this note is the following : for j = 1,2,

? e k——af (H ) are representations of Q4 and T € [9 (11)] are contractions. Note

that a'O € [ Sb(a)] = 1,2); we consider for every n=12, , o the repre'sen—
tatien
e "
Vil (0 o T
i) - ﬁ@(g—z i ) (j=42)
where Z-ji = g ) 2 for every i.

T
J
An easy computation proves that

@2 e [9;”(@)} (j=42)
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where Uj € ée (K.) is the minimal isometric dilatidn of Tj'

Let A € I(T T )be a contraction such that A € I( ?1 1 -fz, ).

Definition 1.1, If B is a (Tl’ Tz) - CID for A, we say that B is
i( 9 2 3 T T2) - CID for Aif B & 1(536-’),5;@"’).
Remind that for S € e‘e(Hl,Hz) and R € &£ (HZ’HB)’ the producf R.S

is called a regular factorization of RS, if \{{{(R. S)= 0 , where
1.3.) @(R-s)= Q)Reﬁs @{DRSR&)DS B 'ﬁ‘eH,i.

With our notations we infer that

t4)  Bpea € [(s00) (@] and Prian € 000 Lal] i

"By (1. 4 ) the following definftion makes sense :

Definition 1.2. With previous notations, we say that Ais ( £, £ ;

1, ) - regular if

Remark 1. 1 If the representations 3) and _9 are non-disjoint and

factorial, the condition (1. 5 )1s equivalent with the condition that one of the factori-
zations Tl'A or A T2 be regular.

The mean result of this note is the following :

: . :
Theorem 1.1. Let (] bea C - algebra, S:'; Q0 o‘f(hj) a

; ’ i e i
re'pI;esentatlon ?f/a,, Tj € [g(,a)} a contraction § =1,2) and A € I(*1’T2) oy
N I&g‘, 92 ) 2_contraction, Then :

(1) A hasalways a (@, 9 Tl’Tz) - CID.

_______.ﬂ_ 5 9 = i i , 5 ) )

2) A has» a_unique (g“ 92. Tl TZ) CID iff A is (2 2 g— Tl Tz,
- regular. ¥

In the last section we give an application concerning a recent result

of T. Ando [2]

: *
2. In this section we analize the following situation : ,J isa C - algebra
5) a F——-Bbe(H) (G =1,2) are representations of {, H c H is an invariant subspace

forgi andP—PH : ThenPé y(a)_]
(6]
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Let also T £ I 4 be a contraction.
o€ WL (R

Definition 2.1. A contraction T € I( g ® ) is called a contractive

intertwining lifting of T0 (shortly a CIL for TO) if T‘ H - To'
0

Note that T P is always a CIL for T Since T e (_p)P), we

mfer that P@T* € [9 (,a,ﬂ Let 1-E be the central support of 1- P (in (_'9(,@)_]’ ) and

1-F be the .centPal support of P'ST* (in [9:. ( ,a.)]
o

Theorem 2.1. The following conditions are eguivalent .:

) ‘ To has amunique CIL.
® (g, ¢ (s,
(@) a) (g)l—-P é (5)‘)5,“13*

b) To is a partial isometry on (1-E) P (Hl)_

) 2 (9)., & (Pi)mn*

BTy ). T, B,

_ Moreover if R is the projection on (TO(I—E) P (Hl)),— then R is
central in [9}_ ( ,a,)] £

Proof. The theorem is trivial when H,= H,. Let us suppose that

H#H..
o ORI
: (I) => (). Let us suppose that T0 has an unique CIL and though
there exists Y € L ( (8,)
2

Define S : Hl-——->Hby

(3)) ) Y£0. We can choose Y suchthat [| Yl ¢ 1

@.1,) BT DT; Y t=2)

From (2.1.) it is clear that

@.2.) . S .
)
Because D, is a positive selfadjoint operator arid Y takes values in .7)

Tk

Y
we have thaf DT*YiO . So 2
0

2.3.) S TOP



g

Prom T e I( ¢ , (mp)we infer that D, €1( ¢ , £ ), whence DT*Y e I {3;_)81: ;
(ﬁ ) ). Using 2.1.) we obtain : 9 S
1 4,p

@.4.) 5 ¢ ,p)
We have : :
* % x* 3 2 .
B D R RN D L TR D e L
o o o)
il ‘
@.5.) Isi = ussti/? ¢ 1.

