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1. Introduction ’ ' : ,

The problem of factorization of a positive operator valved
function by means of an operator valued analytic function is a crucial pojnf
in solving prediction problems for stationary process2s. At the begining,
Kolmogorov [ 9] ,ilOIgave his elegant solution for prediction problems for
stationary univariate processes (in the discret ccse) -using the result of Szegé
[17] about representation f {t) =iq(e”)‘2 of a scalar valued function f(t) >0
by means of a scalar QGlued analytic Fuﬁc!‘ion qea).

"In a natural attempt to build the prediction theory for the
multivariate stationary processes along the lines of Kolmogorov’s development,
_factorization theorems for operator valuved functions are ‘heeded. For the raitri
valued functions a complete theory was built in succesively papers, begining
with Zaschin [241 in 1941 and strongly continurc by Wiener{20], Doob Y_Z—_},
Wiener and Mosau?(Zﬂ,[?Z],. Helson and Lowdenslager &6},{_7:].

In the prediction theory of a stationary processes with Iﬁfinifely
many components, factorization theorems tor operator valued functions are
necessary. Such thecrems appeared and we mention here the results of Devinatz
(1Jand Lowdenslager (_-H]. In this case new difficulties related to the boundary
values of an analytic function in the unit disc appear-.

In the case of bounded analytic funciions B.Sz.-Nagy crd
C.Foiag (:_}81, ﬁ?} avoid these difficuities by using the bounded convergence

orinciple in order to construct tne boundary function in the Fatou thsorem cbout



non-tangentially a.e. convergence (in strong sense) and consequentely, they
obtained  totally satisfaciory factorization theorems in t.e bounded case. In
fact, using the boundedness condition, they made clear the proof of the fac-
torization theorem which appear in the work [H}of Lowdenslager.

But, os Lowdenslager peintsout in the same work, in prediction
theory any restriction of boundedness is unnatural, thus the efforts to made
clear the proof of Lowdenslager’s theorem in its full generality are justified.

H.Helson [ 5]proved a variant of Lowdenslager’s theorem, but
under supplementary conditions which also are unnaturai conditions for prediction
theory. R.G .Douglas [3]gave an example which shows that a result of Low.'enslager
contained in [H] is not valid, kut, as we sh:il see in section 5, his. /' correct

rs

Lowdenslager theorem is also not well suited in prediction theory.

The aim of this paper is to make clear the Lowdenslager’s theorem
in its full generality in order for to be useful in the prediction theory. The
main idea of the paper is to use Naymark dilation theorem (15}in order to
construct not the boundary function for the L2 - bounded anolyfic-funcfions- but
the semi-spectral measure whose the Poisson integral it is. The difficulties in ‘
construcﬁono"fhe boundary function are thus of the same' nature as in cornsfrucfion
of the derivatives {a.e. in strong sense) for the bounded variation positive
operator valued functions. : ' e B
In section 3 we shall prove a Fatou theorem of such a type. In |
section 4 this theorem is usest in the proof of factorization theorem for semi- |
spectral measure. In section 5 we shall use the factorization theorem to
evaluate the prediction error operator for a stationary process whose covariance
function is an cperator valued pozitive dfined function on the group of integers.
There are not but technical complications in the case of conti-
nuous stationary processes on the group of reals. BJ_f we hope that the method
presented here can be used in more general cases of dinamical systems considered
for example in {_131 ?
Finally, We Want 1o point cut that in paralel to Szegd’s analytic
results another classical resuit, of geometric type, namely the Wold decomposition

[23] piayed an important role in the development of prediction theory. Begining

s



with Kolmogorov’s works to the Lowdenslager’s, the idea of Wold decomposition

was intimately related and furnished effective contributions in prediction theorems.

2. Preliminaries

In this section we establish the notations and terminology which
we shall use in that follows. e

Let £ be a separable Hilbert space and L (&) the space of all-
linear bounded operators on & . We shall adopt the ‘terminology and notc!ion
from [19] ch.V, sec.l, concerning the Hiltert spaces L2(€), L%(E), HZ(E),erc.

