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On best approximation in

vector -valued norms

by

A,Bacopoulos, G.Godini and I,.Singer

1, It is well known that in a (real or complex) normed linear
space E the distance from an element x€E to a subset G of E is de-
fined by the formula .

gEC}}

and the elements of best approximation of x, by means of the elements

&) dist(x,G) = inf-{”x—g”

of G, are, by definition,.those goéG-(if any), for which this inf is
attained, i,e, for which_.ti; « ‘: ::. i
) AHX-gOH = inf-{”x—g“tggec}}z dist(x,G);
the set of all éuéh elemenfs 8 is denoted by @é(x) (see e.g. [9] or
[10]). | :
-In many situations, there appears thevnecessity to approximate
an elemeﬁt x of a linear space E, by means of the eleméhts of a sub-
set G of E, simultaneously in two (or more) given norms, say “'”l
and “’HZ’ on E. One possible way of doing this, is to consider a

third norm |[+]| on E, which is a sultable combination of the norms

“.“l and “'”2’ Tor example,

max ([1xlly , %) (xeE),

»

(%) x|

or

(4) ll = Ixlly + Jixl, (x€ E),
and then to consider (1) and (2) for this new norm; for results and

Iiterature din fhis direcction, see g.Z: [4]_and the references the-

. rein,

In a large number of;cases, howevergwanother approach, sugges-
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ted by some problems of mathematical economics(see e.g. [8]), appears
more naturally. Namely, following [1], one can consider on E the "norm”
with values in the plane 2 (with its natural partial ordering ), defined by

(5) Ixh = Ul=lly, Ixlly) (x€E)

(for the theory of norwms with values in  partially ordered linear

. spaces see e.g. [7]) and to cell an element g <G an element of best

vectorial approximation of x, by means of the elements of G, if

there is no other ge G which gives a "strictly better" approxima-
tion to x in the sense of the natural partial ordering of R2 (we re-
call that (al,az)s;(Pl,ﬂz) if and only if both %x4< %, and ﬁlifgz :
one writes (xy,%5) < (B1,P5), 1f (X3,%5) S(Py,po) and (op,x5) #
# (pl,ﬁz)). We shall denote the set of all such g, €G by Ué(x) :

thus, goeﬂfé(x) if and only if there exists no element g€G such that

6)  Jx-el= xsly, Ix-gly) < Q=g lly, =g lly) = bx-g 1
. Let us observe that instead of two scalar-valued norms ”'”l

and HFH2 (or, equivalently, instead of the norm (5) with values in
the plaﬁe ﬁz, with its natural order) one can give a similar defi-
nitien of 1E(X) for the case of any (finite or infinite) number of
scalar-valued norms (or, more generally, for the case of norms with
values in any partially ordered linear space); in particular, a usu-
al (scalar-valued) norm is a norm with values in the real line R and
then'Lg(X) reducés to the set jé(x) defined by (2) (note that
_ig(x) = §E(x) may also happen for the vect. r-valued uQrm (5), nemelys
5 = IIh.

Some results on the elements of best approximation by elements

®

in the particular case when “‘“l =

of convex sets in arbitrary linear spaces endowed with a vector-va-
[ 2

lued norm and, more generally, on convex vectorial optimization,

. have been given in [2],[5}. In the present paper we shall consider,

. generalizing (1), a new notion of "distance" for the case of norms
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with values in RZ._We shall derive this from a new notion of the
"infimum" of any set AC:RZ, which will no 1ong¢r\be a peint,; but-a
set in the plane RZ, denoted by INF A (see definition 1 below).
Then our new "distanée“, generalizing (1), will be the set
(7) DIST (x,G) = INF {fx-gl|gec}=
= I0F {(J-g]ylx-glp)| g e G} R

and we shall have goezlf(x) if and only if
(8) [x-g |= (lx=g,ll;, lIx-g,ll)eDIST (x,);

of course, in general, DIST (x%,G) may also contain elements of the
form 1lm [x-g. 1, where g sCa. i

In the present paper we shall give some results on the ele-
ments of INF'A, for those sets A<:R2 wnlch have a certain property
of generalized convexity, which we shall call “property (C)". When
G is a convex subset of E, the sets (7) need not be convex,but they
will,have property (C) and therefore we shall be able to derive
from our theorems on INF A thevrésults of [2] op best vectorial ap-
proximation by elements of convex sets G.

The proofs of the results on INF A and of their appliqations
to best vectorial approximation by convex sets (and, more genera e
to convex vectorial optimization), which are not given here, as well
as some additional results on INF A, for sets Ac:R2 which do not .
have property (C), will be given elsewhere [3].