The relation (2.2), (2.4) and (2.5.) proves that S is a CIL for TO; the relation

(2.3.) contradicts the uniqueness of a CIL for TO.

() =>(@) . Let T be a CIL for To; with respect to the decompositions :

H =Ho@ (HleHo) and H

1

5= Ty @) @ ker T7,

T is the matrix

To T1
0 T2 4
where Tl € I( (92_)_{;(%)_ ’ (?1>4-P ) and T2 € I( (‘g-)kuzT.'," ,(g}”P) . Using the

hypothesis and the fact that ker T; C i - we have that Ty = 0. Now, let us denote

T
o

B B O 0y 1y < TR

Do fhig, Ty Tip * Typr Where T, € 10(8), (), ) 2nd Ty & K
@l)”ﬂl (91};-? ).

We have (see (9] , ch.I, section 3) :
.6.) 3)T’ﬁ =T @) @ ker To* = T ) @ H, © To(Hl))" -
(0] (o)

Using (2.6.) we infer that :

Hu C 21;* " and Hlo C Hle -(Z)-l;x = Zm, :D.,Bx— ={K16H1_ : ([T:ﬂz = i Kz”}
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- So, by hypothesis, T.. = 0. Let h2 ¢ ker D ; we have

11 T*
. (23

WS+ i) Pl I B AT ke e T £ )

But NTH £ 1, so T10 = (. This proves that T = ToP’ thus TO- has an unique CIL.

() == mI1) The condition (a) follows from (2.6.) and the hypothesis.
We infer also that '

@.7.) {7 D ) b
Let denote by T the operator T from (1-E) P(H ) onto R(H )= T (1 -EYPH )
where R € [9 (,a.):, , is a pI‘O]eCthn We have

@.8.) e (B)as (Bl

But (I-E) P = P-E £ 1-E and (2. 7. ) implies that R <& F, which means that R (H,) C

Cker D . This proves that T is a co-isometry.

T?‘
Moreover Ris central in L_f/ ( ,a,)] Indeed, let R be -the central support
of Rin [§ ()] . Because R & Fand F is central in {:yz (ar]’ R, FR

'On the other hand, TO is with dense range, so ( £ )R is equivalent with a subrepre-

| sentation of ( L7 )l-E (see (2.8.). But ( _?1 )E P f4 )1-E , SO ( $ (¢

and then ( % )E b ( g )R . This implies that -

ToE (Hl) C (1-Rl) (Hz),

so U
* . )
2.9.) T R () C (1,—E) P (H).
‘But R1 & F  implies that : ' N
% =
(2.10) T0 To le h2 , for every h2 € Rl(HZ)'

Using (2.10) in (2.9.), we obtain that

R, (H,)= TOT’;RI(HZ) C T (-E) PH) =R H) "

which means R1 =R

() => (IV). We must prove (IV) b. We have :

T D =
® T Tolq-e) p(ny) DT;‘

(1-E) P(H,)

using that T0 is a partial isometry on (1-E) P(Hl)‘



Thus :

£0L M) e T

\ =
T E®) =T ED

r ®)C T @)

T
0 o

V)=>@)  From T_( 21*0) C T E(H,) it follows that

@.11.) JEEr ,(ﬁ)w' 6 (?”,)To(if)T\"

The conclusion results from (2.6.), (2.11.) and (IVl-a. The theorem is completely

—

proved.

Remark 2.1, Itis easy tc see that in the conditions(III)and (V) of

Theorem 2.1. one can replace E by any central projection E € D’ [ZO.} J such that
E £ P. _
Corollary 2.1. With the notations of Theorem 2.1., if £ and p

. are non—disjoint factorial representations of Q& ., then To has a unique CIL iff

H0 = H or To is a co-isometry.

Proof.  Two non-disjoint factorial representations of £ are equivalen
so two subrepresentations of them are dls]omt iff one of the subrepresentations is tri-

vial. The corollary follows now from the condition(iI)of Theorem 2.1.

Corollary 2.2. Let T € QE(H ) be a contraction, H CH a
subspace of H and T = T‘H The following cond1t10ns are equivalent :
o 7 5 ,
1) IS ¢ o‘e(Hl,Hz) is a contraction such that S-[ I = To’ then 8= "F
o
2) Ho =H or T0 is a co-isometry.

