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Abstract : -

Using some recent results concerning the time-optimal
feedback control ([21-[4],[11]1, [12]) it is proved that for
gome linear control systems (for example, for scaler control
systems of dimension less than four or whose matrix has only
real eigenvalues, etc.)ta time-optimal feedback coﬁtrol using

a stéte estimator can be constructed.

l. The statement of the problem

‘We consider the "input-output” control system defined Dy.

(1.1) I - ax+Bu , xR, weUCR?
(1.2) y=0Cx sy YE R®

where the matrices A, B, C and the control space , U, satisfy

the following conditions?

(1.3) UCRP is a convex, compact polyhedron which contains the

origin, O cRP, in its interior;
)

(1.4) (A,B) is completely controllable (i.e. rank(B,AB,.. An-; Y

(1.5) (A,C*) is completely observable (i.e. (£ ,0) is

completely controllable; ¢ denotes the transpose of C.

Since in many cases the state variable, x, of the syctiem
(1.1) cannot be "observed" (and therefore, "measured") and

since the information
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about the stete of the system is given by the outpui, y, the

system (1.1)=-(1.2) is controlled Dby using a "state estimator" ([g)

r
dx

at Ax + Bu

(1.6) ¢ g% Az + K(y - KC z) + Bu

>

i

where the matrix Ké& L(R®,R™®) is chosen such that A—KCe L(R?, R?)
is stable (i.e. it has only eigenvalues w1th-negat1ve real part).
| The state estimator (1.6) works as follows: for any
(measurable)control, u(.):[0,=2) — U, the ouﬁput yit) . ds
measured at each moment £20 and, if we denote by (‘P (@ Siehi

Y, (.;x,0)) the solution through (x,0) of the system:

Ax + Bu(t)

8

(1.7)

S,
c*

]

Az + KC*(x~z) + Bu(t)

" then the component “?u(t;x;o)ris an "estimate" of the state
?i(t;x,o), of the system at the momént t . bue to‘the fact
that thé matrix A-KC  is stable,the estimaie WL(t;x,O) (which

can be computed from (1.7)) is as "close" as it is desire@ 0
the state ﬁi(t x,0) after a sufficientiy large interval.

A state estlmatoi (1.7) is indispensable for the control
of the system when instead of an open loop control, u(.):[0,9—0U,

- feedback econtrol, v( ): R® —» U, is used. Since the state x.

of the system is not avallable, one cannct compute the 1nput,
v(x), and therefore, using the estimate, z, of the state x, one
‘can use instead of v(x) the input v(2).

The process of controlling the systenm by using en observer

(state estimator) is therefore described by the differential



system:
ax
7 ax = Ax ¢ Bv(z)
(1-8) ; ‘ '
B b i )
§t " A= x -~ z) + Bv(z)

The aim of such a regulator is to steer every state of the
system "close" to the origin - the equilibruium state of the
system - as fast as possible.

'In the classical engeneering gontrol theory the following

Wlinear regulator" is used ([81):

%% = Ax - BlLz

(1.9) .
A2 . wa ‘
a-{-wa'l'(A—KC-BL)z

correspcnding to a 1inear feedback control:
(1.10) v(z) = - Lz

where the matrix LEEL(RF,BP) is chosen such that A - BL 1is

a stablé matrix. > A

Though very simple and easy to handle,.the linesr regulator
(1.9) hés the disadventage that for initial states far away
from the origin, the constraint v(z)e U will not be satisfied
any more.

In what fo1lows we study the possibility to use & Bang-Bang
regulator of the type (1.8) where, instead of ‘the linear -
f_edback (1.10) one uses the time-optimal feedback control
v(e)s GCR® —» U of ihe system (1.1)+ Such & regulator will
allwéys comply to the control constraint v(z)esU and, moreover,
as it is proved in the next section, it destroys the perturbaticns
in a time close to the minimal one. However, the strong discon-

tinuity of the time-optimal feedback control makes this possible

only for a certain class of control systiems.
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The problem we are considering in what follows may be

stated as follows: find the conditions under which the time-

Opt1mal observer-feedback control (1.8) stabilizes the svstem

(1,1)-(1.2) in a time close to the mlnlmal one.

