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ABSTRACT

The holomorphically induced representations of a simply
connected sol;éble Lie group,arising by-Kbstant's quantiza-
tion procedure from Hamiltonian G-spaces,are studied.oﬁr main
result gives necessary and sufficient conditions for such a
representatibn‘to be primary,primary of type I,respectively
irreducible.It is shown further that the irreducible unitary
representations constructed by this method are suffiriently

mény to separate the elements of G.



INTRODUCTION

In this paper we are going to investigate some important
properties of the holomorphically induced representations of
ba simply connected solvable Lie group which arise by Kostant's
quantization procedure.For details concerning the quantization
theory,the reader is referred to [4] and [12].

Let G be a connected and simply connected Lie group and
iet (X,«) Dbe a HamiitonianﬂG~épace.If (L,x) 1is a complex
ling bundle with connection and invariant Hermitian structure
over X, we denote.by ¢ =[L¢x1its equivalence class. A (X,c0)
stands for the set of éll equivalence classes £?=[L,&J whose
cufvature form is ¢ . The quantization ﬁrocedure associates to
a pair (€,F) consisting of an element e j\(X;a:) and a
G-invariant polarization F of the symplectic manifold (X,<)
an equivalence class of unitary representations ‘p(f,F) of. G
One of the fundamental questicné one can raise about this con-
siruction is to find out first to what extent it is indepen-.
dent of the choice of a polarization and then to determine the
structure of the representations so obtained.It is the purpose
of the prgsent paper to answer these questions in the special
case of a sblvable Lie group,where powerful results due to
Auslander-Kostant [1] &nd Pukanszky ([9], [10],[11]) are avai-
lable. | g

Our main result establishes the indepeﬁdence of—‘P(e,F)
of the choice of a "good" polarization F and, which is more
important,gives necessary and sufficient conditions in order
that ‘pfe,fﬁ be primary,primary of type I, respectively irre-

ducible.In particular,this led us to a natural extension of



the Auslander-Kostant procedure for obtaining irreducible u-
nitary representations, by which we may associate to every
(not necessarily integral) orbit under the coaﬁjoint action
of G a set of irreducible representations.Although our con-
struction can not aim at a complete parametrization of all
equivalence classes of irreducible unitary representations‘
(excepting the case of a tybe I group, when it adds nothing
to the original construction of Auslander and Kostant), it
yields a family of irreducible unitary representations A (G)
satisfying the following completeness property: each primi-
tive ideal of the group C*—algebra c™(G) of G is the kernel
of an irreducible representation in/A(G), when it is viewed
as a representation of C (G). In particular, A(G) constitu-
tes.a éeparating family of unitary irreducible representéti-
ons for G. We show also ihat every equivalence class of irre-

ducible normal representations is a member of A(G).

1. PRELIMINARIES

Throughout this paper G will denote a connected and sim-
ply connected solvable Lie group, g} its Lie algebra and q}*
the dual vector space ofq}, on which G acts by the coadjoint

representation.

l.1. Given g € o; ,G(g) denotes the isotropy subgroup of
G at g with respect to the coadjoint action, c}(g) its‘Lie
algebra, Xg = G-g the orbit of g under G and oog the
G-invariant 2-form on Xg induced by the 2-cocycle -dg on

ot Since the identity component G(g), of G(gl) is simply

connected, there exists a unique character ;xg on G(g)o



such that d%g =2 i-glo&(g) ; its kernel Qg is a normal sub-
group of G(g).

We shall denote by sf"(g); the set of all .subgroups [ of
G(g) containing G(g), .For e #(g) we put ¢ = { x eG(g}) ;
Xg({tx 5‘@“@") =1 for any yel . This definition makes sense
since, G(g)/G(g), being abelian (ef. [8], p.492}, the commu-
tator subgroup [G(g),G(g)] of G(g) is contained in G(g)o .
Note also that [ is the inverse image in G(g) of the cen-

N traiizer of )'/Qg in G(g)/Qg .