2. We shall assume, without any special me ntion. that all

v

23
sets ACR° occurring in the sequel are non- empty and boundea from

below in the sense of the natwal partial order of R2 (1s€.y there
exists qeR2 such that g<a for all a€A). We shall denote by 4 the
closure of A in the usual topology of RZ. s

2

Definition 1. Let ACR® and let peR°. We shall say that

pe INF A if the following two conditions are satisfieds %o
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1°. There exists no aed such that a<p.

2. pel,

Let us observe that such a definition can be also given if we
replace R2 by any partially ordered topological space. One can also

‘define a related notion of "infimum" of a set ACZR2

(or, more gene-

rally, of a set A in a partially ordered linear space with a "unit

element" e), by conserving 1o"and modifying condition 2° as follows:
2‘, For each &€ >0 there exits an element ae€ A such that

Eigp + g« (where e = (1,1) in R2).'

'Obyiously, in general this latter definition yields a larger
set than the one obtained from 1° and 2°. The results which we shall
give below for the sets INF A defined by 1° and 2° remain also va-
lid, with easy modifications, if we use 1° and 2/. Other modifica-
tions of 20, é' are also_possible; but we shall not consider them
here. _

" One can show that for any AC:R2 (of course, sati~sfying the as-
sﬁmptions,mentioned before definition l),‘INF Aa# d.

Dually; one can also défine, in an obvious way, the set
SUP AcﬁR2 and the results which we shall give below for INF 4, ad-
mit dual results for SUP A. We believe that these concepts and re—‘
sults may be also of interest for other applications of the theory
of partially ordered spaces.

Let us observe that our definition of INF A is different from
“that of inf A occurring i{ the theory of partially ordered spaces.
Naﬁely, we recall that inf 4 is the unique element mezR2 with the
following two propert‘ies: i) mg a for all agd; ii) for each peR2

such that p<a for all ae 4, we have pgm, Thus, if ACRZ, then

L]

W= (ml,mg), where

(9) -~ m= inf{allfal,ag)e.A}, my= inf{agl(al,a2)eaA}.
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In the sequel we shall also use m;,n, and the constants '3(1’12
defined by '
(10) Kl = 1nf{al) (al,m2)6 A}, Yo = 1nf{az‘(m1,ag) €A } s
here (as well as in the sequel) we adopt the convention inf{blbe(é} =
= +00 , Note that, clearly, mi{ Y1 s St {all(al,mz)éA} (the latter
. can be glso +00 ) and, dually,m,< IE -1 {azl}ﬂl,e@) EA}.

. Definition 2. We shall say that a set ACR2 has property (C),

if for each a’, a” €A and each A with O <A< 1 there exists an ele-
ment a€d such that

(11) ' a < ha’ + (1-Na”

For example, every convex set ACR2 hav‘s property (C) and the
closure, K of any set & with prope:bty (C) also has this property.
Furthermér_e, as we have already mentioned in § 1, for any convex
subset G of E, the (not necessarily convex) set (7) has property (C).

In our first theorem we describe INF A, for Ac_R2 having pro-
perty (C), by determining its intersections with the vertlcal and

horlzontal llnes in the plane R2 i.e., the sets Dp NINF A and

" 1
Dp NINF A, where
2 A
/ 2
(12) Dplz {(plypz)e R ( - 00 <p2<+0~0} (-p0< pl< +DO),
" _ 2 : ik
(1%) oy = flpyipp)eR | ~o0< py<toof  (-eo<p,<+o0).

Theorem 1. Let AC R2 be a set with property (C) and let

=00 <p;< +o0¢, Then ‘ F

¢

(¢ LE-—06% Pyl

A“{(ml’%)‘ Izspzsmf{az\(ml’az)é‘q}}ﬁ Py S
(py, infiay|(ag,ay) €4, y<pyp) =

(14) D;ih'INF A= = (pl,lnf{ag!(pl,az)éA})<(Dl,+ﬁ0) if m 1P

(pl,mE) i£5<pl\1n1 {ali(al,mz)éé.}_,a_gg_ (pl’ 2)eA

(1) i 51<pls1rn{ l! (al,mz)éA} and (pl,m2)<}5§
e e e e
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where (pl,p2)< (pl,+oo) means that P, < +00,

For D; AINF A the dual formulae hold (i.e., in which the in-
= b

dices 1 and 2 and the first and second coordihates are interchanged).