Proof. Let &= C and g; Lo — RIHJ- € f[*“ﬂ) and apply
Corollary 2.1. ' .

Remark 2.2. Corollary 2.2, appeared (with a direct proof) in one of :
the preliminary versions of [3] (namely T. Ando’s one). |

Corollary 2. 3. Let U € 56 H ) be unitary on P - separable Hilbert

space - (j = 1,2), HO a reducing subspace for U-1 P = PH 5 1 U l and TO €
€ I(Uz V_). The following conditions are equivalent : ° 0
2 s i 4 Y = 5
@) TOP is the only contraction S I(Uz, Ul) such that S l I T0
) I W= | oo H and W, =U, | %T: , then IW,, W )= {of .

(i) I W) =Uy | ker T* , then:
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Bl T 04 W) = .{0}"

b) There exists - Borel set in the spectrum of U G =1,2),

such that Py, 7 1-P and T is a co-isometry from P, (H )onto (H )s Where. P,

is the spectral projection of Uj corresponding to oy (] = 1,2),

(iv) a) (W, Wi) =w{ﬂoj}

b) There exists w’l

< D P, H
&P and To(l TO) C'To’. ; ( 1).

- Borel set in the spectrum of U1 - such that P, .«
4

Proof. Let & be the - algebra of continuous (complex valued) functions
on T'= {Ze (| 121;4} g 5; the representation of /] given by Uj G = 1,2). Since
Hj is separable, by a theorem of J. von Neumann, every central projections of [g (,Q)]"

corresponds (by the Borel functional calculus) to a Borel subset of the spectrum of

. Uj G = 1,2). Using Putnam - Fuglede theorem, the corollary follows from Theorem 2.1.

(see also Remark 2.1.).

3. Consider again the situation of the first section:let ,Q be a e

_ 'algebra, _f a representation of ,Q in: -4 (H ) T € [jj (,a,)—) a contraction,

UJ € ,f(K) the minimal isometric dilation of TJ and PJ =P_ € f(K) G=1,2).

H,
Let A € I(T1 T )y NI Y 9 ) be a cc: uractmn We will p}ove that in the).efinition

1.2, T2 can be replaced with U2 More precisely, consider A = AP € £ K H )

It is clear that A € (T,U) N I( ¢, 0©),
_ 12 1.7
Lemma 3.1. a) An operator B € ée(Kz, Kl) is a (9«,?; Vil L):CII
i i (o) - A '
f&r_Al_nglsa(g‘,g ;'RUL) CID for. A.

/ (”)

b) Ais (¢, ¢ ;T T,)- regular iff A is {§,6 g™

Tl’ U2 ) - regular.

Proof.
a) is an easy computation .

b) Because U

9 is an isometry, we can write that :



R(Ab)= 3z © (DzU, (k)

3 A

3.1.)
Let i, : H2 —> K2 be defined by
. n 0
i, (b) hz@ @ o00...... b, € H)
~ x %
Since A = iz A, we infer that
D2 =1, -A*A=1, -i A"ADP - D% @1
A K, I T g R K, ©H, °
- thus . (DAOOm)
D, =D, @I B 0 IO0..
A K,eH
2 Q O‘I,\ .
Using this, we obtain that :
(3.2.) ‘@E:DK ®) = D, @ :DB@-@E@....
Sinc}e | ; _ .
o D, 00... }Oo--‘ L 00
§ :DA' Ul: 9] go..-‘ T.,_OO‘“ = )TL OO
(;) ,:I..- (3 I,:"O“- o I‘o_.

we infer that : .

.3.) DRV, () = {DATzkz @ DTz k, ¢ K, exz} @ fOTZ.@ Z)Tz@...

From (3.1.), (3.2.) and (3.3.) it follows that :
% (K.Uz) = R(AT,) ®lo@{d®..

which means that
3.4.) (?m) is equivalent to ( ?‘w‘) L
o K(A-1) * R(A-U,)

-_—

On the other hand - .
= (05,02,02,00,0.. ) © (>, 48, @D, h,@h, - feh., §
! frekoh

R @@ [o]@ ...
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which implies that

(3.5.) A 91@ g is equivalent to ( (X S’f’) )

'R (1,-) R(T, A)

The relations (3.4.) and (3.5.) prove the lemma.

