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ON_INTERTWINING DILATIONS

by ZOIA CEAUSESCU in Bucharest

Introduction. Let T, T’ by two contractions on the Hilbert space H and
H", and U, U’ be their isometric dilations on X and K’, respectively. For an
operator A€ L(H”; H) (the space of all bounded operators from H’ into H) intertwining

T and T’ (i.e. TA=AT’) let us call an intertwining dilation of A any operator
angd , Yo OF

BA€L(K’; K) .satisfying: PHB\H’= A, UB ¥BU' and B(K'@H’) CK&H. If, moreover, ,’
B satisfies fIBN =il A [l it will be called an&cl.c_t intertwining dilation of A, It is
known thai for any operator A intertwining T and T’ there exists at least one exact
intertwining dilation (see Th.2.3 of [5])." |

In the present paper we are conc‘emed with the problem of uniquexixess of
such an exact intertwining dilation. We reduce this problem to the similar problem
for the Hahn-Banach extensions of continuous functionals on some adequate quotient
spaces of projective tensor products. ?)

Our main results are contained in Sections 2 and 3. Thus we give a case
in which only scalar multiple of isomeiric or coisometric intertwining operators have

exact intertwining dilations (see Th. 2.1) and show that if an operator intertwining
g : op

two contractions has a unigqie exact intertwining dilation, then all the operators



which are "dominated”" (in the sense of Definition 3.1) by it have the same property
(see Th. 3.2). As an illustrative example, in the last section, an application of the
above theorem to Hankel operators is given. |

| take this oppor'rQni’ry to express my gratitude to Prof. C.Foias, for man-
helpful discussions. Also | thank Prof. B.Sz.-Nagy for his useful remarks on the first
version of this paper.

1. Let K and G be two Hilbert spaces. Wé shall denote by K" G the

: T2 :
subspace of L(K;3) consisting of operatorsywhich admit a representation of the form
4 n
(y & = E k;‘()"ggi , where kié K, giéG, l<ig<n,
i~

that is,
n

) T(K) =f€<k, k) g (keK) .
=]

We shall use the notation //"/!7 for the nuclear norm on K*® G:
; : g n_ n
(3) e @7.2 inf ‘Z’,,Ijklﬂﬁ gi”: G =Z k;@ g,l}
oy = = '

Also, the space K* G endowed with this norm will be denoted by

K*®G.
v

An immediate result is expressed by the following

Lemma 1.1. For a subspace H of K the space H"® G can be identified
o ansUgspRee Rl oF TN e ) ‘

with the subspace L of X *® G consisting of those G & K*G G for which
7 7 ey anee

(4) T |KEH=0
On account of Lemma 1.1 we may and will identify H%@)G with the
. = :

subspace L defined by (4), of K%C@G.



-

. A A '
We shall denote by K™()G and H*() G the completions of K *G and
. 7 7 7
H'® G, respectively.
7
Let us recall some well known properties (see {7]) of the completion of

proiective tensor product.

e A
(i) Every element & of K’r@G is the sum of an absolutely convergent
A

series:
8= k™ g , and HE=infy Sk o fI: T=2 k" ®g
n=0 " L - n=0 . n=0 " )

(ii) The dual of K"‘@G i/s realized as the space L(G;K).
7
Also, we shall consider operators U on K, T on H and Z on G and assume
that H is a subspace of K invariant for U™, and U’-t H.=T:

We denote by [Z, U] the cperator on L(K;G), defined by

) [z, u} V =2V - VU for VEL (K;G)

Note that K*®G and H"@G are invariont for [L:Z, %,qnd in virtue or

the condition T™ = U*IH we have

!’z, |1 ®c :[z, ﬂ H'"®G
(where[Z, T:l is defined on L(H;G) in the same way as [Z, @ is on L(K;G). The

" , A

operators [Z, T] and LZ, U] can be extended continuously to Ha‘—(‘:f‘)G and
EPA 3 )

K "& G, respectively .