Note that if Jl = 400 0F 1nf{al‘(al,m2)eA}f +00, then (14)
admits some obvious simplifications. Let us also observe that 1t is
only the part m < P < a’l where the assumption *hat A has property
(C) cannot be omitted. '

‘ * Clearly, from theorem 1 it follows that for ACR2 with pmpef—
- LE); INF A is closed.
It may also happen that my Jl (or m, =3’2), but then, necesA—
garlly, my = Xo (respectively, my= ]l) and INF A= IV, where
s Tw A p, e A‘kspzsmf{azl (m,,8,) € 4] .
% - = A &8 ’
(16) ‘ I, = {(ppsmy)€ A_]Jls p; € inf{a, | (a),m,) € A}} :
clearly, in this case Ilf\I2 is the point (ml,mz). In the sequel we
sha11~ exclude this simple case, i,e., we shall assume that m,< 2(1
(and m,< 5’2

By theoren 1, for each Py with m; < p1 Zfl the set Dpl/‘\ INEF A
is the single point (pl, 1nf{a2|(al,a2) €A, a9 pl})e RZ and the-
refore, 1n the next theorem we shall consider the real-valued func-
tion 4 deflned by .

(17) eyl = int{a,|(a),8,) €4, &)< Py} (my < py< Jyq)e

Tn terms of the function f, theorem 1 yields that INF A =
.=F(f)UIlU Ig, where F(f)cR is the gra h of £ and. 11,12 are the
gebes b, (16)y- 18 my< X1 these three sets are pairwise disjoint.

Theorem 2. Let ACRZ be a set with property (C) and with

my < T Then the f;unction £ defined by (17) is conwvex (henee conti-

nuous) and non-increasing. : A

W.e;:.n‘ote that if Jo<too (respectively, 5’1<+oo), then (ml',gz) é_

e INF zi;':(lz.espectivelyy (3’1,3-32)6 INF A) and therefore, in these cases
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it is natural to extend the definition of f by putting f(ml) 2’3,2
(respectively, f(h) = m2). Then the function f extended in this
way will still remain convex, continuous and non-.increasing., From

theorem 1 and from this remark it follows, in particular, that if

52 = inf {azi(ml,az)éA}_g_ap_g_ = inf {al)(al,mZ) EA} and if both.

31,32<+oa) then INF A is either an arc or a point,
Theorem 1 above permits to reduce the computation of INF A N :

“/\ {(pl,pg) €R ‘ml< pfh}’ to thg computation of the infimum of a
certain set of scalars (or, alternatively, of a functional on a sub-
set of 4, since a, may be also regarded as a functional on
A/\{(al,az) eR2§alg plg). The following theorem gives another "sca-
larization", of "Kuhn-Tucker type" (see [2]), for the problem of

g i 2 X
finding INF Ar\{(pl,pz)e R lml< D4 < D’l} -

Theorem 3, Let AC R2 be a set with property (C) and with

m, < J_l' Then for every (pl,pg) € INF A with m1<' D1 < Zl there exists

a number \ with O <A <1 (depending on (pl,p?)) such that

(ag,a) €4},

(18)  Apy + (1-Np, = inf{daj+ 1-Na,
The following partial converse is immediate: If AC R2 (not
necessarily with property (C)) and (pl,pz)ez and i1f there éxists\)\
with O0<A <1 such that we have (18), then (pl,bz)e INF A; as shown
by. simple examples, here the assumption (pl,pz)e A cannot be omit_ted
. 3. Now we shall show how the above results can be applied to
obtain again the results of [2] oh best vectorial approximation,
Let G be a convex set in a linear space E endowed with two

norms, U-Hl and ll-112 and let x€E. We shall denote by distl and

dist2 the corresponding distances and by S%(x) and ?g(x) the set of

]

all elements of best approximation of x by means of the elements of

G, in the norms “'Hl and HH2 respectively. Let
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(19 a = {Ux-gly, Nx-gly) | geclcr,

Then, by (9) and (10), °
To inf{ux-gnl‘g ea}= aist) (x,0), m, = disty(x,6),

(21) py=inf {1in llX-gnl\ll{gn}CG;, lim lz-g ll, = distz(x,(})},

"

(22) 52:inf{lim lx-g, 1l Hgn}CG, nl_j;n;o H:c-gnﬂl distl(X,G)}.
Purthermore, the other expressions occurring in (14) are

(23) inf{a,|(m,a) ea}= inf{“x-—g“élgéj’é(x)} = aist,(x,F3(x)),

(24) . inf{a.2 (ag:8,) €4, alspl}z inf{\[x—g“z geG, lx-gl; € pl},

(25) inf‘{al (al,mz) eA} = inf{“x—g“l‘ge\s’)é(x)}: distl(x,(?é(x)),

and the obvious dual to (24),

We recall the main result of [2] on best vectorial approxima-

tion ([2], theorem 2.1): For every c E€R = (-00, +og) satisfying

(26) dlst (x,G) < c<dlst (A,?Z(X)),
we havve

(27) «vaxm{ye}alnx-y,nl:c} ='S’§n{yégmx_y”léc} (x).