We will give now another characterization -of the notion of (9,9
E R

Ti, T regularity. »
Tet s = TA € £ @, H)and Z: Dg =—> D70 Dy be defined

by :

(3.6.) Z (Dgh,)= DTl Ab, @D, h : k€ H,.

The operator Z is an isometry (see [9] , ch. VI, section 3)and

. R (TA) = Dyx .

_ Put _ )
= . —>
Z1 Ple Z: D S .DT

We have that S € (g , 9 ), Z € I((g,0¢ (%) b 2y eH bR )
(9) ) and D« ¢ 1[(; ']/ %T,@:DA) JJi)S I
D % 4)374 :

Lemma 3.2. The representations ( ¢, ) R (T, A) and (9,)
= . . ’ & '’ ,@ *
5 ' ' Z4

are equivalent.

Proof. Let V : ), +—2D,xbe defined by :

(3.8.) V (Ozb)) =D, . B & °) , b€ 2)T1

From the equalities

s Bi= DR IZEIE = WA - 1 2 (RO = 1D (R @), et

=2 obtain that V is isometric.

Note now that V is unitary, that is DZ*( oOT @ {0} ) = :OZ" Indeed, consider
0 D -

hl(B h, € 7% © g% -@T@ {0} )". Then, from

(3.7.) we obtain

’ ’ -
(b, ® h), DTlA h,® D, h,% =0, for everyh, € H,),

‘which means

*% ’
- f D.Ga«+)AgL,£z> =0 for every h, € Hy,



e e
therefore

. it
(3.9.) \ DTl h, +D,h, =0

But hl@ h, is orthogonal on D Z*( D+ ® {o} ).— , therefore

/ ' _ ’
(3.10.) (hl@hz, DZ" (h1 @ 0)”> =0, for every h1 € Z)Tl.

Because Z is an izometry,'DZ* = Py , and from (3.10.) we obtain that
Z

_ 'h = rvh’ €& i £
<h1 &) hz, hl @ 0> =0, for every h) €<T,, which means that h =0

Using (3.8.), we deduce that h2 = 0 and therefore V is unitary.

For xe (., we have

(94@51)%@%&) V (sz P = (91@91)3 9(1) D, (%.®0) =

7%
| L A,
ol .DZ‘ (9‘(::) ﬁ.@o) = v DZ,* 91 (=) (‘g.) - V(E)DT(X) DZ,*(gd)i
for every‘ h1 € @T >

1

- which implies that

VIR, s (_9,)32,, .

The lemma is now completely proved.'

Corollary 3.1. A is ( 2 ,&; Tl’ Tz) - regular iff

(3.10) (?4 )DZ* ' é ( 9,«('0)).&7 (’a y )

Proof. First note that if Z1 is thé operator constructed as Z1

(replacing A by A ), then

‘.,.11.) DN* = D 3% o
Z1 Z1

Now the lemma follows from Lemma 3.1. and Lemma 3.2,

4, We will analyse now the iterative construction (see [9] chy 1l
section 2 or [3] section 3) of a (Tl’ Uz) - CID, in order to prove that the
relation (3.10) can be also iterated,r and that the presence of the representations is

not difficult to handle. Let us start with H(f) = Hl; Tl(o) =Ty and B, = K
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The first step consists in the following construction :

1) _ . © R :
Let H,' =HY @.DTland By H "' defined by :

B
(0]
= . ) .
@.1.) B ( X, ) , where X ' K2 2>T1

The problem is to find X1 such that :

4.2.) ’ a) llBlll {1
b) B & I(T(ll,) u,)
3] B, € S><*), 9¢))
4 p M

where T(l) = (Tl ¢ )

2 DTO
1

. EA)
As in [9] or [3] , we take Xl :Cl DB , where 81 is a "'suitable'" extension of

- 0 ) .
U R —= ‘DT , defined by :

the: contraction C1 : D
1

B
0

(4.3.) ClDBOUZ = DTl(o) B

. . - (ao) pE Tai t
Note that from (4.3.) it is clegr that C; € I( (g)ar1, (9, ))n.,uz{"'*’)' Using that,

we deduce that there exists an extension of C 1 such that B1 fulfills (4.2.) (take

C. =c P 5
1 1 "Dy U, (K,) -
Lemma 4.1. A is (£, ¢ ; T,, T,)- regular iff
4.4, o
: ) ’ ( 91 )'OC* é) ( S)z' )Q(Bo'uz.)

Proof. The construction made in relations(3.6.) and (3.7.) can be made

for gvery factorization : let 7 {resp. W) the operators constructed like Z in (3.6.)