Let A(g) denote the set of all [ ¢ $(g)} such that
t/Qg is abelian, and Jlmax(g) the subset of those [ €
A (g) with the property that I"/Qg is a maximal atelian
subgroup of G(g)/Qg It is easily seen that Hg) ={ refg);
r<:r°_} and A (g).={Teflg) ; T=T}.,

max
Given [ e ¥$(g) we denote by [~ the set of all unita-

i‘y characters X on [ which extends Xg .

1.2,  LEMMA. With the previous notations we have:
. b #
(1) )= {ref@ ; r£s} .

(ii) Let I, e 4(g) and suppose that C I .Then .
A : it

every X € [ can be extended to a character X eI .

Proef. Let [ ¢ #(g) .Assume first that Frif @ and
choose X elfj . If e | ,then” xg(o( 7;‘0("‘-5«“) = X(x 5‘:{475\") =1
for all y € [ , . hence .o(}e ¢ .Therefor>» N e y that is
re A(g) . E

Conversely, let us suppose [ € H(g). Consider the set
g'(r')ﬁof all pairs (I'',%x') with Ted(g), FI'c Tl and
X'e T’ endowed with the following ordering: (T /,x’) <

(F”,'X”) it e [ end X”IF': X', Obviously, F(T ) is to-



i

tally ordered and; since the pair (G(é)o ,;xg) belongs to it,
nonvoid. There exists then a maximal element ( Fm,;tm) in
F(r ). We assert that Fm = ,which would be sufficient
for concluding the proof of the first statement in our lemma.
indeed, assuming the contrary, one can find an « € [© such
that « ¢ Fp = Then; the subgroup T of T generatéd by

gy &pd o0 s strictly larger than rm . Now let‘ p de-
note the order of the image of in-the quotient group
L G(g)/ Fm and choose "t €€ to be a p-root of the'complex
number (of modulus 1) Xm(<xp) if p  As:findte; or t =1
otherwise. Then, using the fact that xg(ag~a”y”) =1 for
any 7 € rm y1t is easily seen that the formula

X’(]*o(n) = Xm(g‘)tn i }pe'f‘m ;e

makes sense:and defines a charécter 2 on I which extends X.

This contradicts the maximality of ( Fm):tm) .

A similar argument can be used to prove the assertion (ii).

7* .
Another way is to pick an v € I'" ,which surely exists by (i)

)
and to observe that X(7|r) is trivial on G(g)O s hence it
can be viewed as a character of F/G(g)o . But this is a sub-
group of' the free abelian group f”/G(g)o , hence we may ex-
tend the above character to a character of !'VG(g)O ,which
1ifts back to T and gives a character v on I’ , Finally,
o e is the desired extension of x .

l.3. Let (X, ) be a Hamiltonian G-space. It covers a
well-determined G—ofbit (Xg’ Qé) in ‘o2¥ and there exists
& [e¥(g) such that (X, w) is isomorphic to (X y o),
where X, =G/ end éor is the G-invariant 2-form on X
induced by the 2-cocycle -dg on o1 . Further, we reéall

A
Ehiat. A col) ficbi - if and only if [T £ ¢ ([4], Theorem



5.7.1) and if this is the case each 7 € A(X,w) arises from
a character X e,?. .Finally, every G-invariant polariza-
tion F on (X,w) comes from a polarization. # at g (for
this latter notion, see [1], Definition I.4.1).

le now an € € z&(xr y @) which arises from a charac-
ter XGEF and a polarization F on QXF_,oor) which comes
from a polarization f at g . Assume in addition that £ is
positive and satisfies the Pukanszky condition (see (1], Defi-
. nitions I.4.4 and I.5.1). Then.the unitarj representation pEF)
associated to these data by Kostant's procedure (cf. [12]) ds
equivalent to the holomorphically induced representation
P(g, X ,f ) which is defined as follows.