Recall that L2(Ef) is the Hilbert space of all measurable functions

v defined on the unit circle T in the complex plane € with values in & such

. that
T
2 1 f e o
2 Sepol De o .
"V ”L (6) orn & “"(e )"8 dt
There exists a one - to - one correspondence be’rween ’rhe

elements v in LZ(E) and the sequences kﬁ“‘ ,r 9\€ 8 with 2\\0 <& o0

such the’ )
4 e |

& i . y
V(e”) 24 Z§lkf Ok , : . . : J‘ ,

g ] e )

? : 2 |
the convergence of the serie been in the L“(&)-norm. f

Ve have also J

2 & 2
1122y = 2o
The .spoce L+(£) is the subspace of LZ(E) confain'ing the
functions v in L2(£) for which, in the above correspondence, a = 0 foer
k <0. The space L2 (E) is isometric isomorph to H2(8) - the Hilbert space

of all analytic functions u defined in '":e open unit disc D {/\ﬂ[ \M<11

in the compiex plane, wml values in 8 for which



’.‘ . 1 ! ;
! ‘ “U“2H2(8) = sup ]'2]77— SA “U(re ih) u dt béoo

Osr« o

via the correspondence

g o0 ) . [ =]
ol 2 kz_o Xa —»vie™ = i ik

i

5 =9
, IiuIIHz(E) =ﬂy!|2L2< &) = zouoku

The functions u( 2) and v(e”) are also connected by Poisson’s
formula :
i 2% i
I p is
u(re ) = 57 S Pr(t s) v (e )ds
o
where
l-r2
P (1)

1=2rcost+r4

We have also the generalized Fatou ’rﬁ-‘:orem : u(Q) tends a.e.
to v(eH)' strongly (in§&) as :\A tends to ot non-tangentially with respect to the
unit circfe. ¥
' An L(&) - valued semi-spectral measure on T is a map F defined
on the family of 3orel sets o of M with values bounded operators on & such that
fc;r any a€g, 0 —(F(c)a,a) is a positive Borei measure on fS The semi-
spéctral measure E is spectral if E(O7N Gy) ="E(G)E(G)) for any Borel sets
() 5'? “ _

A celebrated dilation theorem of M.A.Naymark says that for
any L(E) - valued semi-spectral measure F on ‘T there exist a Hilbert space X,

a bounded operator V from € into X, and a LK) - valued spectral measure E

on T such that for an/ Borel set G we have

X

F(o) = V' E(e)V.

We shall call such a triplet {_K,\/,E] a spectral dilation of F.



To any spectral measure E on M we can attach the spectrai scale E(t), o<t = 2%,
such that the integral with respect to E of continuous scalar valued functions on
T is the Lebesque Stieltjes integral with respect to the positive (projection valued)
function E(;). If we denote F(t) = VXE(t)‘-./ then F(t) is a positive L(E) - vaived
function on "' and we can integrate continuous scalar valued functions in Lebesque-

Stieltjes sense with' respect tc F(t). We have

oF or
| g FdEWR) = V™ S FdEG) V
o ! C

Recall that there exists <1 one-to-one correspondence between
the set of unitary operators on K and L(&) - valued spectral measures on T

given by

U = Seide(f), (n e 2),

- and between L{&) - valued semi-spectral measure on T and L(&) - valued‘
positive maps on the group Z of ‘integers given by
2%
R) = § &™MaF(), n e 2).
. . o ‘
If [:K,V,E] is a spectral dilation of F then ‘:’K,V, U] is «

unitary di'ation of R in the sense that
R(M) =V UV, - he 2).
"Under certain conditions of minimality like
40 )
®= Vfve | _ /

the spectral (or uni;rcry) dilation is unicuely determined up to a unitarity which
conserve the operator V. In this paper all considersd dilation will be supposed
minimal . - '

An importdnt special case is the semi-spectral measure attached
to a contracticn T on & . A very known B.Sz.-Nagy theorem says that the map

R defined as



) i L n >o0
R(n) = I n=o
’ 7o <o
is v'posifive definite on Z. Since here R(o) = 1, we have V'V =1 for any

unitary dilation [:K, Vo U] of R. Thus V is an isometric embeding of & in
XK. If P is the orthogonal projection of 'K onto & (considered as a subspace of

X with the isometric embeding V) then we have

F(o) = P E(o) ‘g ( o<, Borel set)
Bl = PE(dg (osts 2%)
R(ny = TN =pu” g (h €2

In order for an L(E) - valued semi-spectral measure on T to
be the semi-spectral measure attached to a contraction T on & it is necessary
and sufficient that it has a spectral d||cmoni_ e "y U] with V'V = | and &,

(as VE ) to be semi-invariant for U, i.e.
Vs s (v"pv)”, ne 2

This special case and some others results conected with Sz.-Nagy—

Foias characteristic function will be discussed in a separate paper.

4
e

3. Fatou theorem for L2 - bounded analytic functions

Let now £, F, be two separable Hilbert spaces. Consider a
function ® () defined on D whose values are bounded linear operators from g
to ¥ given by

8.1) B(n) - kZ'o X ®

173

@), being bounded linear operators from & to F. The series is supposed to be
convergent weakly, strongly, or in norm, which amounts to the same for power

series.,



Let us suppose, moreover, that for any a€ & we have
e st 22
(3.2) swp g JI@fe ol d <M ilall
osr<l o S

or equivalently
; 2 4
(3.3) l;ﬂ@ka!{; <M el

where M is a constant independent of a.