1

for factorization T,. A (resp. Bo'UZ)' Because U2 is an isometry, W can be identified
- ; £75) - ; , '
f. th the unitary from 8,U, onto (D]30 U2(K 2)) , defined by :

4.5.) W D k2)=D U k., . (k2 € K. )

5 B022

BU
o
From (4.3: )and (4.5.) we infer that :

4.6.) C, =P ZWwW

L : ; = :
Let DT1 Z}T‘ —> H1 be the operator LBT, (hl) hl’ (h1 € @Tl)



=g =

Then :

A 2 i Cored * N* . o — ;\'N*- i 2
Dp = by - B ZWWZ"ip = Izn B, 22 ip = D =
-

2,
*®
g

(for the last equality see (3.11.)).

Now lemma follows from Corollary 3.1.

Next steps consist in repeating the construction with the new objects;

more precisely :

() o 2 ()
= F Wi co0 0 o 9 . .‘—_)
e, @ @ o Ry
n - times
Bn 1\
4.17.) B, = / , whereX :K —> D (pn52)
Y n n 2 T
X 1
n
such that
4.8.) a) Il Bn]{ &4
; (n)
b) ; Bn eI (’.[‘1 2 U2)
&1 (m) (o)
c) Bn ( ﬁ J & ), Where-
'T:‘ O oO.
) “DT-« o 0-- .
T1 = o'r 0-- ((n+1) X (p+1) -matrix)
(') no l“ . ‘
We take also X ='6 D (n » 2), where 6 is a "'suitable' extension of the
n n Bn -1 n
. . D Vil .
contraction Cn s U2 (Kz) — ‘DT' , defined by
n-1 1
4.9.) anBn_l oie DTl(n-l) B o 7 2).

The same argument as in the first step shows that such a "suitable' extension always

9 2 ’ ;
exists. Note also that :DT"'" = ( o ) ((n+1) X (n+l) - matrix), for every n>
& g 0 ol :
therefore (4.9.) implies that : '
TR A D, U.=X .=C .D 2 )
oo 0% = = 5 Z72).
) e s B T % % %2
n-1 n-2
Lemma 4.2,
@) Z)c* = Y r e , for every n 7 2.
M cin-4

, then the representations

3



?(w] v and’ S’(”]) are equivalent, (M 1).
(" ):R(B,,,_1-U,.) (* R(Bm- Uy)
Proof. : =
(1) Define M :D, U, (K,) —> DB by
n n-1
M (D, U, k) =Dy k,» k, € KZ, n 71
n n-1
Then : )
2 2 2 2
"I-)Bn ok ™ = gl < IBE s = N, q
2 2 e 2
B , U,k 17 - Ix 0, 507 = Wil ™ - {8 Ukl
C 2 & . . ae
- nanB_ Uk, 1 = Ilkzll -0 E. i i - e b, W
n-1 ' -1
2 2 0 2
= e s I _ Uk i™ - DTl(n—l) B Bl %
2y 2 ~ x B 2 (n-1) %
=l)® -8 Uk d™- IB kI %+ e, """ 8 k1™
s - B - 2 2
= DBn_1 kT - B Uk T+ ”Bn_lekz e =
2
o LI S
n-1

(kZEKz, n7/1)

~

Therefore Mn is an isometry with dense range, that is an unitary

*~ 2 1). Using (4.10), we infer that

A
(4.11) ¢ =€ g, @ 2> 2),
therefore
2 " % N
DC* _IQT : Cn Cn —I‘DT Cn—l
n 1 il

* A s 2
= Dﬁ
n+ n-4 n-1 c*
n-1
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which implies thut & c* = 3_6* ’ 8 22
n n-1
i B0 T K.) -
2) ‘Defme Q, &2 K) — 9 e by
n “n-1 n
~ ' = y/
4.12.) Q,(Dg D k) DB Ky k, € Kz, nzi,
n n-1 n
Then : -
2 2 : 2 2 2
= | = = B =
i DBn k, I L, “Bnkz I Ik, I B k0
A 2 | 2 A 2
- D = - k =
I cD. .k i I Lo k, I l) C Dy - i
: n-1 n-1 n-1
=||Ds D k2 k E.K n » 1
€ B 2 * T2 P
n n-1
Therefore Qn is unitary,
0 = : - £
Because Cn Cn PD U (K.) , we have tha
B 272
n
°36 = ?(Bn-l'Uz) ® D, Dp U, ,)
n n n
Using this, we infer that :
GQ (BﬁUZ) g @B G-)'DB U2 (K2)' - Qn (Dc“: DB (KZ) ) 2
n n ; n- "n-1

e DBn U, (K,)