The main result of this paper states that the time-optimal
observer-feedback control described above stabilizes the systen
when the optimal feedback control has the property that the

optimal. trajectories coincide with the Filippov solutions,

‘9, The time-optimal feedback control for linear systems ind

Filippov solutions

We say that a measurable map, u(.):[O,tl] — U 1is an

admissible control with respect to the initial state xe&R"

if the solution P, (.;x) through x of the system:

dx

(2.1) T Ax + Bu(t)

verlfles the condltlons. ‘P(th) = 0 for te[O,ti) and %i(tl;x)

= 0 ; we say also that u( ) steers x to the origin oexr?

in the time tl.

. TFor each t>0 we denote by 5(.)(13) the reachability set at
$
the moment t, that is, the set of all staies x€R® which can

be steered to the origin in a time tl\ t. We denote also by

G =(_J~]a(t the controllability set of the system CLel)e

The following facts are well known from the now classical
textbooks in Control Theory [1], [9] etc. 3
l. For any t> 0 , the reachability set .%(t) is a compact
convex neighborhood of the origin and the map t h——»-ﬁl(f) is
strictly increasing with respect to the set inclusion and
continuous in the Pompeiu-Hausdorff topology of the compact

subsets of Rn;
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2., The controllability set, Gc:R?, of the system (1.1) is a
convex, open neighborhood of the originj G=R® if A is stable;

3. For any xX&G there exists a unique optimal control ,
vux(.):[O,T(x)] —— U which steers x to the origin in the
minimél time T(x)>» 0; moreover, ux(.) is a piecewise const-
‘ant map, takes values only in the set 'V of the vertices of
the polyhedron U and satisfies the Maximum Principle;

4. The minimal-time function, T(.): G—R, , 18 continuous;

5, There exists a uniquely defined map v(.)t G — U such that
for any x&G, the unique optimal trajectbry ?fsu(. ;x):[O,T(x)]—-—*G |
corresponding to x is a classical (Carathéodory) solution

of the differential system:

’ ax. . .
Moreover, v(0) = 0€U , end for any xeGo}, vix)ev.

The mep v(.) is called the time-optimal feedback control

" of the system (1.1).
The fact that v(+) is discontinuous makes the optimal

trajectories to be classical solutions of the right-hand side

discontinuous differential system (2.2) whereas for such systenms

the natural concept of solution is that given by Filippov in (5}:

Definition 2.1 ([5])

| on s o Ich:RxRp-——* R® . be a measurable, bounded map

that defines the differential system:

(2.3) %3‘{ = £(t,x)

A magl‘f (.):[to,tljc:l —» @ is called a Filippov

solution of the system (2,5} 36 it s absoluteiv continuous and:
.4
(2.4) agt(t)e“F(t,‘V(t)) a. €. on [to,tl]

where:
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(2.5) F(‘t,'x) =Q /@0 co f(t,Bg(x)\ E)

So(M) being the closed convex hull of the set M ,./l((E) the

Lebesgue measure of the set E and Bp(x) the ball of radius

J‘ centered at X.

For this concept of solution, A.F. Filippov has proved in
[5] the analogpus of all fundamental results in the Theory of
Ordinary Differential Equations: existence, uniqueness, continu-
ous dependence on ?arameters and initial data, etc..Very simple
examples show that the classical solution is ill behaved for
discontinuous right-hand side differential equations. For example,
if we know that a‘system (2.3) has a classical solution through
each p01nt and if we perturb the system then we cannoil state

even the existence of (classical) solutions for the new system.

