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The fundamental principle for a system p(D) ¢f linear constant
coefficient partial differential operators states,roughly speaking,
that the solutions in convex sets of the homogeneoas equatién
p(D)u:.= Oyare superpositidns of polynomial exponential solutioméy
for that equation.Unlike the case of ordinary differential
operators,thie is a deep result,end was stated (in L.Ehrenpreis [1]]
and proved rather recently by L.Ehrenpreis and V.P.Palamodov.

It furns out,that the fundamental principle is closely related

to the solvability in holomorphic germs of systems of form

- )
> : : = b ; Tie

3;3 piJ(z) hJ(z) g;(2), 7T R : (1)
where the pij are polynomisls,and the g; are holomorphic germs.

" The solvability of {1) can be studied with the &id of
algebraic Noetherian operators.An algebraic Noetherian operator,
'is a couple (V, 2 ),where V is an algebraic variety,and 2 is a

s-vector of differential operators in D/QZr,r=1,...,n with

. polynomial coefficients.it is possible to prove,that for evefy

: d ; k
_ matrix pij,there is a collection (V

,Zk),k=1,...,}L of
Noetherian operators,such that the following two assertions are
equivalent:
(1) 'if.gi are germs of holomorphic functions neer zo,then the
5 restriction to the germ of vE at z° of E:?? g3

vanishes identically.
(ii) there are hj,holomorﬁhic near z° such thaf ph =.¢.

If p(D) is as above,and p (=pij(z)) is the polynomial matrix,
associated with p(D),by changing 9/2){r with =i zr,iz=—1,we
can therefore find algebraic Noetherian operators for the matrix
tp (the matrix transposed to p ) such&hat_for them (i) and (ii)
are equivélent.The relation of these operators to the fundamental
principie,is the following:if u is a ¢® solution of p(D)u = O

. i s : e n
which is defined 1in , &2 C R a convex set,then for every



convex compact BCSC and for every b & R,which is great enough,

there are Radon measures M, ,concentrated on Vk,such that

[dekl < o 4yand such that u(x) =/29k(exp E(xyz D) a w (z)/
k

exp (HB(Im z) + bln(1 +lzl))kHB is here the support function of B.

In this paper,we present a new proof for the fundamental

principle.The main new features which appear,are related to the

fact,that we study the essentizl uniqueness of Noetherian

operators,associated with a matrix,and that we study the

- structure of distributions concentrated on algebraic varieties.

Some results from this pape.,are perhaps of independente

interest.

Notations.

” Thoughout this paper,we use without further explanation the

followirg notations (which are standard,except the notetion 4. f=0):

191 {
K e= o[ X (Sométimes, X" =
i=1

N,R,R ,C, are the nafural,real,real positive,complex numbers.
| n-1 '

BlX: ).

i=0 :

Variables in c™ are denoted z = (21,...,zn).qu special choices

i
L

of coordinates, z = (z',t), 2 = (x,y),where :+%)1,x,y,denote
. !

groups of variables.z' is usually z' = (21,...;z ). x stands

n-1
also for the variables in R".

Ox’Fx are,for x e C% the germs of holomorphic functions at z
respectivel; their completion in the Kruli topology,the formal
power series in complex indeterminates.k should be clear from
context.For x = O we also write 0,5 O

QLU are‘the holomorphic furictions iu the demain veo:

v CfU is called an analytic variety in U,if there are

£iyeeeyf € O(U) such that V = (z ¢ U; £3(2) = 0},

I, (V) = |fe0,; £ venishes on the germ of V at z].



- IZ(V) is the ideal generated by IZ(V) in F,e

- P denotes the polynomials in n variables ,with complex
coefficients,and in the indeterminate z. -

- I(V). For én algebraic veriety V C C",we denote I(V) ={f € P;
f vanishes on V} .Let us note here‘the\following: if V is an
algebraic variety,and z is in V,then f€F, is:in IE(V),if and
only if‘there are £iye00,Ty ¢I(V) and g; ¢ F, such thet f=2lfigi.

- d.f = 0.If V is a germ of an analytic vériety at z,and feTF_ ,we

v

say that dv

restriction of £ to V vanishes.