Q,(R® _;U)) @, D, U, ®))e

n n-1

I

© D, U, K)

Q (R@ U, 0> 1).
n ‘

It is easy now to deduce from (4.12.) that

(c0)

(8,0;)” (5 )x(a,;,vq

), which proves the lemma.

9, € 15
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5. Proof of Theorem 1.1.

, (1) Since Bn satisfies (4.8.), m > 1), taking B the strong limit of
the sequence 4B n» 1l , it is easy to prove that B is a ( o T U ) CID for:
n S &

~

A , so (using lemma 3.1. @)) Bisa ($,5, ; Tl, TZ) - CID for A.
(2) Let A be (%, ; T, Tz)'-'regula-r; using Lemma 4.1. we obtain
(c0) . (o)
that (?‘)-Dc:‘ d (S’L )51(5-0,,)’ which means by (3.1.) t}iat (9’_ )3561);; U6 $ M) Dex -
The application of Theorem 2.1, shows that the only C 1 such that B 1 satisfies (4.2.)

5 C, =GP U, &, o Therefore Z)a,‘ = ODC* and Lemma 4.2. impiies that
A 1 1
) b (%)
92, - 4
25, © D, Uy (e} T D

Theorem 2.1, s‘ifows again that 62 is unique such that Bz. satisfies
(4.8.) for n = 2. By induction, Cn is unique such that Bn satisfies (4.8.) and therefore
A has an unique (§,, g3 Tl’TZ) - CID.
R Conversely, if A has an unique (§,, %, ; Tl’Tz) - CID , then

C % Cc 1PDKUZ (Kz)— , therefore (by Theorem 2.1.)

(2™ .6 (8),

5 Q'ZDA" Uy (Ke) | C,
This condition implies (by Lemma 4. L. ) that_ Als. (R, _91; Tlié) - regular,

The theorem is completely‘ proved.

Corallary 5.1, If §, and 9, are two non- -disjoint factorial representa-

tions ofa, then A has an unique (%, 8 ; T, T ) - CID iff one of the factorizations

3¢

Tl- A or A- T2 is regular.

Proof. Use a similar argument as in the proof of Corollary 2.1

Corollary 5.2. ([3]) A has an unique (T,,T,) - CID iff one of the

factorizations T-A or A-T is regular.

Proof. Takea € and 8 €32 —>» ]} IHJ- é‘-.f("fj)

Gg=1 2) and apply Corollary 5.1.

a

0. We give now some applications to the case of a pair of commuting

contractions. Fix the following notations . Let Tl’ T‘) € ,‘e (H) be a pair of commuting

contractions, £ a C - algebra, §: 0 —» L(H) a representation of A such that

Tj € [g (Q)J,, (G =1,2). From Ando’s theorem [1] , the pair {Tl, Tz} always



-
has a minimal it >metric dilation {Ul : Uz} , U € Lmy < gi=1.2)

Definition 6.1. A minimal isometric dilation of {T } on K

namely {Ul, Uz} , is called £ - adequate if there exists a- representatxon _P,a"’f (K)

such that H is an invariant subspace for g i ( 57 )H =i and Uj € [f(A)J)Q =1,2)

"Theorem 6.1, 1) The pair {Tl, Tz} always has a P adequate

minimal isometric dilation.’

2) The pair {Tl, Tzi kes an unique g - adequate
minimal isometric dilation iff (¢ @ @) UZ(T T,) b (e®@9) R(TT)
1° 2 2 la

3) If § isa factor representation, then the pair

{Tl, TZ} has an unique Jo - adequate mininal isometric dilation iff one of the facto-

rizations Tl-T2 -oF. T2-T1 is regular.