-

Now, dencting

i . 4 "&e)

©6) R, ([z u] (K )@G)). i (Lz NG ®0)

where the closures are taoken in the spaces I<"C;<\:}G and H*{,‘:\b G, respectively,
7 7

: g5
We shall consider the quotients modulo RU and RT of the nuclear norms on K™GG
: ; . : 7

‘A - 9, T Ll .tl *
and H"G) G, respectively; thus, if Y and *f" denote the canonical epimcrohism
T :



= 2 4 ‘ w A X P, Juaaa A
Y K'GQG—(K'QOVR, y f + H'GG—» (H" G GIR;

then i
“\/}’(3 )\ ;, isz,}lJa T, H,/_ (e K%@-G) B
“‘f’( g ‘l isg{isz}r|8+z, ﬂf (G eH "(};\2@)
- Since, RUD RT ‘, we infer that |
O VITS P VICS By

Lemma 1.2, () The dual of the Banach space (K*é G)/RU is_
7

isometric-isomorphic to the subspace

{Bé L(GH) T UB =BZ} of LGiK)

: ; T : L
(ii) The dual of the Banach space (Ha\@ G)/ RT is isometric-isomorphic
J i

to the subspace

_ { AE L (GH): TA=AZ} of L(G;H)
Proof . Ad (i) Firstly, let us observe that { BEL(G;K): UB=BZ} is

Wi
isometric-isomorphic to Rj , where we denote by RU the orthogonal of RU e,
‘ R ={fé(i<’*’é)e)' £ R =o} ;
U 7 ' U )

i ot il : LA
Indeed, since L(G;K) is isometric-isoriorphic to (K ") G)’, for any
=

\

BEL(G;K) with the property: UB=BZ there is a unique f from (K%C;) G)" with the
7

properties

() f(k"®g) = (Bg, k) (K€K, g€G) and () [f]=]l8) -

But, for this f and for any k & K, g &G, we also have:

F J /- : \
iz, U] &"@e) = (8Zg, 1) - (UBg, 1) =0



LB

Since the set {[Z U] "®g): ke K, g€& G] spans RU , It results
reqdily f‘RU =

Converseiy, for any fe& (K*’C%:) G)’ with fl RU = 0, there exists (since
L(G;K)=Z (K OG a unique BE L (G;K) satisfying conditions (a), (1) above;

moreover, we have

(UB-8Z)g, K) = f([Z, U] (k*®g) =0 for any kE K, g€ G.
Thu;, the operator B has also the property UB=B7. :

Now, stctement (i) of the Lemma results from the following general fact:
.lf X is a Boruch space and Y is a subspace of X, then the orthogonal X o Y is
isometric-isomorphic to the dual of the quotient space X /Y.

Ad (ii): The proof is analogous to that of (i), due to the similar definition
for the space H*@ G, and thus for (H*é> G)/RT too.

7 " 3

Lemma 1.3. The following two statements are equivalent 3

(P)) For any A€L(G;H) satisfing the condition TA=AZ, there exists af least one
exact_interiwining dilation B & L(G;K) of A.
(P,) For any peH @o we have fW(Z W =3 ) -
Proof. First, we notice that, on account of Lemna 1.2, (P)) is equivalent
to the following: i - //‘
(P For any f€ ((H*@ G)/R.)" there exists an "extension” T& ((K*'%é:)G)/ R
of f(i.e. N)V G ) =ff(3) for all Z€H @G) cuchatling
i f// 1l (or equivalently, // ‘]U//
Indeed, if (P,) holdsthen, in virtue of Lemma 1.2, for f& ((H""‘f@ G) /R’
there is & ((K"é@)/ku)' such that [ Tl=ffland T (h@g) = 1L (L @0)

for-all h€H and g&G. Since, for { H x»G there are the represeniations



S

G = E h @ S, where the series _;__ h Og is absolutely convergent, and
néN neN

since f, f are continuous, we also have
14 7 7 7 7

FP(E)=TY(Z) foradl TEH'RG.
7
The converse implication (P‘]') :}(P]) is, by Lesima 1.2 even more abvious.
Now, we assume that (P') holds. Let us take KQéH*C;‘)G with ‘f( GCo) % 0.
‘ '