H. Hermes, in [7]., was the first to remark that in order
that the optimal trajectories of a control system to have a "good"
behavior with respect to some sort of perturbations of the 4 ‘
feedback system (2.2) it is necessary_that they were élso Filippow
solutions of (2.2). In [7] he defined the concept of "stability
to measurements" for a differential system of the form (2.3) and
proved that if the system admits a classical solution which is
not & Filippov solution then the system is not stable 1o
measurement. |

Later on, in [2] , P. Brunovsky found a nece;sary and .
sufficient condition for the optimal tragectorles to ccincide
with the Flllppov solutions of the system (2. 2) in the case

=p =2 ; in [3] he proved that the systems (2.2) that have
- this property are atable in a certain sense to small perturbations

of the right-hand side.
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In [4] it is proved that if the time-optimal feedback
control for the systems in which p = 1 defines a regular
'spmhe31s in the sense of Boltysnskii ([1], [10]) with an
additional transversality condition then the optimal trajectories
coincide with the Filippov solutions of (2 o) Ih [11] and [12]
it is prdved that this happens if n5§3 or if the matrix A

has only real eigenvalues.

% The time-optimal observer-feedback control

Definition 3.1

We say that a system of the form (1.7) is 2 time-pptimal

observerefeedback control for (1.1) if vl )~“ — U 1is the

time-optimal feedback control of (1.1) snd K& L(Rm ) is

F 3
chosen such that A - KC 1is 8 atable matrix.

| " The possibility of construction of 2 time-optimal cf linear
or any other kind of observer is given by the existence of some
*pole 8331gnement‘? algoritms . In what follows we need the
following special result: |
Lemma 3.2 |

. * i
For any cogpletely controllable palr (A .C) there exists

the real constants c,k)O' such that for any ol>.0 there

exists a matrix Ké&L(Rm,Rn) such that:

(3.1) ﬂexp(A-KC "yt 1 ko[ exp( o«t) 5, 120
(3.2) I A-KC l<col
Proofs

‘We consider the positive integer T such that

rank(C,K C,(X )20,... (& )r‘lC) = r,then we define W .)r

by Aj = -,jO[ , J = 1,2,.. T4 it is easy to see now that

rank( (Ag‘-g‘)‘%,(7\11-5‘)'10,... (A 1-2)"tc)=n .
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hence we may define the jnvertible matrix X = c0l(xq,Xpy 0o xn)

where X5 = ()\1_1 - A¥)-102. y 3= 1,24e. “ y Cp.. being
: : J J J )
columhs of the matrix C. We define now the following matrices:

..1.

¥T=X :

, Z such that col(Cel,Ce2,... Ce ) = CZ and
o

=¥z, LS dmg(')\ y Ag goss o
_ Ty - n

' It is easy to see that XL = A X 4+ CZ and hence

. XLX™ -1 A+ cZ Y = £ - CK and therefore A—KC has the eigenva-

lues A il.’ 9\12,... )\ in , being a matrix in the diagoneal

cenorical form. The estimates (3.1) and (3.2) follow directly

from the construction.‘ '
Concerning the performance of a time optimal'cbserver—

feedback control, we prove the following résult:

‘Theorem 3.3

Lot Ay By Gy U that define theinnut—output control

systém (1.1)-(1.2) satisfy the conditions (1.3)-(1.4) and let

us suppose that the Filippov solutions of (2.2) coincide with

the tlme—optlmal trajectories of {Z.1)s

Then, for sny & ,53 >0 and any compact subset G ~ G

there exists a matrix K€ L(Rm,R ) satisfying (3. 1) and (3. 2)

such that “t:he time opiimal observer {(1.8) has the following

property: for any xé__Go , any Filippov solution (\0(. *%x,0),

,‘t’(.;x,b)) through (x,0) of (1.8) verifies:

(3.3) I ¥ (t;x,0) I €€ for tRT(x) +@ .
Proof:

Since the minimal-time function, T(.):G — R, is
continuous, for %> O and the compacl subsetl GOCG there

exists >0 such that for any X6 G satisfying I x-y <8



we have:

(3.4) T(y)< T(x) + &

Obviously, we can take 9 <€ and we denote:
(3.5) . &, =6+ max{T(x}| x€& Go}

According to theorem 1 in [31, for G,,E” 0 there
exists J>o such that for any zoe 93(61) and any measurable
map, (’l ():[0y00) — & that satisfigs:

3.6) 1w ls 4 e.e. on [0,°9),

any Filippov solution, Ll{)t(..;zo) , through z, of the system:
: dz _ .4
(3.7) gt = 4z + Bv(z) + Q(t)

verifies: B ,
(3.8) Itz I €2 for 3Tz,
We denote a =lal , L - max [1Bu ilueul .
‘For continuity reasons, it is easy to see that for-9>0

and the compact subset GOCWG’ there exists G,>C such that:
(3.9) A l._"";(“x“ + .L/a)(exp(at%l) <9 /2 for

tef0,5,] , x€G,. We take TGo <€ .

Let c,k>0 Dbe the constants associated to the completely
controllable bair (A",C) by lemma 3.2.

gsince oPexp(-Lt) — O a8 ol — o for any positive
integer ‘p and any ;70 it follows that for c,kvE ,'9*}0

" and the compact subset G CG there exists of > 0 suéh that:
(3.10) (co(n-ra)ko(n'lexp(-o[t)llxll <d for t>05, and x€G,
(3.11) co®texplcoct)zl<Br2  for t2%, emd xel,

*
Let Ke L(R®,R%) be the matrix corresponding to (& ,C)
’

end of> 0 that satisfies (3.10) end (%3,11) according to
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lemma 3.2 :
Let x,€G, end (Pl 5%,,0), W (5%,,0))  be a Filippav

solution through (x,,0) of the system (1.8). It follows that

"P(.;XO,O) is a Filippov solution through X, of the system:

(3412) T = M4 Bv(Y (t3%,,0))

According to lemma 4 in [57, there exists an ingegrable

map, X (,):[0,00) — R® , such that \P('t;xo,O) & xo+_g%(s)&s
y : . : _ 0

end X (s) € AkP(s;xo,O) + BU for s€[0,o0e) and therefore
there exists a measurable mép, w(.v):[0,<>°) — BU ( w(s) =X(s)®

- AP (s; xo,O) ) such that.

(3.13) \P (t; xo,O) =X, +$[ A\P(s X,,0) + w(s)]ds :

hence \P(.;x ,0) 1is a claasical solution of the system:

> Ax + w(t) . From the variaton of the cgnstants formula

dt

it follows that i “P(t xo,o) = exp(tA)x # S exp((t-s)A)w(s)ds
0

and therefore, since w(s)éBU for 36[0 oo), we have:

(3.14) 1P (bixg,0 = xllg T QX 1/é(exp(at)=1),42 O
On the other hand, from (1.8) it follows that the map

f(.,x ) R R, given by:

(3.15) f (t,xo}_ Y(t;x,,0) = Pt; X, 0)

2a the solution through =X, of the system:

ax _
(%3.16) T = = (A - KC \x

end therefore , from (3.2) it follows that:
(3.17) “‘f(t;xo) < koCn_leXp(_-o(t)ﬂXo“ , for t2>0, x,€GC.

From (3.14) and (3.17) it follows that for &,»0 satisfying

(%3.9) we have:
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(3.18) 1 Y (Goix,,00-x 1k e Texpl-allzf+ o (=l
+ L/éXexp(aB,) - 1).
If we take o/> O satlsfylng (3.,40) and (3.11), we have:
(3.19) I Y(T.,;x,,0) -~ x| <f
and, using (3.4), it foéllows:

(3.20) (Y (&,;x,00)<x,) +C

b

. Further on, since Y(.;XO,O) is a Filippov solution
through 0eR® of the system:

(3.21) gi = Az 4 Bv(z) - KC*f(t;xo)

and since I KC*H'{“A - KC*“ + HA“ , from (3.1) and (5.16)
it follows. e

(3. 22) “ KC f(t X )“<(co( 4kl 1exp( O(t)“x | for t»0, )‘GG
eand if of> 0 satisfies (5.10) then T (t) = - KC ] (t5x,)
satisfies: |

(3.23) | “{ (t) | _$OC for t»0.