Proof. (1) Because T, € I(T 2. N1 (g, 9) we can apply
Theorem 1.1. (a) to find a (9 Q T1 T ) - CID for T This means that lfU € F«’pr )

is the mlmmal isometric dilation of 11 then there ex1sts a contraction T2 € f (K )

s_uch that T2 U1 =4 1 T2 PHT2 = TZPH and T E [_ ? (A)J where f 1s defined by

(1.1.). Now U € I(T T ) N l(y""” f“"’) and we apply again Theorem 1.1. (a)

" to find a (9‘”’ f‘”) e T ) CID for U,. This means that if U2 Gt (K ) is the

minimal isometric d11at10n of T , then thpre exists an unique isometry U e &K (K )

2
such that PK U1 = T, P , U1U2 —UZUI and U e[ "‘”) (AJ_] (see LSJ
Proposition 1]0 8). 1

The pair {Ul, U2} which is an isometric dilation for {T Lol

1 2J
confains a minimal isometric dilation iU B } on the space K = \{ U'; UZ"" (H).
lk\q
It is clear that P € [( S‘( )) (A)] therefore, takmg y (( ¢ )“”) » We see

that {u, U, } is ¢ - adequate.

@2) Let {Ul } be a ¢ - adequate minimal isometric

dilation (on K) for {Tl,‘ Tz} and let Kl = \/ U (H). The minimality condition

implies that H is invariat for Ul't and therefox"e K1 is reduciug for Ul' Derote

e PKlefKl ; then Vl is a minimal isometric dilation for T1 )

and , up to an isomorphism of dilations (see [_9] ch. I, section 4.1. for definition),

=1 d
V1 1K1 and V

we can consider that V1 e L (Kl) is the "'standard" minimal isometric dilation describe

in section 1. Let _'F be the representation which appear in the definition of the fact that

{U 5 Uz} is ¢ - adequate. Then K, is invariant for '53' and because V € [(9) (Q)/l

1 1
we have (up to an isomorphism) that g’ g(°°) (see 1.1). This implies that Vz is a

(?‘ ¢ Tl’ Tl) - CID for T2, and, by Theorem 1.1. (a), that {Ul’ U2 ,f} is

B = o



Stlge

unitary equivalent to the ¢ - adequate minimal isometric dilation obtained from {Vl, V2 >
9‘“7) (see the second part of (1)) . Because the factorization V e V2 is always
regular (see [9] , ch., VII, Proposition 3.2. (b)) , the uniqueness problem for a
¢ - adequate minimal isometric dilation of { Tl’ Tzlis solved by the uniqueneés of 'VZ'
So we can apply Theorem 1.1. (b) in order to get the conglusion.

3) 1S a consequence of (2); -

The theorem is completely proved.

Corollary 6.1. A pair {T 1 T2§ of commuting contractions has an

unique minimal unitary dilations iff one of the factorizations T i T2 or T2 . T1 ls_

regular.
Proof. Apply theorem 6.1. (c) for & = € and p: €24 A1, €L(H)

Remark 6.1. This corollary was comunicated to us by Professor C.

Foiag in connection to [3] ;

T. Ando proved in [2] that if Tl" T , T. are confractions

2 3
on H such that T3 doubly commutes with Tl and T2 and T1 commutes with Tz, then
the system { T)» TZ’ TB} has an uhitary dilation. Using the techniques of (_'2] >

one can prove the following more general result, which we present here as a conse-

quence of the techniques involved in Theorem 6.1,

Corollary 6.2. et JT , T_, {Sw ! be contractions on H such that
1 2 wen

S., doubly commutes with T

1 and T2 , for every weJt , 'I'1 commutes with T2 and the

system {Sw}w,,n_ has regular unitary dilation (see [9] , ch.l, _C;Q).

Then the system { Tl’ T2, {S(w)}w . n_} has an unitary dilation.
Proof. Let £ be the C* - algebra generated by { Sw}wer and

¢ the identic{ representation of & on H. Making the same construction as in the
proof of Theorem 6.1. (1), we obtain the system {Uh"l;, {Sw}w‘_ﬁ} on K., .wher¢

U, € XL (K,) is the minimal isometric dilation of T

commutes with U 1 and doubly commutes with

1 T2 is a dilation of T2 which

Sw =5 @ SwIDT® Su]bTEr)..._. el

It is easy to see (using for exemple the condition (9.12) from CS)] ch.I) that the
system ig‘“}w ¢ hasa regular unitary dilation. The proposition 9.2. ch.I of [9]

finishes the proof.
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