let J = ﬁ'ﬂcg. and let D  be the analytic subgroup cor-
responding to d . We form the group DF = DO'F and note that
it is clqsedl(as follows from [1], Proposition I.5.1) and the-
re exists a unique character 1 on D which extends X and
satisfies dity = 2Ri-g[8; this last assertion can be easily
checked by afgumentsrSimiléfrﬁbrihoéevin ihe prdof of Propo-
sition Ti5.010 in 1], Dénote by A(D.), A(G) the modular fun-
ctions of DF and G respectively, and let d} = z&(Dr)/AS(GJ.
Consider‘further the space 3C(G;Dr) of all continuous func-
pions v on G, With compact support modulo Dr g
A {ad) = d}(d) ¢(a) for aecG and deD_. . There exists a

satisfying

positive G-invariant linear functional on WGyD: ), uniigue . -

up to a multiplicative constant, which we denote here V o—

d§G/D QKa)dé. Consider now all C” -functions spioon Gy with
r )

compact supﬁort modulo B s which verify:

(£ qlad) = @™ %), aes, ded_;
(dii) Haep o= (=2 d Coaxd + 1/8 %(x))tf, Sedfe .

where (x-qﬂ(a) = %T<f(a-exp tX),t=O for 5 €oy and one extends



it by linearity for x €0 and ¥(x) stands for the
trace of the operator induced by ad x on cgc/ﬁ:+ A

This space of functions has a norm given by

2

(iii) ilep i =<§ [ el da
and we let ¥(g,X ,%k ) denote its completion. Finally we
define p(g,% Qe as being tL. representation of G on

this Hilbert space by left translations.

Note that y(g,x',ﬁ:)' is a subrepresentation of the
-representation of @ 1induced by the character 7 on Dr .
The latter w1ll be denoted by 1nd(°l,G).

l.4. There is another way for obtaining representations
orf G starting with a functional geaq?w, due to Auslander
andiKOStant, which involves crucially the Mackey little group
method. We shall briefly review it, follow1ng clocely Vergne's
exp031tory paper [137 . ;

Lett. N =[@,6], tu= L4027, ge Gy B = g ey Bt
M = G(f) be the isotropy subgroup of G at ¢ s . B eeting
on 41*, fﬂ—¥ o1(f) be the Lie algebra of M and m = g|+#r.
Denote by xf the unique character of the simply connected
group N(f) whose differemtial is 2wi- fl-ﬂ(f) and by Qe

the 1dent1ty component of Ker ;Xf.. Then Qf is normal in M,

in partlcular in the identity component M of .M ,  and

'MO/Qf is simply connected and nilpotent. The functional m €
* . : ‘

1" vanishes on Ie = ker(f |ﬁ(f)) and becomes a functional

on the Lie algebra 1+L/sz of MO/Qf s &lving rise by the

Kirillov construction to an irreducible unitary representati-

on-of MO/Qf which. when regarded as s representation of M

will be denoted fofm).



Now let us denote by R(g) the set of all unitary re-
presentations ¢ of G(g) such that UIG(g)O is a ﬁultiple
of :Zg. S%artingwith a representation. ae L(g) one can ob-
tain a representation of G in the following manner. Cne
form first the representation ¢ ® fo(m) of the direct pro-
duct G(g)xMO and one observe that it factorizes to a re-
presentation ( 6‘®‘9o(m))A of the group Mg = G(g).Mo "

. Wwhich is Jjust the stabilizer of _Po(m)e ﬁo in M, and that
(ow® fo(m)XA‘Mo is a multiple of fo(m). One considers

- then the representation T (o) = ind(( 6“G9fo(m))A, M)kt
lifts to a representation <T(¢&)¥ of the semi-direct product
M.XSN. Before proceeding we recall that, according to [1]
(Proposition III.2.2 and Theorém‘III.S.l), the irreducible re-
presentation p(f) of N, associlated by the Kirillov procedu-
ré'po fe n*, has a canonical extension J(f) to M R M
Now, by forming the tensor product T(”c)vya v(f) }we get a

| representation of M X$N7“Wﬁiéﬁ»ié‘£ri§iél on the ke?nel of

the canonical map of M XSN onto- K = M‘N and hence drops
down to a representation of K ; we call it ( (e Yoo,
Note that X is the stabilizer of p(f)e § in G and the
restriction of (T(&) @ v(£))" to N is a multiple of
¢(f). The final step of this construction is to take (6 ) =
= ind((T (o )V ® v(F)) Ml obtéining thus a unitary represen-
tation of G . |

The crucial fact about 7@ (o) , which follows by a care-
ful inspection of its constructioﬁ in the light of the Mackey
theory [8], is that the commuting rings of the representations

¢ and < (o) are algebraically isomorphiec, so that (& )



is primary if and only if o« is primary and when both are
primary they have the same type and one is irreducible if

and only if the other is also.