According to theorem 1 in[3], for any X, € GO , any

Filippov solution , ¥ (.;x;,0) , of {3,21) verifies:
(3.24) Iy (t;xo,o) | €c€r2 for t>T(x, Y + &

(according to (3.20), T(x)) + &> MY Gixg 0)).
On the other hand, since G,<C and 9 <& from (3.11)
and (3.17) it follows that IJ(t5x) I<@/2< €r2  for
T(x ) 4672 & 7 6, and therefore: Pt xo,o) I <
ﬂ P (15x,,0) = ¥ (15x,,00 1+ ¥ (rix5,00 < RGN

+ “ \V(t;xo,o) “ <& for t7/T(xo) + 0 end the theorem is

completely proved.
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Remark 3.4 : it ;

The proof of the theorem does not suggest, unfortunately,
methods to estimate the constant o( ( and therefore the matrix
K which defines the observer ) when the "admi¢sible error",

£70 , the “delay", z>0 , and the compact subset G C G
are givén. “ ‘

In practical applications one choses normally the best
possible state estimator (1.8) with respéct to some other
| criterla than the mathematical motivetions in theorem 2.3 such
as some technolégical constraints, the computing facilities at
hand, etc. . The theorem above suggets the fact that such a
pegulator will stabilize the system for the initial states in
gome neighborhood of the origin when an admiisible error, £ >0
and an adm1581ble delay, >0, are given. |

A more suitable result from this point of view is the
Vfoliowing:

Theorem 3¢5

Let the hypotheses of theorem 3.3 be satisfied. Then,

for any < .0, 0(> O there exists a matrix KGL(Rm,Rn) that

satisfies (3.1) and (3.2) and a compact neighborhood of the

origin, G,¢G, such that for eny X, € G,, 20y Filipoov
solution through (x,,0) (‘P(.;xo,0§,‘P(.;xO,O)), of (1.8)

gsatisfies the estimation (3e3).

Proof:
For every '9‘, r>0 we define the reaz numbers:

sup{\fr(y) - T(X)I ,yeB (0 YGBQ(X)}

(3.25) w (9 ,r)
\where Er(O) and 'ée(x) denote the closed balls of radius T

end ~9~ centered at O and x respectively.
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Since the minimal-time function, T(.): G-— R 3 is
continuous, for each >0 , the map G — w(~6~,r) is
: non-—decreasmg and  lim wW(H,r) =0 as 4~ o. From (5e25)
it is obvious that for any 6 > 0, “the map I +—> w(e r) is
non_-decreas:mg too.

For any r> 0 we denote s(r) = max {T(x) ' xél—fsr(O)}.

. According to theorem 1L in [3]., for £ , 8(r) » 0 there exists
J(E ,T)> 0 such that for any measurable map /?(-):[O,OO)——-—-’ re
~ that satisfies (3.6) , for any zoege,(s(r)) : ahy Filippov
solution, L}{)l(.‘;za)‘ , through 1z, of the system (3.7) satisfies
the estimation (3.8).