Such a function will be called L2 - bounded oncly’:ic- Functidn
and will be denoted by the triplet {&, F, @(A)}.

Let us remark that if -{@k%‘: is a sequence of bounded operators

from E to F which verifies (3.3) then (2.1 ) defines an LZ - bounded analytic

- function {&, F, ®(A) L. Indeed, for any a € € we have

|z o, s?;m “@"OH.F -2y’ [%'u@kod ] ~
for n >rﬁ __, s

Tl—'FOREM 1. (Fatou type theorem). Let {E,, . .6 }t)} _be an L2 =

"bounded anaiytic function on D.

(a). There exists an L() = valued semi-spectral measure Foon:

T such that :

. 2
Q) F® has a spec‘n"ol dilation of the form X'Lh &y V@, EX_}

where Vg is a bounded operator from & into L2(§:) verifying V@E ek L2 ),

and EX is the spectral measure of the multiplication by e”L “in (?\

(ii) For any ae &, @, A) a fends a.e. to (V@ a) ( ke }_when_“ i

it . . s
tends to e non-tangentially with respect to the unit circle and

(3.4) ® (e =55 § PV



(b)I_FF_is an. L(E) - ;a!ued semi-speciral fsEsue on "I

which admits a spectral dilation of the form ‘_Lz(?), V; EXJ where .V is a

bounded operator from € into L2(F) verifying VA& C L_!z_ @) and EX is the
i 2
spectral measure of the multiplication by g on L"@) ‘hen the Poisson

integral i
s L 27rP L i
(3.5) @ (o --2—,5) (1=5) (Va)(e'*)es

defines cmL - bounded analytic function {C. F, O } such chf if F@

and V@ are ds in the point (a), then F = F@’ L V@,

Proof . (a) Let -
v‘
@) = L 2@,

be ithe Taylor series of the L2 - bounded analytic functions {E AL @_(A)y

Since for any a€ & we have

e P
y) '

Z ﬂ@ < l? | a zl€

(o}

we can define the function Y in Li F) b

iy S ik
vgie i 26' e @ka

If we put VG’G = e have

“V@““ng__) = lhvy ZJI@ Gﬂ M2 (aH

: , 7 244
Thus:V@ is a bounded operator from E into. L"(F) and clearly Vgt & L+('f).
Let EX be the spectral measure of the multiplication by il in LA\?). Then

if for any borelian set o in'T we put

B (o) = V%)E(fc;“} Ve



we obtain an L(E) - valued semi-spectral measure F on ™I such that &LZ('F)
V@ . Exl fs a spectral dilation for F@ . Since for any a € & the function
ug(A) =®(X)c from H2€F) has v, as a bouadary limit, clearly all assertizas
in (a) hold. .

(b) Let F be an (&) - valued semi-spectral measure on'T'

as in (b). For a€E we have :
|
1 m
sup "_ﬁ' P
ogsr<l

oI

s 22
dsl[ = \lvcﬂ 2,.¢ VI el
|

| ,
Then is clear that the Poisson integral (3.5 ) defines an L2 - bounded analytic
, Funcﬁon&g, 5 @(R)% such that if Fg, V® are as in point (4}, we ‘iave
= F@, Vo= V@

The proof of the theorem is complete.

REMARK 1. If there exists a 0 - Lebesque -n?.ecsure set G < T such

that for any t €6 and any ae€ , (V ¢ a) (e H) exists as @ radicl limit of
'@(re”)o, then @ {A) tends s’rrongly to a bounded operator @(e ) frem & into

é: as A tends non- tqngenhaHy vobe L bl hqpens for example when &E 4 @(}U%
is a bounded analytic function (cf. {191 i &.hcp V, sec.2).

In such a case we have

Vga ") =@ a a.e
~and
: El—_Fg(_Q =@ (eit)x @(e“) sfror;gly a.e.
dt '
REMARK 2.

S====mmms=s There exist L2 - bounded anolyhc functions which have
Ziss
no (sfrongly a.e.) radial limit. Indeed, let {H C. ® A)} be the L

bounded analytic function defined as

® (A)f =F(a) (3¢ D).