2. THE MAIN RESULT

As it was explained 1.3, ..e unitary representations of
G arising by the quantization procedure from Hamiltonian
G-spaces can also be viewed as arising by the device of holo-
. morphic induction. In these terms, the answer to the problem
of determlnlno the structure of such a representation is set—

tled by the following result.

: A
21 THEOREM. Let ge of *, e #(g) and. Xefl |,

(1) The equlvalence class of the representation p(g,x, &)

~does not depend on the choice of ‘the positive strongly admis-

'sible polarization % at g ; accordingly, it will »e denoted

in the sequel p(g,x ).

(2) f’(g;xi) is primary if and only if -[©¢ = [ ; when

this is so; plg,x) 1is of type I if and only if [ 1is of

finite index in [ C.

(3) p(g,x) 1is irreducible if and only if re J¢max(g),

or equivalently ¢ = ; when this is so, f)(g,x ) 1is nor-

mal if'and only . if Xg is locally closed in gz® and the

cohomology class [oogj<£H2(XgﬂR) is rational.

(4) Let [e 4(g) be such that N = [’ and let

be an extension of X . Then

G v
_P(gyx ) = g( r’/r)’\f(g, X'y )av »

v
where ¥ stands fc » the pull back of the character v of the

/

abelian group [7] y and dv 1s the Haar measure on the
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character group ( r'/r)?

#e are going to break the proof of the theorem into se-
veral lemmas. Before stating them, let us make a few preli-
minary comments., F;rst we denote o(g,x) = ind(X,G(g)) and
notice that an immediate application of the Mackey subgroup
theorem [5] ensures us that c(gyx) ¢ R(g). Thus, start-
ing with c= ¢(g,%) we may form as in 1.4'the represen-
tations T(¢) and w(e¢) of M and G respectively.
They will be denoted in whag follows by ’t(g,zf}, respecti=-

‘vely = (g, - B

2.2. LEMMA. For any positive strongly admissible polari-

zation % at. g , pg, £, %) 1is equivalent to ol 020 o8 B

ggggi} The proof can be achieved along the lines of the
- technique developped by Auslander and Kostant in El] , Chap-
_tér_III, by looking closely at the construction of both these
representations and using essentlally the 1nde0endence of po-
larization in the nllpotent case, to which thg general case
can be reduced. For the convenience of the reader we shall
sketch below the arguments in more detail. |

The notation being as in 1.4, let 4 = #L + 1 be the

Lie algebra of K = M-N, k = g|&, M. = Md»r and K _=
= M,_'N. It is c}.ear that MOCM‘_CMgc M and Ko = MO-N < K,_
s Ké = Mg-N < K. Using the fact that M NG(g) = G(g)o (see

[13], 2.2.3), the results in [1], IT.1 and slso sidilar argu-
ments, one proves that Kr(k) = - N(f) and there exists a
unique character X on Kr(k) such that ’Xik}F'= X and
XK}N(f‘) = Xf.» Note also that &c% (ef. [1] » Theorem II,

2.1) and D (k. =D, T =D_ . We may form therefore, fol-
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lowing the scheme given in 1.3, the holomorphically induced
representation p(k, Xr®) of K, . By an "induction in
stages" argument (see [2], Proposition 4.%.5) one sees that
P8 %, k) % ind(p(k, 2, %),0) » ind(ind( Pk, Xo, R ), B
The first reduction step is thus achieved and we have to prove
now that P, = ind(p (k, 5Kk,%.) K) is equivalent to
(oled ) @ vl I turn, this amounts to show that the
. pull back. fK of Px to M_xSN and. Tlg, %} ® v(£)
are equivalent representations.

