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TENSOR PRODUCTS AND TAYLOR’ S

JOINT SPECTRUM

by

Zoia Ceaugsescu and F,-H, Vasilescu

1. INTRODUCTION

Let Xl’ - .,Xn be complex Banach spaces and o 2 uniform crcss norr
EG] on their teirsor produc: X1®. : .®Xn. Denote by X the comp’etion of

X1 & . ®Xn vrith respect to the norm « . Suppose that 'J is a linear continuous
operator on Xj and set %i'j= 1®... ®1 é@aj XR1X,,.. R (j=1,...,n). If A is

-~

the bicommutant of the commuting system (ﬁl, e ,’éln) in the algebra L (X) of all
linear bounded cparators on X then A, T, Dash and M. Schecter [ 3] have shown
that the following equality holds :
= 3 SY= G 7 {
1.1) JA(al, s 3 an) U (al’ Xl) Xiale X d’(an, )sn), where

Tle

T 'é'n) Cenotes the joint spectrum of (é\i, e ,'é'n) in A and Cf‘(aj, Xj) is

the usual spectrum of aj as an operator on Xj'

D, Voiculeszu has raised within the seminar of Operator Theory, Institute
of Mathematics, Bucharest, 1976, the following pcoblem : Does (1.1) still hold if
we take: ?nstead of OA(é"l, o ,a'n) the more refined joint spectrum of _(al, W an)
on X in the sense of J.L. Taylor’'s [7] ?

It turns out that the answer of this question is positive in the case of
Hilbert spaces, and the proof of this assertion is the purpose of the present work

(see also [11] for n = 2).
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From now on H wiil denote a complex Hilbert space and a = (al, i ,an)c:
C ;f'(H) a comrauting system of operators on E, For the convenience of the
reader, let us recall some definitions and results. from [7] ; [8] and [10] .

Let s = (Sl’ L) e sn) be a set of indetermina.zs and denote by /\ [s] the

30003 S

exterior algebra, over the complex field, with the generators 84 -

/\p[ s] will stand for the space of elements of degree p in /\{s_] ’(p =
=0,1,...,n). Then we denote by Afs,H] (/\p [ s,H ] ) the tensor product
HE® /\ [s] (H@/\p[ s], respactively). Aan element X‘X)Sx)l VA VIAAN sl)p é
€ /\P [ s,H] will be written simply x s Dy e A s 2V, - The space

j\ 9 [ s,H] can be eudowed with a natural structure of Hilbert space, defining

for any pair

e A
- — Xnd " Sy 253
:F B PP VTP . p 1 p
1 p
and
- Z ¥ v S g Aone B 55
7 LY L e N LR ! P L g
1 P
from /\p[ s,H] their scalar product

ZF;’?):l/ S <XV1"">7 IR ALTEELEY

We have also

N\bul = ®@ APlsu],

p=0 ‘

Let us define the operator JE :/\_p t s, H >/} p [s,H] by

the equality
n

p ‘ s %
ga(x Sy A A spp) Zj;.l 8,5 8y A s,;l/\.../\spp
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p
> /\[s,H] be the operator @O Sg

p=0

Let also Cg s/ N o ]
(Where gz =0z /\- : [-S9H] T _/\-O Y_S,H] )'
Clearly C("p+1 ° (g— P = 0, hence cg. ° 6‘ = 0,
a ; a a a
A basic notion in the definition of the joint spectrum of the system

a= (al, ; ..,an) on H is that of nonsingularity [7] . Shortly, a is nonsingular

—

on H iff Ker ci Gl Im cf-a. It is obvious that this definition makes good
sense in Banaci. spaces [7] . However, as it is pointed out in [10] , there
is a characterization of the nonsingularity in Hilbert spaces which makes this

notion easier to be handind, Namely, the systems a is nonsingular on H if

o =
and only if the operator &£ (a) = J; - (3 & is invertible on ./\-[s,HJ.
: n
The comniement of the set of all z = (Zl""’ zp) € C with the pro-
perty that z - a = (z1 S B i - au) is nousingular cn = is called the

(joint) spectrum of a on H [77] ; this set will be denoted by ¢ {a,H) in

the sequel.

.The spectrum ¢ (a,H) of a on H is compact, nonempty and it is
contained in the cortesian product (f’(al, Hyoxi, o G'(an, H) as well as in the
joint. ~pectrum of (a]L= e an,) in any commutative Panach algebra containing
(al, =y an). Morcover, as in the case of Banach algebras /:2] , ohe can cons-
truct a functional calculus with analytic functions, defined in neighbourhoods of

0 (a,H) ; for this functional calculus a spectral mapping theorem does also

hold (for details see [ 8] ).

2. THE MAIN RESULT

If Hl’ ...,Hn are complex Hilbert spaces we denote by Hl@. .. & Hn

their tensor product, complete for the cancnical Hilbert structure.