N

In order to deduce this theorem from theorem 1 above, the fol-
lowing obvious observation is used: we have goevg}(x) if and only
if (Hx—gonl, X-g, I )éD“X . n AINF A. Now, the inclusion C in @2
follows immediately by considering the various cases occurring in

(14) and taking into account (20)-(25). To prove the opposite in-

: D2 L. = I = i ; .
- clusion, let goerg)Gn{yeE;nX—ylllSC} {x)s 1.€.,8,€0, ”X-—g,o ,jl.g ¢ and

Ix-gll, = int{llx-gll,jg €, lx-gll < c}.
case 1°. If \[X-—gOUZ?distz(x,G), then, using (21), it follows
that cgy,. Now, if dist (X,G) = ¢, then HY—g “l = ¢ and Hx-gouz =

= dhist (*{3 (A)), wh-~nce, by (14) and (20),(23),; (HA—» ﬂl,ch Joiln)é

€ INF A, On the othe: hand, if m, = dlS'Cl(X,u}<C§Jl, then, by (34

25

and (24), (c,llx-gol\z) ¢ INF A. Hence, since (HX-—go\,]l = X’goHZ) =
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{(c,]lx—gollz), where (lx-g ll;, x-gl|,) €A, we cbtain “x-gonl =

and (lx-g ll|, lx-g ll,) € INF A,
case 2°, If ”X-80”2 = dist,(x,G), then Bk ?é(x), whence,using
. . 2 : |
also (26), “x—gojlls Cilﬂf{”X—-g Hllge?(}(x)}g “X"go”l’ s0 llx-gonlz c

Also, from (21) goe@é(x) and (26), we get ylécédistl(x,?é(x)). (&

Hence, by(M)and@)(lx-g |-, lx-g ||,) € INF & whenever yy<c, while if y =¢
’ ; S iii=e L o2 . e o !
(<+e0),then(llx - g, y» WX~g 11, ) =(y, ™M, e INF A, which completes the proot.
From (25) and theé obseérvation made after (10) it follows that

.

; . Y- X x o o .
hs dlsti.(X,SG(K)). We note that if for every c¢ such that Jp<¢<

’<dis.tl(x,[9§(x)‘), the right hand side of (27) is non-emnpty, then al-
ready J1 = distl(x,?é(x)). (Indeed, if 71< c<c'<distl(x,§’§(x)), and

oy

2 o2

llX-—ylllscn’}(X)’ then, by (27),

4

go,gée'lfé(x) and ]IX-—gOch, ﬂx—g(’)nlzc . But then, by.(14), “X—-gouz Y
= ”x—gé“2 = m,. Since ¢ <c’, this contradicts the definition of

Vgt |
' 4, There appears the problem, how to extend in a natural way
some well known properties (see e.g.[9]) of the numbers (1) to the
case of vector-valued norms, i.e., to the sets (7). For example, if

we want to extend the implications

(28) G C G2:}dist(x,«:}l);dist(x,c}z),

29) G.cG .. Cy a = lim dist(x,q )=
(29) G, < 7 C..., k“zji G, = E :-‘—?n_l;io ist(x,G )=0,

then it is necessary to d=fine fifst a suitable partial order rela-
tion 7 , respectively a suitable topology, ét least for the collec-
tion of all sets in R2 of the form (7). Or, one can ask, how to ex-
tend to vector - valued morms the inequality

(30) dist(xl+X2,G)s'dist(xl,G)‘+ dist(x,,G),

G is 2 linear subspace.,
where Y Some results in this direction will be given in [6].

ARSI

Note. After this paper has been completed, there appeared the, .

a
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paper of L.Cesari and M.B.Suryanarayana, "Existence theorems for
Pareto optimization ih Banach spaces” (Bull.Amer.Math,S0c.82(1976),
306-308), in which the authors introduce, for a different problem,
the notions of weak and strong Paret§ extremum of a set A in a Ba-

nach space Z with a closed convex cone, For Z = R2

, with the natu-
ral positive cone, the set of all these Pareto extrema coincides

- with our INF A (since in R2 the weak and norm topologies coincide),
but there 1s no other overlapping of that paper with our present pa-

ber.
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