We shall now proceed by looking more closely at 0=
=20k, X k,f%), trying to describe it in a more convenient

way. We notice first that M-(m) = " N(f) and then we put

%m =7Ck -As in [1], 1I.2, 1let %*ﬁnﬂ_ fzc }ecnvm ﬁ, nr,
éazzﬁinn% and_D1 D2 be tne analytic subgroups correspon-
_ding to 8 e respectively, Furthermore, let D2 = DZ'M (m)

2

D2 [ and remark that pl = L -N(f) = é since N(f) is con-
nected. Now Xl extends to a well determlneu character -
Di satisfying dNp = 2%i-m|d, and also X, extends to the
character N¢ on (the simply connected group) Dl given by
d'qf = 25ti-f}31 « These being settled , we may consider the
holoporphically induced representations [ f(f’-xf’%w) of
N and Fz: ~9(m’;¥m’&i) of Mr’.Now B 1lifts to a representa-
tion 52’ of Mr;st and o, ywhich is just f(ff 5 extends to
the representation 4}(f) = V(f)erxSN . Arguing_aS'iq [1],
1IT.4.1 (see also [2],Chap.VIIT , §4) one con ses that the
puil back f" of p to M XN 1is equivalent to _p ®\9 &

With this description of P at hend , let us return to

the representation PKL' It is clearly equivalent to the re-

presentation ind(fv,Mist). A direct computation which in-
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volves writing down explicitely the corresponding Hilbert
spacés and finding out the appropriate intertwining opera-

tor , shows that ind(lgf® J}(f)‘, M;st) is equivalent to
fé:®-Q(f) , where .f& stands for the pull back of Py~
ind(yz, M) to. M x N . Consequentlyi, 55% is equivalent

to puev(f) .

Recalling that our aim was to establish the equivalence

between jfk and 't(g,:x}%&~$(f) we are left to verify that

fu is equivalent to ’?(g;xlﬁ . To this end it sufficus to
p_fove that ind(fz ,Mg} is equivalent to ( (g, X )@fo(m))/\',
which will be our concefn in the sequel.

Using the . fact fhat Mr/Dg is ispmorphic to MO/DO "

which is easily seen , one can check that £, when restric-

ted to M, is -equivalent to po(m) . Furthermére , Since
[Mo,r]c:‘@zo,mg(m)]c Qe (ef. [2],Chap.VIII , Proposition 42350,
it is not difficult to see that faf[“ is a multiple of «A ,
These two remarks ensure us that 52 when lifted to r_x.sMo
can be viewed as a representation of the direct produci Fx-MO ;
in which case it is equivalent to X.®‘po(m) + At this mo-
ment , let us consider the representation ind(Xc@fb(m),G(g}><Mo
It is clearly equivalent to <T(g,%)@ypo(m) , hence it is a
fgpresentation of the semi-direct product G(g):&SMO too

and , in that case , it is equivélent to ind(x&afb(m),s(g)xsmo)‘
Finally ’ this last represeantation is in turn equiyalent to :

the pull back of ind( 5’; » M) to G(g)x M, , while

g
c-(g,’)c)@_go(m) is the pull back of ( c(g,x)® fc(m))A to

the same group. This completes the proof of our lemma.
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2.%. LEMMA. The representaiion i T B primary”if

andoonly ifs P = |, When-thie is the csse, =g, ) is

of type I if and only if [ is of finite index in rC.
.