Let us state the main result of this paper.

/s
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,Hn o e complex Hilbert spaces,

—

2.1, THECREM, Assume that H.,...
H=H®... ®Hn,aj e gf(Hj), a’j_—.l@... © 1@&3@1@...@1
% .,’én)C Z (H). Then we have the equality

(i=1,...,0 and 3 = @&,
- A /
(2.1) G (a,H) (al’Hl) XX ‘an, Hn).

In order to prove Theorem 2.1 we need an auxiliary result.
2.2, LEMMA. Let H and K be Hilbert spaces, a= (@;,...,a) C =X (i)

’

1?

20 0

a commuting system, al = aj® L 7 xR (=3, 0pand 5l =

a’). Then the operators o /a’) € ,f( AT, H@KD)and o @1 €

o0 g A
iy,

E,f(A[s,Hl &) 'Y) are unitarily equivalent.

Proof, Let us remark that we can define a unitary map

u :/\p [ s, HOK] —> /\P [s,H] DK

"\u‘), ={x sy . N... N8 > X y.

u X y S A o0 0
c /\‘ Syl J &K is unitary.

2+ Als H®K]

_ i
Theng @I}:O e

Moreover we have

5 :
= : VAT Sy AV =
S‘.l (’@y Svl })p)

up+1

n
( :>: Bx By 8N B8y Naoligy ) =
= J 1 p

up+l
n__ \\
a,X 8, A8y, A A S § =
(2 o e Mo
& _]=]

( S‘; @) U R B A e By,

hence uga, =
A .
D 1= & =

oL (3) @ 5,@1+ ST@1

(o X- f
ey 5;,)'»1” = @y,

o (2’ ) are unitarily equivalent .

( C‘)f,, ® 1) u. From here we obtain

hence «<@)&® 1 and
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2.3. COROLLARY, With the conditions of. Lemma 2.2 , if K #0 we have
the equality
g@, H®K) = 0 (a, H)
Proof Irndeed, by Lemma 2.2, oL (a’) is iavertible if and only if
o (a) @ 1 is invertible, hence if and only if £(2) is invertible (see, for
examplé, [5, Lemma 4.1] ¥

Proof of Theéorem 2.1, We may write ¢ (&, H) G“(évl, Hy % % c?(é"ﬁ, H) =

0’(a1,H1) Kive X G’(an, Hn)’

the last equality being true by virtue of [5, Lermma 4.1:11 , therefore we have
one inclusion in (2.1).

The reverse i:lclugion will be proved by induction with respezt to n. For

n= 1 the relation (2.1) is trivial, Assume that ‘he property is valid for n and

let us get it for n. 41, Tiet Hn+1 be an arbitrary Hilbert space and take an €

+1

te by H' ¢ 1 &... ®DH 6 = H(
€ ’Z(Hn+1)' Denote by H’ the space rIl@, OH11®Hn~+-1 Ii@Hn+1

and by
} ol rmi s = (s : ider ¢
s’ the system of indeterminates (sl, v 'sn, Sn+1) s W ‘°n+1) Consider the

e S 1 R
systems of operators &’ = (3 ) andb = @l,...,2 , 3;1+1), with . a’ €

j
€ Z ('), where ?i;= 1@...®1®aj®1®,., ®1 {=1,...,n+1),

Notice that we have the decomposition

@2y Ale ] = Alen] + & FASEN
where g,n+1 'S 5/(,/\ feet 1 1 ) is given by
~ \, K ~7 SR = i
S e s F e ]
Then the matrix of é;"“ with respect to the decomposition (2.2) has

t

S

the form



thereiore

@.3) £ (b)

- According to the proof of Lemma 2,2, the space A [ s, H’J can be

identified with /\& [s H] €Y Hn+ and the operator o£ (g’) with  o( (':;) ® 1,

1

Analogouzly. the operator a’ g be identified with s |
: 53Y. ] c S i ifi i
gous.y. p ntl S, ©anbe identified wit 8 &) 2y

therefore the matrix (2.3) is unitarily equivalent 1o the matrix

i st 0 T
oL (a) @ 1 Sn_§_1 @) an.L_]_
@.4) ,
2 .
S AL #@® 1 _
: /

Nisul®n

1)'

defined on the space ( ,/\ [s,H]® Hn+1) ® ( C

In this way, if b is nonsingular on H’ then both (2.4) and

@ 5)- e o Sf?ﬂ@anﬂ
@ 8y @@

' : : . . Ty o s :
are invertible, where (2.5) is (2.4) written for b~ , which is also nonsingular.
In order to prove tho inclusion

(/v(aliHll X ... X 0\’ (an’Hn)X Cr (an-l—}_’ Hn+1) C 6(b’H )’

it will be enough to show that if

0,...,0) € Of,H)x... x o @,H)x & @ )

n+l’ Hn+l
'ad

then (0,...,0) &€ @ (b,H’ ). Since we have, in particular, that (0,...,0) &€
E ()”(al,Hl) 5 SDRR N uf (an, Hn)’ we obtain,by the induction hypothesis, that

g me tis ve ¢ 2 B
0,...,0) & 6 (a,H). At the same time, we have also 0 &€ 6“.(an+1 n+1)



’ : 7 =
o~ ~
Suppose, h:iwever, that b is nonsingular, hence =& (b) is invertible, and
let us show that this assumption leads to a contradiction. We have to discuss

some cases.