£ = 0 if fe T(V).When f ¢ O,,this means that the
i Ca)(Cn) are the infinitely differentiable functions on c? = R2n.
- Cg)GZ) is the subspace in COO(Cn) of elementy- with compact
support in $2.
. s : M
- s(c™,s'(c™ is the subspace in COO(Cn)jwhich decrease rapidly

‘(in the sense of L.Schwartz) at infinity,respectively the duval

of S(Cn),the tempered distributions.

- B'(C™) are the distributions with compact support in g
pich BELe") is the Sobolev space of order z,with norm |l Hz.
- 9 is the Fourier transform of u.
s =A\If £4 XY, then Eﬁ is the transpose of f (when this makes sense)
ipis notation is also used for matriées.
. when we'wdrk in Rn,and for

J
(9/9zj, Q/QEJ),when we work in C™.The elements from F, depend

D stands generically for 9/7x

only on z.Therefore in pert I,practically, D ™~ 'DK?ZJ.

- If plz,D) = 2_ < T (Xqyeeny Rp)slal= Jutsy x5eN,

ol m
and 8 = (81""’Bn)’3i € N,then we denote

] ax(rx!/&—p)” (3 /9 2)° -8 and

. .
l(Bl

p(2,D) (5 =2 ((2/22)° &, (2))(2/02)"

ldl¢m

p(z,0)(® =
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PART I.The construction of Noetherian operators.

§t. Preliminaries.

1.Consider z€c™ and ACF, a ring which is closed under
differentiation by Dy o= (E/QZK),k=1,...?n.A(D) denotes the ring

of finite order linear partial differential operators of form
; £ oL .
a(D) =2 a De e Ay DFi=D. ). iD B.For it € F, weidefine

e 1§0 & o : 1 n z

a(D)f = ZQ“D“ f.
(4

Theorem 1.1.If A is YMoetherian,then so is AL D aw

This.theoren is duecsto I.B.lopatinski.For a proofi.cfi e.r.
B.Malgrange [2] or V.P.Palamodov [3] .

2.Consider Laane FZ{D),izl,...,m,j=1,...,s.W9 are interested

J
in soivability conditions for the system

Z.-__ I‘li'j gj = fi’ i=1’u--,m (\1)
J

where f;é’FZ.

To obtain these solvability conditions,denote
5 , m B

Here C(D) is A(D) for & =C, ?

Proposition 1.2. For every f € Fﬁ there are =2quivalent:

(i) there is g eF? such 2_ Ii' o N s R i
0

g iy

ii) for every r €R Gl A e e
(11) y T 34

This propnsition is an easy consequence of the following
result,which we recall from L.HOrmander [3] ,lemna 6.%3.7.

_Lemme 1.3.Congider A, A a sequence of linear forms with

1, 2,...
complex coefficients,in the complex variables ﬂ. %”...,and

suppose that each i depends only on a finite number of variables

f..Then the system ﬁj(f) :bigjﬁi,Q,.ig is solvable,if zand only if,
i3

J J

every finite number of equations in the system has a solution.

Proef iof foropesition 1 .2.Ci)y=>(11) da triviai. 0o DEove



(1ii)=>(i),we first easc the notations,by setting z =0.%Ve then

: 3 B
WPTteligihs RS P i Sz S e ) Z 725
J XJ X 1 ‘{1 1 1 “3'5,,-‘- ol hﬂ(v J 2
«B

with f? ,.f$,.F§’ Aij constents.

The equations 2" L.. g. = f. now reduce to

ez i
[}
K. . ¥ Ly § ?C = ?_ V'
%Z AiJ\x/(x 3)L) XJ ‘f’l Vo, 1
where the second sum is extended over 8ll («,3 ,x) e Bs=

= {(«,8 2 )5 IBISV, B¢ %y, x+x-5 =0 ],

Ay

In view of Jemma 1.3 this infinite System can be .solved if and.

only if (,8,2)€B,

Z ?1 ) A??/(c‘-«x}! =20 7sforiall. Jlandix
o, 3 :

.1mp11es Z: Fl *1 0. Herep {s different from zero on.ty for a
finite set of indices.
To s2e if this condition is satisfied.it remains to rewrite (4ii
3

‘ 1 o ¥ \ - 6‘ o e (& (;‘ ' " “ —}&
First note that o Lij —Z::fl Z“~“m ij E .