Proof. Let us denote A= ind( %, %) and ¢ = olg,x ) =
= ind(X ,G(g)). We notice first that # ,A and o are tri-
vial on_Qg y hence they drop ¢ .a and define the representa-
tions % . X and & of the groups T/Qg ; r‘c/Qg , and
G(g)/Qg respectively. Now FC/Qg is just the stabilizer of

in G(g)/Qg ’ F/Qg 'is abelian (hence of type I) and

S> R»>

when restricted to T‘/Qg , which is central in FC/Qg ;
is a multiple of f . These facts entitle us to use Theorem
8.1 in [8] and to infer from this (more exactly from its
proof) that the commuting rings of 2 and ¢ 2o indl 26000
are algebraically isomorphic. Therefore, A and & are
»pfimary in the same time and,if 80,they are of the same type.
The key step of the present proof is to_obser&e now that,
under the assumptioﬁ »Fccmi-fu; F/Qg is precisely the center

) hence we are in a position to apply Proposition

g
1.1 in [9] and to infer from this that A is primary, and
that it is of type I if and only if [ is of finite index
A SRR
To complete_the proof of the lemma it now suffices to
show that A is not primary if T ©¢ # . Assume therefore
that [ is-strictly contained in ©€, Further, note that
r’’c r® and that r‘CC/Qg is abelian, hence by Lemma 1.2
s E @ . Moreover, the same lemma ensures us that X e F?

7A(_
extends to a character N € r®C. Then it is merely a matter

of routine to prove that
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@

i (=S i)
where v stands for the pull back to

n 4
ind( x’ ruC) ~ g 11.; CL‘\?

FeC. of the charac-

ter ve(r®/r )", and dv is the Haar measire on the cha-

racter group ( /)" . It follows further that
& v
Acadndltoindin, £ F9e X ind(n-v , %) dv.
i (B UL

Since obviously ind(vt5, %) restricted to %% ig equi-
valent to _Inghr; , where n 1is the index of 1 °¢ in s
and In denotes the identity operator in the standard n-di-
mensional Hilbert space , we obtain that A , when restricted
Do e ,1s8 equivalent to Y:Inéﬁﬁ y, where R 1is the regu-
lar representation of the abelian group r°°/r sand R
stands for its pull back te¢ T °€ . Bearing in mind the fact
that  1°°/r  is not trivial y 1t is now fairly clear that

A can be split into disjoint parts.

2.4. LEMMA. The representation o(g,X) 1is irreducible

if jiand only if .= T'? &

Proof. The arguments in the preceding proof show us that
o = o(g,X) 1is irreducible if and only if A is so. Apply-
ing to %.z.ind(%l, r®) a criterion for irreduciﬁility of
Mackey ([6],Theorem 6') we get that A 1is irreducible when
and only when Xd#X for every «e r®<r , where AT de
the character o'fA T given by X“()“) = X (e ) -
By the very definition of € , this happens onlé in the ex-

treme situation when [= €,
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2.5. LEMVA. Let ['e.df(g) be such that Mc M’ and let

/ 7‘6v/ b » x h
X €[ € an extension of i ' en'

&
c'(g,x)dg : she .2 ) dwis
i
Proof. As we have already seen in a similar 31tuatlon ;
&
dnal X Y g X'V oy
G

hence , by inducing to G(g) , we get the desired formula.

2.6. These preparatives enable us to write down in a few
lines the proof of the theorem. The central role in the proof
is played by Lemma 2.2 which not only glves us at once the
first claim of the theorem y but also entitle us to replace
in the remaining assertions ple, 2} by wlagy %) .

As we have already noticed at the end of section Led o,
the commuting rings of 7 (g, %) and (g, %) are isomorphic.
Combining this with Lemma 2.3 y we get the second c]aim of
the theorem and also the first assertion in (30 To complete
the proof of (3%) , assuﬁéuthéf e(g,x) 1is irreducible. Then ,
owing to [3], Proposition ,p.5 , flg, X ) 1is normal if and on-
1y if Xg is locally closed in c} and G(g) “Aas Finite index i Glg
which , 88 Observed by Pukanszky ([9],p.465) , can be rephra-
sed by requiring that the cohomology class'Ex%]eeHZ(XgJR) is
rational.