There exis’rs € ((H C\ )/R with the properties:

e =lepi =1,  fP(&) =l F(&) 4l -
For this f there exists, according to (Pa), ffvé ((K*é) G)/RU)’ such that
b
IFI =t =1 and F¥13) =1F(8) (3E€ HGO)

Thus, by (7), _ |
ezl - Ty 44 1Y (2= (@) < [P a]-
F PR =0 then, by (7), W | £ (2 =0 |

A

Consequently, we obtair || $i{é = Yz // for oll g€ Hx® G.
Let us now assume that ”Lf el =l Y (&) || for all Ze H)&é‘)G.
7
This means that the continuous canonical epimorphism
PH*QG) = (H'RG/R ——» (H'QG)/R, = Y (HRG)
T s a U 7
is an isometry. Therefore, we can identify (H*&) G)/ Ry with the subspace
Vs
(H '*Q“?) G)/RU of (K*é) G)/R . . Now, the implication (P.)=s(P’) follows from
- 7 U 2 ]
the Hahn-Banach Theorem,
It is known that if T is a contraction on H, U an isometric dilation of
T on K and Z an isometry on G, then the assertion (P]) of Lemma 1.3 is true
(cf. [5] Prop. Il 2.2.). Thus we have

Theorem 1.1. Let T be a ceniraction on H, U an isomeiric dilation

fT, and Z an isometry on G. Then,
!

Py




A

H'®c) /(2,7 ](H'&o)”

. is linear canonically isometric to the image of H”?G in
(K'QG)/ (z,u] K@)

2. In the sequel we shall only treat the case considered in Theorem 1.1;
that is, T a contraction on H, U an isometric dilation of T on K, and Z an isometry
on G.

Remark 2.1. Let A€ L(G;H) satisfy TA = AZ. In order that A should
have a unique intertwining dilation BE L(G;K) with B =] A/ it is necessary and
sulficiient: thatuthe: funstichal fg((H*Q? G),/R)" (where (H'*?:ZJG) /R, Is identified
with (H*?‘G)/. RT’ in virtue of Theorem 1.1), corresponding to A by : f‘j«'(lﬁ*@g) =
= (Ag, h), have a unique norm-preserving extension to the space (K@G)/RU, Cn
the other hand, a well-known consequence of the classical proof of the Hahn-Banach

Theorem is that a functional f & ((H*éG)/RU)' of norm 1 has o unique norm-preserving

*

. "_4 . . © Ar\
extension to (K (?G)/RU if an‘orvﬂy if rorr qnx Z%H (75}\7,

|
|

sup| Ref (6)~1G-81:8,€(H°86)/ R, f =ind [4% + - Rof 1 ): & € "8 5)//?)&}
] !
!

(Here, as in the sequel, we set Zf:yl(&) for g€ K*‘g’_\)G). Hence, we eosilgf infer

j’

the following sufficient and necessary condition for that an A& L(G;H), fAf =1,
\ v
satisfying TA = AZ have a unig.2 exact intertwining dilation :

For any & > 0 and for any & ¢ (K”@G)\ (H"(‘;O G) there exist z,,%¢ H*%«?’)G

satisfying

(8) //'ZI +Z:2. /I/lé /72/"3"} +//22. '/"Z:[f << E}é‘f (é_: f’éz) e a'. -



Remark 2.2. Let us also note that, since a linear bounded functional of
norm a on a closed proper subspace has several linear continuous extensions on the
~ r " .
whole space of norm a” > a, it follows easily:

For any A € L(G;H) intertwining T and Z there are several non exact

intertwining dilations.