AL S 07, pA Tk

G ot Cract /s ey ot Ao u)'m“*""f“

and therefore

; e S : a2 5
dy 2 L., =0 cones to Joo J £ Aci(% o!/(e-x)! = 0
i e i Bio-« =Xx i
-y - * - . * r>d . » d
Tor ald x.and j.Similarily; l.r = 0, 1s equivelent with

Z: f? ?g' ol = 0.,The proposition now follows.

.Proposition 1.4. Consider L; S 0{ lzl<™)(D) and let V be

an analytic variety defined in Iz] <~ .Denote

R,,= {(r_,l,...,rm) e [0 )zl<m )(D)I";a (z: I‘lLlJ) =0,for &ll JJ

en there is WCV with the following t ,AOpert1e¢
-W is & countable union of snalivytic varieties.all defined in
7 y e

Izl<47.such that ' ¥ .NW is dense 1n V.

~forz eV \ W, the naturﬁl mpp dZ'RV'_a‘RZ“iS surjective.

G
Propf. Coxiadder  R- = L(pi, . .i R, : o . are of »
roof. Consider By (T4 ,rm) e By ; AL Tew abex oforder
i ¥ ¢ :
less then k and Widepily, B =l (o whinn i ice Bl e el e
5 b larily, RS RECIPRRET e 8l s

are of order less then k }. It suffices to find an analytic-

variety W,_,such that VNW _ is dense in V and such that
. ‘i,'} IL{ 5
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=B

k k

- . 3 * &y o = T \‘-u
d,: er———éﬁz ig surjective for z eV Ty
Now we writ down d ZIrlIEJ = 0 explicitely,end arrive at a
MB e :
e e
system d E T 2.1J 0 for all j and B;for some analytic

functions ng ,only a finite number of them being different from
e
zero.It remains therefore to compare sclations on:f;: Ajg(y):o,
% congtarnts,with solutions of d > sz) 2‘5@(2) = 0.1t follows
'pl V 1 10

that CZ: RV———>R is surjective at the points where the rank of

matrices ( 7\ “R

y))“_i is maximal in V for all 8 and j.This

clearly happens outside a set W with the d981red propertles.

L4

4.Regarding the solvibility of the system (1),we finally
need the following result:
Proposition 1.5. Consider 1 £ k { n and suppose that L..éCKD)

1J
L4, we syl j= 1y « sy 82816 operators which contain only derivations

2 P -
in Dl,...,Dk.Denote Bos L (r1,...,rm) e-[otD)I™ ZzgrlLlJ = 0,

j?1,...,s } . Then R is generaied,as an O(D) mcdule,by the subset

of elements which contain only derivations in D1""’Dk'

Proof. Denote D = (D1,...,Dk),D (Dk+1,...,Dn),v»suppose
that r €R and write r, =2 r@(z,D )DB.The proof is by increasing
¥ Bl<o * y
induction in o .In fact,if for all j, Z: ﬁlLlJ = O,then clearly
et Lys = O for all § end ell B stk kbat 18] BouHen
i b b
B % ety . 4

-2 . is in ER,and is &n operator of order

Bl e Sali
less then o in D_.

¥ :
5, In the remaining part of this paregraph,we recall some

results from asnalytic geometry and local algebra.

Definition 1.6. Consider A & ring and E an A module.For

3 m
(f1,...,fm) e A" denote R(f,E) the submodule in E  of those
vectors e = (e1,...,em) such thet X f ey =-On E is called flet

over A df REESE) = R(L,8) 2 for Lk L.



Theorem 1.7.F,  is flat over 0, and F.If |zl<m,then 0, ds-

flst over O(lzl<m).

cf.WH.Bourbaki [1.7 .

Corollary 1.8. Consider V'C'_C!n an 2lgebraic variety and pij eP,
i=1,.-«,m, j::.1,ooo,30 FOI‘ Ze\] dénOte G.} = {f € F‘;;
i v - v x s .
dV'Z:pij £y =0, Bl e eyml e G, = L rep”; dVZ:piJ T,

= eev,m) . Then G, is generested by G, as a F, module.