Finaliy , it is only a mattér of routine to verifyvthat
the decomposition gliven by Lemma 2.5 passes over all the steps

- which are involved in the construction described in 1.4 and

yields ultimately the last assertion of the theorem.
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3« CONSEQUENCES

We shall turn now our attention to the irreducible uni-~
tary representations which arise by the method discussed
above. It would be interesting to characterize collectively
these irreducible representations for an arbitrary solvable
Lie group, but so far we have not Succeeded in obtaining
such a result. Instead, we shall collect nere some results
‘which may give an ides aboutvtha size of this family of

representations.

5.1. First of all we shall settle the question of deter-
mining when two such representations are equivalent.
, * o
Let Llegg) = {(g,%); gegg” and Xe | for some
§ 6'5¢max(g)} and let A(G) be the subset of the unitary
/\ 'c O. " N
dual ~ G of @ y consisting of gll representations of the
fbrm.“P(g,xi). Standard arguments ensure us that, for 83 & o
- J

7

r; €~S{’szeuc(’gi) Qg e F} » 1 =1,2, one has f£ley, 2)
-1
8 -8y end (g, X )oo

i

f(gz, %Z5) if and only if g5

&(gl,;xg) for some aeG. In turn, according to Theorem /&
in [6] » the last condition can be rephrased as follows:
raif\a réa_l 1s of finite index in both Fy and a réa'l
and there exists o ¢ G(gy) such that ‘Xll Na rég—l =
= AP ne T o ' |

We are thus led to introduce the following equlvalence

relation on é@(cg) : (gl, X )rv(ge,‘x ) if there exists
8 €G such that 8> = a'l-gl 3 rlf]a réa is of finite

inder dm both - . - ang ' g réa , and X ‘ sl a7l =
g 1 2

i
=. xa -1
= Xﬁzl rifWa réa i

It is now clear that the map which sssociates to any



St

gy )oe B %) the representation plg, x) gives rise

to a bijection of the quotient set /L(q}) = & (o1)/~ onto
DAY e N

A
Jels. PROPOSITION. Let Gnorm denote the set of all

equivalence classes of irreducible normal representations

; A
of - G . Then Gnorm CEIZX(G)'

Froof. According to Proposition 2, §1 in [3], if =
is an wcquivalence class of irreducible normal'representa—

" tions of G y it is quasi-equivalent to one of the form
\F(g"i) with 1€ é?:?c? Xg locally closed in o™ and
B»g] rational. Choose now an arbit§ary f-€f54m§§(g). In
view of Lemma 1.2, we can find a. character X e [T such that

X 'G(g)c = %L . Then, taking into account that T7/G(g)° is

finite and applying 2.1.(4) we get

s LA
Bl e sy TR
Now Theorem 1 in [9] tells us that, in the case ai hand,
j)(gLvl) ig primary of type I, while 2.1.(3) ensures .us
that the components in the above direct sum decomposition

are irreducible. It follows that ‘p(g,wl) is a multiple of
Plg, X ) and thus = (g, x). ‘

3.3, PROPOSITION. The map which associates to any ot e

A(G) the kernel Kerc’.,f\G)?C of the corresponding represen-

tation of C*(G) is a surjection of _A(G) onto the set

Prim C*(G) of all primitive ideals of ().

Proof. Let J be a primitive ideal in C*kG). In view
. o . . .3 A‘ o
of Proposition 4 in [io] y. there jexist gegp and Qé?G(g)

such that J = Kerqx qy p(g, % ). Now pick a {—e“ﬂﬁax(g) and

o (’/9?. 1l Q/Q@



S

A
then a character x e¢ [T which extends 7 . By 2.1.(4) we

have

S@
Pl ) :
S ( F/a(

But f(g,vl) is primary, hence homogeneous. Then, accor-

g)c)Ag(g;xv J&p

ding to Lemma 1.9 in [5] e KerC*(G)AF(g,X'3) for al-
most all <+ € ( FVG(g)¢)A~.~ :

5.4. COROLLARY. If a€G end & #1, there exists 5 €
/A(G) such that s(a) # I .

This cen be inferred from the preceding proposition by
imitating the way in which Pukenszky deduces in [11] the

corollary on p. 120 from Theorem 1.
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