Obviously, for any fixed &> 0, the map r — J( Ein)
is nun-increaslng and for any fized . p>0 ,  Lin J( E,r) =
e & Py 0 -

Let & ,E» 0 be fixed; for anj r>0 we define now
9 () € (0, o<l by
(3.27) B () = sup{-@ \ w(@»,r)écﬂ
end r € (0,%] by: g '

(3.28) “ro = sup{i'>0\ 6 (r)$f}

From the properties above of ‘the funetion W(.,.) it is

obvious that Ly 0. We denote '9‘0 = 9 (ro)\ and Cr cy(f r

From cont nuity reasons and the properties of the functions
Wileye)  and J(.,. it follows that for the constants a, L,
k, ¢ > O, defined in the proof of theorem 3.3 there ‘exist
r,€r, and [ & such that @

'__"(3..28) LR ,(rl + L/@(exp(a@l) - 1< 9'0/2
(3.29) (cot™ + a)kd“'lexP(-MC.)rl<Jo<J( 0,

(%3.30) koCnnlexp(—o(Gl)rl< 90/2



AR T

It follows immediately now that for any 'xesGo ='§r(o) s
1

the statement in theprem %.3 holds and therefore the theorem
3.5 is completely proved. -
Corollary 3.6

Let us consider the system (1.1)-(1.2) in the case p =1,

U =[—1,+1] ;0T onaif ‘nr,3  then the mat. _x A which defines

(1.1) has only real eigenvalues.

Then the statements in the theorems-3.3 and 3,5 hold.

Proof': ,

»According to the théorems proved in [11] end [12] s the
time-optimal feedback control for the syestems described above
defines a regular synthesis in the sense of Boltyanskii ([1] ,[lohl
On the other hend, the thebrems proved in [4] state that for
such a system the Filippov solutions of (2.2) coincide with
the optimal trajectories and therefore the hypothesis of thecrem
5.3 is satisfied. :

Corollary 3.7

Let us consider the system (1.1)-(1.2) in the case n = p =

= 2 and the polyhedron Uc:Rg and the matrix A are such that

for any vertex v _of U the polar cone corresponding to Vv ,
/\v =.-{'k e B2 )<),Bv> 2<\, BV’ > for any vertex v’ of U};

hd * i * > ; »
intersects only that eigenspace of -A which corresponds to 1iis

largest eigenvalue. Then the statements in the theorems 3.3 and

«Proofs
vAccording to the theorem proved in [2] y for such systems
| the Filippov solutions of (2.2) coincide with the optimal
trajectories and therefore the hynothesis oh the theorem 3.3 is

satisfied.
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Remark %8

From the point of view of the theory of Ordlnary Differen-
-tial Equations, the property in the theorem 3.3 may be interpreted
as follows: the first component, ‘P(.;XO,O) s of thé solution
through (xo,O) of (1.18) is a Filippov solution through x of
the differential system:

dx

(5.31) & = ax + Belxs fllix))

where f 0 ) is defined by (3.15), which is obtained from
(2 2) by adding to the argument of v(.) the'“perturbation"
f(.,x ). This pertu"batlon is produced by the fact that one
cannot observe the state X and only the output y is available.,
Thus, the properties in theoreme %.% and 3.5 may be
interpretgdvas "stability to observations" of the differential
systém (220 ‘ | s |
The property called "stability to measurements“ introduced
by H. Hermes 1n {7] means, for the same system, that ‘the classi-

cal solutions (when they ex1st) of the perturbed systems.

((3.32) CE AN ¢ By (x+ [ (1))
are “close" to the optimal trajectories.

. Hence, the stability to measurements assumes the p0581b111ty
of observing and therefore of measuring the state, in contrast to
the problem studied in this paper where the state cannot be
measured. »

s _'On the other hand, the property of stability to'measurementﬁ
does not say anything about the Filippov solutions of the
ﬁerturbed system (3.31) (or (3.32)) which may differ from the

classical ones, although, for the unperturbed system, (2.2)

/

these solutions coinqide.
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From this point of view the wgtability" studied in [3]

in this paper is, apparently, more natural. It would be,

though, interesting, to find a deeper relationship between the

two

kinds of stability of the solutions of the differential

system (2.2) at the perturbations of the right-hand side.

1)

[ 2]
[z
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