Proposition 1.9. Consider V.CC" an algebraic veriets,z eV

=

end denote G, = e @ A dyf = 0 = dv A f =0},
Ge= (AP v T el Ty e 0=>dy A f =0]J

Then for every A € G, there are f, € 0, and 2; € & such
that A =21 a,,

¢ A 52 0 for w11 B end

. : 8
all p € I(V).(To see this,we cbserve that A(B)z{ e z;z( )D <
o J

Proof.. A. € Sz is equivalent with d

(TR e e jou . ) e o . .
£ B Bi ﬁi,lﬁg, £:; = B.+1,and apply induction in 1[3]).

-

J
Now 'write A = Zl__ X Docadﬂlk(g)p = 0 then gives

lelgy * !
o - : ;
dVE A (o t/(e¢=B)1)D . p =20 .Denote'pi,1=1,...,q,
oL R

generators for I(V).Then AEG, is ecuivalent with

%8

O i (oe! /(x=8) 1T
ch_»o ok
s

for v fixed,the functions A, satisfy certain relations,with

Yy

P: =0 yi=%,..4,0,V B.This means that

B

polynomizl coefficients.We can ncw acply coro¥lary 1.8 and
conclude that the polynomial solutions of the same relstions
generatc the solutions ..in germs.

Lemms 1.10. Consider I g; ¢ = primery ideal.Then we can

choose coordinates (z',t),a Weierstrass pseudopolynomial,

= e Z cj(z')t“, cje‘J,cjsO) = 0yand ocese Nysuch thatyp
J< g '

Sl oL L . Gahde
has no multiple factors,p” € I,but such that 2p/?2 t is not in
the radical of I.In particuler,the discriminant of p with respect

to t is not in this radical.A similar asserfion holds,when I ig

@)

Polynomial ideal.In fact in this case p can be chosen toc be g

polynomial.
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Proof. (ICO).%e choose convenient coordinates and apply the .
Weierstrass preparation theorem,to find g in the radical of I

a j : 3

of form.g = L & - c-(z')tJ s ex(0)i= 0+ Among.all g with

A Joia Y ke |
these two properties,we choose one of minimum degree.This

implies that g nas no.multiple factors,and.also that 2g/9dt

is not in the radical of I.Pinally we apply the Nullstellensatz.

§2. Formal properties.

v 1.In this paragraph A denotes a ring such that:

A C 0(lzl<m) for somem.

- A is stable under differentiation.
- ins flat over A for eny z with: [zi<m.

<

Theorem 2.1. Suppose there are given

Ly (D), L4(D), T2, wes iy gl e s g all in A ED)
(3 rJ

UC {lz}<m} a counteble union of analytic varieties of" codimension
greater then one,defined in lzl<m.
Suppose that the following property is satisfied:

for every ze (1, lzl<m ,and every Ugpees, U € F_, for.whieh

1"
o

T L. sous =0 for-izl, «i¢ypywealso have X L :u:
9 ? |

Then there are f € A,f#0 and f, & A(D) such that

.-f.‘ I_’_'! = Z.. f‘iIJiJ' fOI’ ‘j:},o.e,S-
: i
Moreover,if the Lj’Lij are overators in D,,...,Dp only,then

o
the £. can be chosen to depend azlso onlﬁrD St
i 1:% bitle
2. We prepasre the proof with the following _emma:

Lemma 2.2. Suppose that for some z,|zl<m ,there ars given

. > j=1’alo’s’

e [ . P (D) such.that f L. = T
fer, ,f#0,f; € 7, (D) such th Ls »Ei il
~ ~—~ B ot : =
Lj’L*j € A(D).Then there sre T ei, T#0.and fiE.A(D) auch that
A
ot = » .,., - Ny
fL. = Z: SR =1, «veyB8.0re0ver,if the £ sre operators only
3 = Aigng ’ 3 3 i b .

i
P 2
in 31,...,Dk,then the fi can be chosen to depend only on D1,...,Dk.
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.