- 10 -

If ® (.reif)“ has strongly - radial ‘limit a.e. then there exists a 0 - Lebesgue
measyre set wc[O,QTE_] such that for any t &dJ, F(re“) have radial limit
for every f in H2, which is impossible. i
: We remark that for this @(,f\), the semi-spectral measure
attached F@ is Lhe semi-spech‘azl meosu;e of the shift operator on H2, and
V@ is the usual embeding of H™ into L
Let us summarise some known facts about bounded onc:lyflc
functicns cf [}9_] ‘ch.V.) as follows : :
\ An L2 - bounded analytic function {E F, @ )} is bounded
if and cmly if ’r"aere exists a bounded operator @+ from L ( ) into L G:)
such that e' @+v = @+ e.tv, for ve L‘?(E),V and 2@ [ @
If Q _is a bounded operator from L (E) into. L &) such
that e Q Qemf, then fhere exists a bounded cmclync Funchon {E F, O S
such fha’r @

} The L - bounded analytic function {8 F, 8(Aa )3 will be
called inner if it is bounded and the correspcnding @+ is an isometry. The

G bounde.d analytic Funcnon{g F, @(A )} il esaiiedis bounded

oufer funuhon if ¢

: int
\/ Vaé = (?‘.
o @ L

"~ As in the bounded case we can show that : &

(i) For every L2 - bounded outer function {8 P 2 @(A})} we have
@(2)E =F for all AeD, '

(ii) Any »L2 - bounded analytic function which is simultaneously inner

and outer, is a unitary constant funcﬁon A
We say that the L - bounded analytic Funchon{g F, DA )}

has @ scalar multiple if lhere exists a scalar function CS‘ )£ O in the

2 :
Hardy class H™ and a contractive analytic function 4\_?, e Q(A)}S such that

QUAB(A) = (), . BNRA) = S (A

€



PROPOSITION: 1 " 1f dim E =dimF =n 4100 then every L2 -
bounded analytic Funcﬁon{g F, (A } such fho’r@ is invertible
for at least one A in D, has a scaler multip.s. :

Proof. = Let {eﬂ and {fig {0 it ) .be the orthanormal

bases in & and inF. The correronding matrix ©(A) = ‘_eii(?t)] (i, =
1, ...n) of @A) is defined by

Let W JL) “I_(«) } be the algebraic adjoint of ©(A). Since B (A
is invertioie for cf least one A in D, we have d(A) = def[@ (A J%O

“and
(3.6 ) QO (A) B(A) = @A) (A) = d(A) I,
where In is the unit matrix of order n.

Obvigusly 9 (A) are functions in H2 W, ( are functions
in HZ/n-i, and d(A) is in H /n As rlp, p >0, is in Nevlanlmna class,
using a wall known theorem of F. and R. Nevanlinna (CF.[41, pag.16), ve
have UJ (A /v A) = u(A)N(A), where Uii' v”, u, v are

o0
fUth‘IC'lS in H

Let us cansider X'= v ]ﬂiL]vii _nd X’ X'/ X‘o= X'/v

We have w“ ¥ {i‘ U, e YO

T {

’
If we denote by A- X" cg = Xcuii, we obtcin from (3.6.) that

i 'l
74

ST ]{9,]] [0, J{S;/;W] =3

C’
If §=sup !Ig;:/ i , and g k;\ :L \1—1), g/(\ =~5~ g\
AeD S 5

\/



it results fthat i’g”(x)‘] {-e }[ } ‘ S I ’

and that the analytic operator volued function {3:, E A S
defined by

is a contractive analitic function.

Hence rg (A) is a scalar mulifple for the L2 - bounded

firetisn A{& CF, @)

4, Factorizations

In this section we shall prove the variant needed in prediction
theory of the Lowdenslager factorization theorem. As in the bounded case [ 19],
we shall begin with the following
PROPOSITION 2. Let{€, F, @A)} ond §€.,F;, @A)} be

two L~ - bounded cho!yﬁc functions, the second one being oufer, and F@’

F@ the corresponding semi-spectral measure. Suppose thot
A 5 !

€.1) 'FG <F

then there exists a contractive analytic function {9:'], g @2(“;1 )}_gi!ch that

B(2) =@, (A B (R) { Ae D)-.

If in (4.1) fhe'équo”fy sign holds, then @2(;{) is inner.

If, moreover, @(A) is outer, then @2(}\) is a unitary constant function.
Proof. Define X from Lf_@:‘]) into Lf_(%z) as follows : put firstly for
any onalytic pelincinial p and a € £
\/ S
Ve TP e°

We have



Hila .

12 i
levgel 2g = @;p( Ve 9 =

i SRy 2
= §I-> ] dFg e, a). € § e dFg (e, it 5
S e ey '.0“22

&, By e 6 " LoFy)

Since @ () is oufer, it is clea that X can be defined as «

confrcc jor from L2 (fl) hto =L @ and clearly:

The proof works further xactly as in the bounded case (cf. [19],

chap.V, sec.4, prop.4.1 ).