W AT sHl =l ad] and
a H  =H_  then there are two sequenes i‘fk } e Als,H] |,
/ }fk // =1 and ’V?k}k o I ?k // =1, suchthat oL (a) 'fk—év 0
anda;, 7, >0 as k—>eoo
~ Then the sequence |

(Fu@ ) ®o € </\fs,H] ® B,) O (s';ﬂ/\ [s,8]6 1 ﬂ)
has the properties _ |

M Fe @Y V@Ol F ® ”81;//: g BT =

and

(ad » ~/ 3 k
@ @1 ’ 8. * -
<@ @ ®n1 ®.an+l /{k @ r? k

—> 0 (k—> o)
o~ ~ :

& = <@ & 1 0
/

and tI 5 is not possible because (2.4) i{s invertible.

NI wINCs, 8] = A[s,H] andKer a;ﬂ # 0 then there

is a sequence }L‘F& .}g kC A [s,H] as above and vector 7 & Hn+1’ //7//: 1y

such that Bl / 0 . Then the sequence

(F ®7) 0 0€ (AlLrl@T O, AlsE]I®HE )
has the properties //( fk @7 y ©0 /=1 énd

~ o5 /

~ @) ® 1 S D { ?k O 7

— ( (k— oﬂ:’ 9

i G B sl / \ ’ y,

which is a contradiction since (2.5) is invertible.

sl
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ifi) If Ker < (@)° =K 2) # 0 and H .= H _ then

iii) er (a) =EKer o (a) an an+1 sl il
there is a vector féA[s,H] i ///F// = 1, such that (N)f =0
and a sequence {”?k } K . Hn+1 as at the case (i), A similar argument
with that used 2t the case (i) shows that this situation is again impossible.

iv) If Ker < (@) # OandKer a*_  # 0 then o (a)}f =0 »@nd

n+l
* ’ = Q 5 : i =/ =
a’, ? 0 for some Fé Z\ [s,H] and v € Hn»i-l with //f Y=/ 7// |
and then the veztor ( ¥ ® 7 )0 # 0 is aneigenvalue of the matrix (2.5),
. ;&

which contradicts the nonsingularity of '{;

In this manner we tiave proved that the non-invertibility of both £ (N) an-
am_1 implies the non-invertibility of og(g) and this finishes the proof of our

theorem.

2.4, COROLIARY. With the conditions of Theorem 2.1, if f(z) is any analy-

tic function in an open neighbourhood G of 0”(5', H) in Cn then there is a

system of open se§§_(Gl, Gy Gn) in C such that

@ H C Gy X .in X G C G,

and a system of finite families of Jordan curves (Fl""’/ﬂn)’ [; surrounding

O'(aj, Hj), []7 - Gj (=1,...,n) with the property
1

~

(2. 6) £ (2

R ( 2. wvinl ) &
1 n n 1 n
27 i _ o
R 4 I

i -1 -1
x(zl—al) @(zz—az) @...@(zn—an) dzl...dz,

where the left term of (2.6) is calculated by any functional calculus with ana-

lytic functions [a] .

Proof, The existence of the sets Gl’ 5oy Gu and of the curves [;, . ,ﬁ;

follows from the equality (2.1).
It is clear that the right term of (2.6) defines a functional calculus with

analytic functions in the open set G, x... x Gn .G {a;H). Since G.x .. .xGn

1 i

is a holomorphy domain, it follows from a resuit of J.L.Taylor [9, Prop.4.8]

e



S
" that the functional calculus is uniquely determined, hence (2.6) holds (see aiso

[4_7 for some connections).

2.5. COROLLARY. With the conditions of Corollary 2.4 we have the
formula
: UGN ST 2 R - ) M ,H)).
(2.7) gt (a; a f( g (a, H) 0“(51n D)
Proof, The formula /2.7) follows from the spectral mapping theorem
e, Th4.87] .

\2.6. COROLLARY. If a € < (H) are arbitrary (j = 1,...,n) and_

H=H ®... ®H_ then
1 s

2.8) 0@, ®...®a W= T, H)x... d@,H) [1]

Proof, The formula (2.8) is = particular case of (2.7) with { (zl, el Zﬁ) =

= Zge- 'Zn’ by noticing that a1®. et @an= 5’1 ce ’avn.
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