By this remark we shall establish the following

Theorem 2.1. Let T be a contraction on a Hilbert space H and X an

" operator on H with ff Xl = 1, double-commuting with T. Theh, X has a unique

exact cémmufir.r; dila’rﬁon if and only if )’b;c%/isome’rry.or a coisometry.

Proof. First, assume that X is isometry or coisometry. Then X or X™ has
G unique éxqcf dilation relating to T or T, respectively (see [3], Prop.10.8). But
it is easy to show that an operator X commuting with a contraction T has a unique
exact dilation if>qnd enly i_f so has X*(nqturc!!y in relation to T%).

Now, .assume that X has a unique exact dilatien . Let X_= VR be the
polar decqmposi‘tion of X, where R is its absolute \.,'»ulue and V I ImR is an isometry.
Since X double-commutes with T, the self-adjoint opem;ror R commutes with T, too.

= KerR = KerX, H. = TmR, T=T|H, R =R[H (i =0,1). Obvi-

Denocte HO

ously Hi is invariant for Ti and Ri (i =0,1). Let us consider for R] a spectral

1

representation
R] .y j A ey
[0,T]
Denoting for a fixed A€ J0,1[, Hy y =Ea Hy and H , = (I = Ex)H,

we chtain the decompci’tions
= - % R w =
Hy = H @ 50 Ry =R @R 5 T =T 18T,

where R],i — PH] ;R

(i =1,2). Then, the



i,

isometric dilation of T] on K «VU H, will be of the form U = U] ’ @U] 9t
s 4

1 nzao- 1

where U, . are the isometric dllCﬂ'lO"l'; of T on K —\/U x . Also, since
Yel : 1,1 azol,i

I R] 1” Z.1, there exist (cf. Remark 2.2) at least two distinct commuﬁng dilations
14

of R] ] on K] 1 of norm 1. There fore since the orthogonal sum of the dilations
4 4 X

of R and R

is a dilation of R, , it results that R. has at least two distinct
Jid 1,2 ] 1

exact dilations on K] .

Denot= V] =V ! H] p X] =X { H] . Since X and R commute with T) we

A
have V]T] = TV] . Let V]: K]—->K be an exact dilation of V.l (where K is the

A
R’; be distinct exact dilations of R,.

" Then, since X] = V'IR‘ » V.‘R] and V]R']' are exact dilations of X] on K.i But, by

space of isometric dilation U of T) and let ?{%,

_ hypothesis X has a unique exact dilation and then so has X] Thus \']Ra = V]R']' 2

N ' N
From this, since V] is an isometry (see [3], Prop. 10.8), we infer that R’ SR

i

which . implies H1 ={0§.Thus, we have R] =] and consequently X is a particl - iso-

metry . ; ‘
Denote H! = KerX™ H = XH, and T, =T { HE (i = 0,1). Since X dbie
commutes wirh T, it results that the spaces H; p Hi are invariant for T. Now, let us

cons_i‘dex; the following decompositions of H and T, resp ctively:
H=Hy @Hy =Hp ®Hj , ond T =T, DT, = O

Then, the isometric dilation of T on K is of the form U = UO@ U] = Ub@ LIS

. o i - . n
where U., U.’ are isometric dilations of Tii T; on the spaces K, =\/U H.»

1 iy |
BV o -
/U Hl (i =0,1), respectively.

| N20
. \ ‘
Note that Xo = HO (:H — HO Yoz O, )(1 ‘“’X% H.l (:H]-—5‘«>Ha)’ is an unitary
A ‘
X : Kiw? K; (i =0,1) be intertwining

operator and Xi Ti = Ti’ Xi (i =0,1).Let

dilaticns of Xi , of norm 1 (i =90,1).



s e

A A v2)
Then, XO@Xl is an exact diiation of X on K. By Remark 2.2 for X there exist

0

at least two distinct intertwining dilations of norm 1. But, since X has a unique
exact dilation, we finally infer that HO ={03 (i.e. X isa isometry) or H(’) = {03

(i.e. X is a ccisometry).