THEGCREM 2. (Lowdenslager, -Sz.-ng'yi, Foiag factorization theorem).

Lef F be an L(&) - valued semi-spectral measure on I and iﬁ(, Vv, El fs

minimal spectral dilation. There exists an L~ - bounded outer function
; {E C T B (A)} with the following properties :
(i) F 2 F@, .

(ii) For every other L:2 - bourined anciytic Fun'cﬂons{E, i @(;{)S
' |

!

for which F F@ we have also F®]2 F® "

" he properties (i) and (ii) determine the outer function @](R‘)

up to a constant unitary factor from the left. In order that equality holds in

(i) it is necessary and sufficient that the condition

oo
Y W= 0
n=o '

be satisfied, where :K+ = n\=/o U™NE and 1) is the uni-fc:ry operator on &K

corresponding to the spectral measure E.

1
0@8
Uﬁ
D ]
C‘S

oF

=
I

o
€



i AR

be the Wo!d decomposition of the tsom@fry U U\fK+ and denote by P
- the or'rhogonc:i pr0|echon of X, onto GBU F1. Let Vi be the bounded
operator frpm E into L (F] ) obtained bv composmg the operator PV w:fh

the usual isomorfism between @UQ&:‘] and L (3:']). Clecrly ViEc L+@:'] o
Let us put for any Borel set - < T ‘ '

F](G) = Vx

BNV,

where EX is the spectral measure of the multiplication by &' don L2($']').

Then Fi is an L(E) - valued semi- spectrai mecsure on T which has ‘.L 1) V],El

as a spectral dllahon From Theorem 1, point (b) it results that fhere @xists an 1

2 ¢ ‘
- 1 ¥ H (< = =

L bounded analytic function 1€ ?1, @1(&)} such that F] F®1’ V] V@j ;

Since PU = UP it results easily that
§ oo

i 2
V Mg - L)

i.e. @](A) is outer,

For any analytic polynominal p we have :
e - Y 9
S\p " 2 ta. o) g =llpUvaly 3 [PpUVa]? =

2 y S b2
= “p(U)PVﬂ%( = ﬂXf]p(U)PVQllL?(,ET) = | pXg, PVt Lz(ﬁ) =

-=up\/]c[{fg\,ﬁi,]) :S]p ( d(F, (t)a, 0)6 )

where we denoted by XF fhe Fourier representation of @ Una-" onto ._2(&"-']).
le‘arly then

‘ i 2
glp(e )( d(F(t)a, GE g&pe ){ d(F ](t)o, 0)8

holds for any trigonometric polinomial p. Thus F > F@,‘.
: Let nowa\;.g , F. @(A)S be another L2 - bounded analytic
function such that F 2 F® + For any polinomial p, and ae €, we have :



[PYgelizey = Vg gz - V1o
: g1p<e“>[2 dFg D, o) < S]p\'s“)[ 24(F(Na, o) = [jpUIval” .

Thus we can . define the contraction Y from X. into L F) by

Y (p(U)Vc? = PV@ a

for any analytic polinomiai p, and a €&,
YU =e''Y and
oo . oo . )
th._ F) = §.O§

°T n.,(« C“' n., _ int
Y(QUX) S O YUk, = Qe c Qe

Clearly

1t results that Y = YP. Then for any analytic polinomial p we have

O R 2 2
_gtp(e )l d(F@(’r)o, 0)6 =“ pvﬁo“LZQ__)) =

= v vc,u'K =uYPp<u>vqnz < ||Pp(UIValy

el —upr*"ﬂﬂz ) 1P, <l -

= S‘p(e”),z d (F®] itha, aj ,
| |

Clearly then

iy ,
oe]” d(Fm(Na, -
| o™ Bl o) £

for any trigonometric poijncmicl pand ag &, , hence F@ < F@
6 ;

Let now.{E ‘gF] . @

function .which satisfies (i) and (ii). The..}J®4 —-'f’®1
=Z@,(A) with a unitary operator Z from

< (1pe™1? ar g (e, o),

l‘ be an L2 - bounded outer

and preceding

propositica shows that @.l

4"“11
5'] to ?’1 2



Sy ey

It is clear that F = F@i if and only if PV =V, thus if
5 L 29 °
and only if QUJ(+ = {Os S W

%

The proof of the theorem is complete.
 f

COROLARRY Any L2 - bounded analytic Funcfmn{a = 8(2.)13

can be uniquely factorized into the form

B(2) =@i(X)B(R)

Where {5, fFJ], ®e<A)§ is an L2 - bounded outer function, and {?’] ,f’,@i (;L)E

is an inner function.