Proof. We write fi = ) e

18 D 'fia € Fz and denote
I8l '
e & i B Sk ko

Lij =D I; vEhens T L.. =) f.. Li*' If 7« 1s the maximum order
of differentistion in Lj,Lf; end if ¢ ig:the number of multi-

J
sl B .
indices of length legs then » [ then I, ’Lij can be regarded in

n
3 ° X Y - R
an obvious wey ss ‘elenente in AT L FfL. =0 D WL
J W Ty 8 71
i
J=1,¢..,8 may therefore be regaried oa & relation in

S ,
% Loty 5 4 et b g

[T+A ywhich gives the lemma,in view of the hypothesic on A.

1 "

It is now clear that theorem 2.1 follows by induction from

the propositions 2.% and 2.5 frcm below.

Propogition 2.3.let k'€ N,i1 < ksnibe givenyand suppose that

theoren 2-1 is proved,whenever the operators LJ,
derivations in D1,...,Dkn1.Let further F1,...,Fm,F € 0(D) be
diffe tnt]dl operators in ik 1""‘*k (with coefficients in n
vériables) an? suppose that there are m2>0 and U with the

followirig properties:

I

FsoF e 0(lzl <m)(D),
- U is & countable union of analytic varieties yof codimension >

all daf

$de

ned in bzl < ~, 1
S [U, u 6FZ; Fiu = 0si=l,eue,m =D'Fu =0,
” 11 i Al ' ‘_' AT
Then ‘there is y e ¢, lyl<o,r e F.. 170 end fiesz(D) which
are operators in D1,...,Dk only,such that fF = Z: b e
l & i

Mote thet Zor k=1 the assertion followe frem linesr algebra.

Froof.(first part).Choose variables such that

] Ll e b &
Fi(z,D) = a(z)D] + g;;o ar(z,D YD, a#0 ;D'=(Dyyedy Do)
N

We may shrink 7m-and. chenge the origin,such that we can cuppose

thet a(z) 70 for zl¢m . Dividing ?] with a{z),we assume therefore
;s o 16 N : i

tliet 7. (2,D) = DL+ 2. Gobm, DY 1D,
1 k - & k

Pl - o B -
We now orove a lemma.,

L'j contain only.

1,



' _'7_

Lemma: 2.4. “For every Pue O(D1,...,Dk) there is w e Niand 7
such that for every u F oy |3l <m which setisflies F,u = C,the

following two assertions are equivalent

Oy for t=0,.00yp

tp. _
yﬁ DkPu-

Proof. Denote M = O(D],...,DK)/O(D1,...,DK)F1.M is a left

O(L') module,which is clearly generated by the classes of

a=1

I,Dk,...,D in M.Therefore, the image of O(D1,...,DK)P in M

is a finitely generated 0O(D') module,and we may obviously choose.

. +
generaters of form DP,Lg¢pm for some m € N.It remains therefore

to observe,that Pu = O is eguivalent with d - Dt Pu = 0O
lzk i yk} k

foriallits

Proofiof proposition 2.3.(continuation). For ¥ 2.2 (iffsuch

i exist) we choose Wt* € 0(D'),w, e O(D') such that
o i T i -
DN S S T i zohre
et e o T B
- 0w _5I\ qA W
B LA, HE G
It is now easy to see that for ye CU,gr & Fy
L e f2aDh) g k) = 0, \‘ i 22tepm (2)
T

implies (when m = 1,there are no condltltns on the gr)

Tl 2Dt )l e ‘ (
I

AN
S’
°

in fact,for Viie fixed,we can apply the Cauchy-Kowalewskaia

) nd v h U= 3 =d ey
theorem egnd find ue;F such that Fl 0, G{Zk = yk ﬂku Zk:yé g,

It follows from the pronerties of the FJ,anu from lemma 2.4 that
F;u=0, i»?,and therefore that Fu = O,which gives (3).
For the implication (2) =% (3),we c¢an now apply the induction

hypothesis.'This mesns that hw., ZZ;*____ h. (7,1')w TaaDihy

° % r 5
v oy « < Y AT / H ' |\r
and therefore we also obtzin xl%}wr\z,D', D= Z:hit tr( ST

The proposition now follows.
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.