3. We introduce the following definition for contr ictions on Hilbert spaces:

Definition 3.1. Let A], A2€L(H]; H

2) be two contractions. We say

that "A. Harnack-dominates A2 if for some positive constants C, C’ we have:

1

9 [{D.h{ié clp, hj and | {A,~ADRE L C7||D, h
A, Al 2" A,

for allhéH]. Here DA] * Ph, p !
* 4 . ’
= “'Ai Ai)l (i =1,2).

D(\ are the defect operators of A A2, i.e.

Pa
Remark 3.1. Let us introduce, for the contractions A], AZé L(H'], H2),

the following isometries:

A H,

iii i : H—® (i =1,2),
D .
LA D

w!:‘zre.—ZA = DA H] (i =1,2' Then, conditions (9) of Definition 3.1 are plainly

1. & i
equivalent to the following:

The \exisfs a bounded operator

H

2 H2
K: @ @

9

2 2

1 2
such that

7 hz\\, /h2 ‘, A A
(10) i\‘\o ) —KO for cll hQ"c sz ond A2 —



S

Remark 3.2. We note that, if Hi and H, coincide, then the

equivalence relotion for contractions on H, defined by:

A. Harnack-dominates A, , and A, Harnack-dominates A

1 2 2 1

coincides with the Harnack-equivalence as defined in 4 , p.362.

For two operators A], A2€ L(G;H), intertwining T -and Z, denote by

WA

A] A2 the functionals é ((H*C’%G)/RU)', corresponding to A] and A2,
respectively, and by B FA the functionals &€ (H *éG): satisfyiné

1 2 z. :
FA]‘ RU = FA2 ‘ RU = 0 , which correspond tc fA] ) fA2 by virtue of the

isometric ~ isomorphism

sk v ot
((H @G)/RU, =2 R

Lemma 3.1. Let A;, A, € L(G;H) be two operators intertwining T and

'II
Zy ﬂA]“ = A2u = 1, and such that A

Hoarnack-dominates A,. Then,

1 2

(Zl,- k- F, (B)KE (for some € >0 and BE H”?G)

A
implies

(B +28 (NKNZ - |

(L is the bounded operator satisfying (10), which exists by Remark 3.1.)

Proof. Let 2& H*@G be such that:
T

“Z’ﬂi- Re FA] ()< &
for some & > @ . There exists a representation of 7 , say
S_.:, h’ O
neN "

with



Sgea

o, il =1l, Z———“h“(m, and “z”,, Z“h “ Zn+£

N"
Since FAi (h:®gn) = (Aign' hn) (i =1,2), and since FA; are continuous it
results that the series n% ~ (‘Aign . hn) (i = ',2) are absolutely convergent,
and |
i néN
Consequently. | e
> bl - > _Retag . h)L2E
neN " ne N M L
Now let us notice that 5
A,g -f , '2
e el | T A F
" e(ign' n)_E 5 - 2 i.gn—fn
- ST
‘.-r\i N

f i
where f = 0 - and | =< ) (h &€ N). Since A, Harnack-dominates
n ]E ,hn ” nog 1

\
A in virtue of Remark 3.1.we also have

2
l) ’

| - ke, -6

A

|24_ lﬁK”z . ]2 .

>>
Q

i
5

n

liA ~
Azgn - f

M
There | fore,
o

Re (Ajg  h)=-Re(Ag , h) L :7_- ;{Kﬂz SiA g ?;1[2 ih ,tn e N)
‘Whevnce,

iy ] | T 2 2
Re FA]<-<,) - Re FAZ () £ el =) %’?’Q ﬂ] u uh ] =

= (hed? -1)§i\1ph“-Re(A <28 Akl -,
Re



=

We may now state and prove our main theorem concerning the uniqueness

of exact intertwiring dilation.