Proof If F@ is the L(E) '— valued semi-spectral measure on T a’rfached
to {c F, ®(A) Y then from Theorem 2 theis exists an L2 - bounded outer
function {E F14 @ () } with properties (i) and (ii). Hence F@ = F®]
Thus, by virtue of Proposition 2 there exists an inner function -{fl, F, 09;(2 )lj
such that ‘

B(A) =@ (A)B.(A) ( AeD)
Thls fcncforlzcmon is unique in the sense that if

83 - @, ®'> . (aep)

is any foctorlzcmon with some outer function @ () cnc inner function @

and with some lnfermedlcry space ?l, then there exists a unitary operator Z from

?] .ofl such that

I

@ (3) =Z@e(N)  ond @ (1) = @A) Z, (AeD).

!

This follows from Proposition 1. 4

: It can happen that in Theorem 2 ;j’g] =10} . We admit the
null function as an outer function of the from {E, ,{O}, P(A)= OS: It results
from the theorem that, in this case, ifftg F, @(A\B is an L2(—'bounded
analytic function such’ that F 7 F® s then @ is the null function. In prediction
theory it is important to decide in terms of the semi-spectral measuie F when
3:'1 is or not {O_’, . The fact that there are no L2 - bounded analytic function

; . 5 . . ~ (e
"under" F is, however, a characterization of F1 =130}, but a too vague one.



Similarly as in the beunded case we can give a sufficient
¢ condition for F] # {OS which becomes necessary too in the scalar ccse and
in certain “inite dimensional cases.

Define the Borel measure on T

/b,d(cs‘) = (F(e)a, ) (e €),

Let d/«t —2-% hth + d T, be the Lebesgue decompmitibn
of d/"‘c with respect to Lebesgue measure dt

THEOREM 3. Tle following asse.*ions are equn’vdlen’r

(i) There exists h e L? dt), h 2

0 such that for any a€ &, {all=1,
n<h, a.e. and

4.2.) Slog h@)dt > — ==
(ii) The L™ - bounded outer function &E ; ?’1, @)](R).ﬁ attached
to F as_in Theorem 2 admits scalar muitipie. |

(m) There exists a non-zero L° - >ounded analytic Functlon&g ?@/A}
which admits scalar multiple such that

<
F@F

' It one of the equivolenf.asser’rions (i) = (iii) holds then dim & =
= dim f] g |

Proof :. (i) =(ii). From (4.2 ) it results that there exists a scélcr
outer function Cﬂ = H2 such ’rhatltg]l = h a.e. For any analytic p‘volynom?nai
pand a € £ we hqve :

1 28 2 w2 2 1 211" t [hin)
“gpo”LZ f’; QIS (e' )l {p(e ,[ ” Lo o ig | l\ lG!
o 1
W 27 .2
4 72 [ 1] n0dt < [[pe™] (@F(Da, o
) ’ 0

2r o
= ™ dEW® Va EHOA

)
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Thus we can define the contraction A] from fK+ into Lf(&) by

“

A]P(U)VO - p(:(;a
Clearly A]U = e”A] , thus

B R e 0 oM Bk e ™ (g < Lol

nyo nyo ; nzo

But :K+~ = Li(?']) @ N U’}I<+,. hen:ce' A] & A]P, where P is the
nzo .
projection f,om .'K_'_ onto Li(?]). Let {.}L], &, A](‘;L)} be the contractive
analytic function corresponding to A] . . .
Denotins by wa(}l) = A](A)@ (A) a and uc(;L) =®] (X)a,
and considering HZ(E,), Hz(f']) identified with L+(8), Lf_(d’-"]), respectively, we

have :
i QUG &= A]PVq = D.]Va = g]a
i.e A](A)@J](?\\a= gl(a)o, a € E . Hence
A(B(A) = &y,
Multiplyng by @1( ) from the left yields
S (8N~ @A) (M) =0, - (aeb).
Since @1 (A) is outer we have 'G)](;\)Ei‘ =%, so we conriude
that '
®,(2) 4,(2) = S (A (2eD)

Thus the L2 - bounded outer Funcfién {8, e @i(?t)} cdmits a scalar multiple.