Z.FProposition 2.5. Suppose theorem 2.1 is proved for mxs

systems,when ¢ < s (m arbitrary).Then it is true also ror mxs

systems. . *

Proor. suppose U, m ,’ ,LJ 1=2ly s sy d5 1 yie oo y 88t T8y the

conditions from the hypothesis of theorem 2.1.The same is then true

LJ.

for Lij’Lj’ 1= e B = ya w1 U and M For this situation,we

e

cen apoly the induction hypcthesis from the proposition and ney
therefcre suppose that

f .Jj" 2_.._‘ fl 1] j=1,--.,u"?_

\ R H o=~ Y X
for, some f‘eO( lzl< m ) end £, e (l21<m)(D), f#O
J 2t us now denote R the 0(D) module of vectors r = (r1,..‘,rm),

Dyi€ O(}zf<fq}(D) gsuch that Z:ri Lij = 04002 all ' = Typenga-1,
: : : i 1 A
Thie mocdule is firitely generated,sav by the elements r',...,T
58 : A i
from Re. Dercte @ the matrix Q :\rl,...,r ) «For some 'm'

rg‘ e 0 Jzlic mE)ED) &nd forp lzl<m',z e (U,and z W,where U is

L from the hypothesis and W is a countable union of aznalytic

varieties vwhich appesrs in proposition 1.4,the following is then

validy

ug € Fys Qo | / =0 S U Tiess Zf‘lLiS)uS =0
L
s

\ Lo
In feet,when i satisfies Qo | 18 "= 0 end z evoids W,
J‘—’II!S :
then there are u,,...,u _, such that 2> Lgea Wor R mlipgll o
: : v WAT ol At

Therefore also 2 . Ljus = 0,and (BL 5 em i elals U 240 ughon
1' < s g, L . 3 (=
0w

follows.For the implication which we have Jjust proved,we can now

apply tlhie incuction hypothesis anéd find g IGO g#0 =nd g, «0(D) such
J
1‘,\\
that gk, = Z_i IJO = g1,...,gx)°Q° - / Wh propesition
S ;S

now followe when we rewrite the lsst sonaliiy.

b : Aol = e i . i = mY Eal R s
n the sequel we feed & veriasnt .of Ahedrem 2.1%.

B

Proposition 2.6.:a) Suppose that there:are given




g s iy T X Sl
- irreducible analytic'varieties V ,V,cefined in |z l<m,
and suppose the following is satisfied:
g s : ; vi
when u € F_,and d. i ( 2: Ly sus)=0{then slso d.( Z; L all s )
Z v dagecy] v
Then there are ¥ € O( |zl <m),f5 € 0(]zl<m ) (D), with the
following procerties:
~id P 0 i et b ? (4)
e == 0 = fig'= for'all' g e O0Cizle ) els
i il e '= 0 8ll g € O( Jzl<m) €5)
- dV fI,J = ‘Av Z f‘iLij . J=1’!tl,8 ; ; (6>’
; gl L .
b) If in.ihe 9bov,,LlJ,Lj ¢ P(D);if the V ,V are algebraic
verieties,and if the hypcthesis from &) is valid for eny ziait s

then in the conclusion,f and fi cen be chosen in T,1respectively P(D)

n the prcof of lémra 2.2,we conclude agesin

-

Proof. Arguing =s

that:dt suffiees to find 2¢ Viand . £e F_,f. e F. (B} ¥ith the
y Zadr Z ?

LJ i ) > . :» i
properties (4),(5),(6).In fact,if we denote q.,...,qr.,q1,...,q,L

'€ O( lzl<m) generators for I(V),respectively I\V ),then (6) can be

3

the following form:

—

written in

there . are - h . . € 0(lz!<7)(3) sueh: that £flL.o =X £

V3 J i dog va
and (5) can be written asg
2 8 5 “ : )
f(z) Gy i Z: ”A A}VA 1Dy e 0( [zlsm) for every £ and all ‘i sndiv ..

Again we woulm like to find & solution in C(jz|l<m ) of a systen
with coefficients in O(1zl<m),when we alreedy know thet a formal

solution for this system exists.By flatness,this formal sclution

o b

tions in O( lzl<m )sencé therefore,in

*

is e.combineticn ofisolu

partieculsr, there must glso be & solution in O(lzl<47) for.which
T #0.ThHedesailesare lett for ‘the reasder,The same nroof elso

shows that pert b) of the proposition follows frc* pert &) .