Let A, , A € L(G;H) be operators with the propeities:

Theorem 3.1. w
TA] = A]Z, TA2 = Azz, ”A I} = ﬂA B T, A.I Harnack-doeminates A‘,2 ¢
Then, if A] has a unique exact intertwining dilution so has A2
Proof. By Remark 2.1, we must show that if the functional fAé ((H *@3 G)/Rb)’
1 w

defined by A satisfies condi:rion (8), then the functional fA € (H x G)/RU " defined
2

by A2, also satisfies it.

Assume that for £330 and 7€ (K*® G (H"® G) we have
- i /2

3]+ZQ)+€

12 + 2 N< 1B, -F) +I5, +8] < re A

(11)
for some 'Z] i ZZé H*CEQG. Since “'%“ ‘:”7‘9[5)/} ﬁ/i %(3)// for al!

- :
G E H @G, there exists '€ RT such that
3

13 t32 8|, L P(E,* G )|+ & =

! = 82 +2"  and note that
- b
- |

”é/ +Z‘z ”"{'g .

Denote
I 50 NG ol w6 oty ey
e bieclien L) wwesswemily: e shat

”Z’] 4Gl < Be f& (2’;] + '7;';)+ 28 =Re FA}_(Z] % 23'2)4 2 &

Consequently, in virtue of Lemma 3.1, it foli-.vs

(Ty+ T+ 28Ik - 1)

£ , '
Re.A (Z]+52) é ReFA2

1

or, equivalently,



-

AT B : - : 2
Re FA]‘ 6+ 6).. 2 Re ';Az (g + B )+ 28 (liKI® -1y
Whence it results that {. satisfies the condition
A _
”";”] 'i ” i ” 8.2 +é// ‘< Re {_\ (é] 82) + 2 g(” K”2 - D
: : <2

Thus, we can conclude that F;‘\ satisfies (8) too.

2

As'a corollary of the previous theorem we have the following more general
result:

Theorem 3.2. Let T, T" be two contractions on the Hilbert spaces 4

and H’ , respectively. Moreover let A] y A2€ L(H" ; H) satisfy the conditions:

TA] = A]T’ . TA2 = AZT’ 4 u A]” = ”AZH =1, A] Harnack-dominates A'2

Then, if A,' has & unique exact intertwining dilations so has A2.
Indeed, denoting by Z the isémefric dilation of T' it is known (see [5] ;
Th.2.3) that any exact intertwining dilation of Ai (i = 1,2) is obtained as exact
intertwining dilation of the operators Bi = AiPH' (i =t1,2) inferfwin.ing T ‘and Z.
4. Lgf T, T’ be two contractions on the Hilbert space 4 and H’, and
let U, U’ be their minimall isometric dilations on the spaces K c;nd K¢, respec-
tively.

Theorem 4.1, i_gf_B], Bzé L(K";K) have the properties:

HB] i =1152 =1, UB. = B.U", PB (!-_P’)=o (i =1,2) where PP, ‘, P'=p .,

B] Harnack-dominates B,),

and let A A’Zé L(H";H) be the operators A; = PBi g2

A

Then, if ES,l is an exact intertwining dilation of A], 82 is an exact intertwining

dilation of A?; moreover, if 81 is the' unique exact intertwining dilation for A], e




is. Bz.f_OLAQ

Proof. First, by hypothesis we observe ’nat PBi = AiP‘, and Ai is
intertwining T and T'. Thus, Bi is an intertwining di-lc‘rion. of Ai s 120

Now, in order to prove that U_z is an exact intertwining dilation for A2
if B, is so for A, it suffices to show that || AZN =1",

Clearly, we hove‘ (by dgfinjﬂon of AZ) ” Asz a2

| For th2 converse inequqlify‘we observe that, sir;ce Bv.§ Hcrnqck-wdominlctaas

o
C’ >0, we have for h' € H’

B, i.e. |D 21\ c|o, k“ and [|(B,B K < {DB]k'H with C,

[ - -P)B,h’ | < JJ (- M+ 1o-e) (Bz-s.i)h'],!ég}DA]h'ﬂ i }i(82~B])h’H

<Iou Wl + loa] £ 0w o, v

and therefore,

2 ] 2= o 1 12+ - 2 € + (v || D &
2
= C" 1{ Dy h'” , for ony h" ¢ H'.
] 2
Since ]IA] Il = 1; we inf: from this inequality that ”A2 ” =1 too, thus 82 is an

exact intertwining dilation of A

2

The dbove relation with the following one:

[agapill < Jesopwl < e oy ) < < o, w | b )

mean that A Harnack-dominates A.. Now the second smx’remem of this theorei

1 2’

can be obtained by referring to Theorem 3.2.