(ii) =>(iii) is obvious.
(iii) => (i). Let {5", £, AR S be a contractive analytic function



and &A) in H2 such that

A(A)@ ga
e =80 Algs
For any analytic polynomlul p and a € ¢ we have
' 2m LR -
2 ' 2o
[ 1p1? aFtra, 7 1p1? alrgine, o =
o FEe
2r

e et 25
it X :

' 2
= [lo( a@mqu = sup Sup(re BreNall o 3
o£r<1 2

27 , 2

'l °
> S g gup re)r A(re”)@(re”)oﬁ di. =
ogr<l o
27
o R 211 j lpre &re l“""d* =" i ple'")] \CS\ Il°lldf
’\.fl"] (0]

It results that for any trigenometric polyromial p we have

2 2 40t
,Sm d(F(Ha, @) 2 {1p1%(S\ dr-yai” .
If we put h =\c§|2 then we have h € Li(df), 0« hg h

a.e. and
Siog h(t)dt > - o= &
In case dim & <=0 it is kanown that a.e. there exists
~ d F(t ; . i .
Bhlt)s (t) . In this case the assertion (i) is equivalent to
dt

(i) Slog det [F'(f)] > -
Thus we have the followiny results which in prediction ti.zory

was firstl; proved by Wiener and Masani in Y__?U

COROLARRY. Let F be an L(E) - valued semi-spectral measure on T}

where dim € <=o. Then the following are equivalent :




Ll

~.(i) S|og def[F'({r)} dt > — oo

(ii'ﬂ -There exists an [_2 - bounded outer function {E, 3—'], ® (7\)3

such that dim & = din 3:'] L and “F 2 Pl
ach ho @i F 3 g,

Proof. It results from Theorem 3 and Proposition 1.

5. Prediction 2rror operator formula

It is krown that the prediction theory for stationary processes i

consists essentially in the study of theirs covariance or correlation functions,

which are s:alar valued in the case of s-imple“f)rocesses, matrix valued in the
case of finite multivariate processes, and (why not ?) operator valued in the
case of infinite variate processes. In all the casses, the stationarity conditions
imply that these functions are positive definite maps on the base group (in
generg_l of time, bur can be and others).

| We suppose here that the base group is the group Z of integers

and construct a_geometriccl model for prediction based on a positive definite

function R on Z with values bounded operators on a separable Hilbert space & .
Recall that an L(€)- valued positive definite function R on Z

is a map k—R(k) from Z in’%o L(E,)' ‘such that for any finite sistem {k]’k‘Z’ ...knx

in Z and any aps +-- @ in & we have

b
z_(R o W)y, a) 20
e :

Using Naymark dilation theorem we deduce that there existe
the triplef&ﬂ(, V3 U] , X - a Hilbert space, V - a bounded operator from &

into X, and U a unitary operator on X, such that

R(n) = VUV oo (ne 2)
5.1.) oo - | |
X = Vu've

If E is the (LK} - valued) spectral measure of U™ then F = VEV
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“is an L(E) - valued semi-spectral measure on T and .we have
297
R(n) = S ™ dF()
)
From the unicity part of the Naymark dilcfiuon theorem lt results
that R, U, E, F are in an one-to-one correspondence. ’

We shall call a geometrical model for the prediction theory of

a (possible) stationary processes with covariance function R, any triplet [_.’K,V,U)
which is related with R by (5.1 ). We shall not formulate in details the complete
problem of prediction ir this context (this will be do in - separate paper), but
we shall construct the prediction error operntor and apply factorization theorem
for to evaluate it.

Let us put
M= Vive M. =Am

We have 'M'n c Mn-i—] and if we denote by Pn the orthogonal projection of X ,

onto J\/\,n then

| UnPkU' = Pk+nul+”

For any integer n and f, g € £ we have :

WUVE- P UTVE UVg - P U"Vg) =

u"vg) - (P

n-1

= (U"VF, U"Vg) - vy, Py

uvi, U"Vg) +

+ (P UVE, P UNVG) = (UMVE, UVg) - U"VF, P U"Vg) =
i T S (Uiaa Vil ¥

(n=k)=1 "~
et T R P(n_k)_1Un-kVF, W Sase TN

(n=k)-1
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" Thus we: can define the operator G on &, by

(5:3.) = % (GH, gy =(U"VF - Pn_]Uan, uvg - Pn_]‘Uan)

~.

and G does not depend of n.
We have

g 2
(5.4 ) (Gf, B =Ju'vi-p UVEL = lve - p_ Vil

Thus G is a positive operator on &, so called prediction error

o_pgl—’é_fﬂ (with Idg I see [21]), attached to the stationary proces; which has R
as a covariance function. ’ '

From (5.4 ) it results fho;
" 2

(5.5 ) (Gf, f) = inf || VF - pU) VI
pe®, |
where SDO is the set of all analytic polinomials p whizh verifies p(o) =0,

From (5.3 ) it results that G = 0 if and only if

- oo [e]

thus if and only if R is the covariance function of a deterministic process.

‘The prediction error operator G depends .only\of the positive
definite function R and not of the particular choosen geometrical model. More
precisely, for R anu R” two L(E} respeéfiVely L(€") - valued positive function
on Z,and G respectively G’ the correspdhding prediction error c.:perotors, if
there exists a unitary operator X from & onto &' such that XR(n) = R’ (n)X,

n € Z, then XG = G’X. ;

. In fact G depends only of the so called innovation part of
the process. Indeed let Q denotes thev orthogonal projection of K, onto Jv\,:.o
and P = | - Q. Since M,__, reduces LJ we have

PG =1GPe=Q
n
QU -P)=0



i

(- P )P =P(-P) il P_

PPnP =P - P( - Pn)P =P~ (l - Pn)P = PnP

Then we have :
, ‘ , 2 2 : 2
(5.6.) @ =P vER = P = P_vel s =i s B8PV =

2
=l pvf - P_PVEL .

Denofe X' =FK, V' =V, U’ = . Then the triplet [ X’,v*,U’]

UI:K,
is a geometrical model for pr-diction of a certain process with the covariance
functiva R (n) = VRIS o e fnbiovation process of the initial cne.
We have »
N M M
=Vurx = Uk =p YUk = PML .

-—add

Thus

PPﬂx PPX
i.e.’ .
(5.7.) P’P—PPP~PP )

‘Using (5.6 ) and (5.7 ) we obtain
, . 2 2
(5.8 ) (G'f, £) = Nv'§ =P Vel =lve - P_VE[l = (GF, ©)

-
|
/

“Thus the predic’rior; error operator is the same for both procasses.
Let F, F’ be the L(S) - valued semi—specfrql measure of R,
R’, respectively, and {8 $], @ )b, 1€, J"] g @ R)B be the |_2 Ex

bounded outer functions attached to F respectively F’, as in Theorem 2. Since

oo
(R, O XN
nQoU i ’Wb‘iKc:‘M,v,

it results that



e e

oo

f\ U ={0]

Since clearly F’ < F it results, again from Theorem 2, that

Thus F’ =‘E®; ;

bt B e,

@1~ '@,

5168 Blehbi & F
(519:) @

From (6.5 ), (5.8 ) and (5.9 ) it results :

2 g
(GF, ) = inf ilVF - pUVil, = tig SinlelS) ateuin tie
peP Aped &
(o]
ox 2
o L I
2Pg‘3’o“ p.)l ok

2 § | p(e”)}zl\ (s “2 dh =
l o = (S =
PQEPO 2. : ®] f]

2% ' i
i ] 2 if “- 2
mf{)__,} : i ﬁ(\/@] f) v(e ) - vo(e )“-g:’]df - VOG L+(§?’]), vo(o) 3 o} ke

= [vg ]fxo)“‘f] = (@, () @, ), fl. ‘
and - !
2 |
(GF, ) =inf |[V'f - ;W SVE[ = |
peP j
(o]
2
= inf SU - p(e )l d(F’(’r)F, £ S
pe;fP : :
: it 2 X
<inf §1- o™ dFg 0 0 = (8,0 @ o,
oeP @& 1 ‘ 1
(o}

Hence

G = @](0)>< B, ()
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Summing up we have

THEOREM 4. Let R be an L(E) =~ valued positive definite function

on Z, G the prediction error operator of R and F the semi-spectral measur:

_giR; I {g, 3:], @](A)} is the L2- bounded outer function attached to F

¢s in Thecrem 2, then we have

G =0, @, .

In prediction theory it is important to decide in terms of R
or of its semi-spectral measure F, when & is or is not equal to 0 and ir case
G # 0 to compute it. Theorem 4 gives a solution to this problm via the
factorization Theorem 2. We remerk that from the prediction theory point of
view, the assumption F = F@i in Theorem 2 is not essential, the only impo-iant
thing being to decide when @](2.) is or is not the null function. Let us remark
in this context, that the example presented by R.G.Douglas in | 3] shows only’
‘that, in infinite dimensional case, the closeness of the operator function F to 0
is not relevant to the fact that in Theorem 2 we have F = F@'l' The closeness
to 0 remains relevant to the factorability of F if we mean by " factorability
of F" the fact that the function @1( A) which appear inﬂTheorem 2 is ncr the
null function. As we already remarked, or'y this kind of factorability is relevant
in prediction theory. With this kind of faciordbiliiy, Lowdenslcger s mm?! resul‘r
{1 U remains valid in his full generoh’ry. ‘
-uppose now dim € <eo. Using Theorem 4 and Corolorr)% to 5“

the Theorem 3, we can prove that if F is an L(E) - valued semi-spectral measure

on T,and G its prediction error operator, then G is invertible (full rank process)

if and only if flog det [_d_si)_]e L](df)
dt

and we have
2%

det [G] = exp 2]7: Q log det [%E(_ﬂ_] i o

o

which is the result of Wiener and Masani [2]} mentioned in the last part of

section 4.
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