Lemma 4.1. Let B], Bs L(K";K), ﬁB] =4 52” =1 be of the form

'Bi = BO &) Si where S. are strict contractions (i = 1,2). Then B, 52 Harnack-

~doniinote each other.
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Proof. Consider the decomposition K’ = K(')(-E) K% for which

B]PK’ = B2PK’ = BO, and Si = BiP

= B.(i-P
0 0 :

14 ,) )

and note that
og Il % = g % - g ™ Qi ® = s 1
> I2 = sk 2> a-ps 161

(Here'k!, =P, kK ki =P, K9

0 KO

Whence, by taking C = max {(1 = }[5],}2)

< 1
7

1
;G 7§ b,

,i}P.Ki k'ﬂéCﬁDBi k'] for all K& K.

Therefore, we have ” (82-B1)k’” 2 // Sz-S] I ki// < C /'i DB.k,” and also

R L R L R

2 sk - sk D Csykq I+ 03 1D

=" o

1
SN (LY ES I T

Ketice N DBQk'” = O ” DB.iklh' for all k" € K where, C’, C" are constants.

Thus B.l Harnack~dominates B2.

By symmetry 82 also Harnack-dominates 81 ;

Theorem 4.1 crd Lemma 4.1 have the following

I

Coroliliery 4.1, Let By 32€ L(K";K) be two operators as in Lema 4.1,




intertwining U and U’ and such that : BJ(K'©@ H') CK&H (i =1,2). Then, B] is an

exact intertwining dilation of A] = PHB]\H’ , if and only if 82 is an exact

intertwining dilation of = A, =P, B\’ ; moreover, B] is the unique intertwinir¢

2 TRl

! if and only if 82 is so for AZ'

In virtue of Theorems 2 and 5 of [2], we also have the fol uwing corollary

dilation for A

of Theorem 4.1, concerning the Hankel operators 3)

Cowsetlilianryaad? . ke Foy F éLac (&,F) (Z,;'- separable Hilbert

12

'spaces) have the properties :

NEl = IF =1

F](f) = Fz(f) whenever max '{HF] Ol F2(f)]!}> 1 -8 for some fixed @,

G281,

Then, if one of these functions is a minifunction for its Hankel operator,

" then so is the other. Moreover, if one of ther is the unique minifunction of its

Hankel operator so is the other.

Prcrt. Let us set

Lo =X fr: max {JF (Y , WF2 (D)) > 1-8) %), and

L, =L+ max LIF0 1, UFa0I} < 1 -8} LG5

i g ) 2 . 2 :

where X is the characteristic function. Then L (f ) is the orthogonal sum L (%) :ffc@f
. ; it it ‘

cnd the spaces ofo ’ §€4 are invariant for the operator Ux(e Y =e ,

Also, notice that the operators B:if = F f (f ¢ LZ(‘%), i =1,2) can be written
By = Bo @S, where B, = BiPy ond 5 = Bill-P g Y, 0 = b, 2), nithe . BSEH < s

Now, Corolla:y 4.2, follows at once by Corollary 4.1,
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2)

Foot - notes

This reduction already was done in some more or less particular. cases

(see for instance [:6] )

A A
XO@ X3 denotes the operator from X = Ko@ K] to K = Kc’>® K]’ aiven

Ko O
by the mairix (FLERTE )
@ ‘ )(1

|

This corollary can be also obtained as a consequence of Theorems 1.3 and

3. -ef D] ;