5. Cur next concern in the proof of propesition 2.5 is to reduce
o et 18
ourselves to the case when V = {jzl<q} for a2l i1.In fact,when

1 1 i
v

| S
o AR generate I(V ™ ),then d.; ( Z: L. 1) = 0 means exactly .
ol Jis & v 13 3 v
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that there are v, e F, such that %I Lysouy + Zqy vs, = O.
The hypothesis is therefore,that Z: Lij uj ik Z:qi v., = 0

foriis, o e mpimpliesyd ( ZI LJ ug )

We may now shrink 47,change the origin,and change coordinates

analytically,such that we may suppose that for lzl<m,V is given

by 3+ = 0 2= 2, = O for gome ‘d.For simpliecity,we intrsdiice the

notations x=(z1,...,zd),yz(zd+1,...,zn); z=(x,y),and write

J S LJB(Z,D )DB.Further we use Taylor expansion in y of order
[Blga
- a for u.; at pointe in V: u, (2) = B(X)yg ) yBuB(z),
J J [Bl<r 9 I8l= o +1 g
and therefore d e, /545=0 means that 2_51 (4L 387 B(x))=0.
We conclude that the hypothesis of the proposition can be

written in the following form:

o ey R L_.,].ysuj?)-i- Xy o
3| <6 o x ¥

. T S AT Py
i (7)
grad, Wiss o 3 Oy ;V J% YWipls e
= Bld. . = 0.
z;%m575} v-jgYie

The written implication is valid for any peint in\v.

6aLTIn the Jast eqguation uJB.g =6 +1 gnd v, do not appear,

&

iv
and therefore it is only natural to eliminate them complctely.

To do so,denote Ry the set of vectors r = (r1,...,rm, such that

= 4y Z:.ri Lij yB g=0, Vj, VB with [8l=¢+1,and all g (8)
'-d riclf,g:C),Vi,Vv,Vg €9 ).
RV is o>viously an O(x)(ﬂ ) module,and it is easy to sce that the

following implication holds for all x outside some countable

union of snslytiec subvarieties in the X-space:

A : 8 g
E Ry R e Y s 0 Y e (10)
] g 18l¢e ;
g 0ae 5 08 Vg Yin .
implies 2. B! LjB ujB = Q.

iy BT
In fact,when (10) holds,and when x avoids & conveniently
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chosen countable union of analytic varieties,then it follows from

proposition 1.4 that there are ujﬁ,lBl=¢+1 and Voo such that (7)

holds.

The operators d Z:rxng yB reduce to operators in O(|xkq' )(3 )i

when aoplied on elements w1th gradyu = (O,and when re R the

V’
set of these operators is an O(x)(DX) module.Therefore there are

1 A

finitely many vectors r ,...,r” such:-that for x outside some

countable union of analytic subvarieties,and for Usg € By

dy Z: r' R Fi yB o) o

J,B J J
We can now spply theorem 2.1 and it follows that there are

h ‘e 0( Ixl<m'),h#0 and hye oClxl cm ) (D) such that

h'd.LjByBg = 2;: h dv T L-;ygg for all Joand Bl¢o and all g.

V J = Z:, h~_dvr1L11u

for all u and all Jj.It is also clear that (9) implies (5).

It follows 68811Y from (8) that h:d

+ 6.Proposition 2.7. Consider irreducible algebraic varieties

ViGwW ct ,and let A e P(D) have the propertv that d,af = 0 1t

de = 0.Then there is weN and Ay Al i\'\l lyessypyalldn P(D)

i
|

fLO implies dvzn.f =0

£ = ¢
such that A 'Z:.Ai Ai and such Fhat dV‘ -

and dwg—o implies dW,A{g = 0.
Proof.If we choose z in the regular part of V,use convenient
coordlnates and apply the srguments from the prcof of proposition
¥ 6 then we obtain 21, ,! OZ(D) such that A —Z.li ﬂi and such
that de=Q =7 dV Aif = O,dwg Si0i=7 Ay
proposition 1.9 and may therefcre suppose that ii € P(D).Then

ii g = O.We can now apply

we ‘apply proposition Z2.& for (V,'Ii) and (VA ),
Proposition 2.7 will not be used essentially in this paper.
In fact,we will only use it in §5,but by an inversation of an

argument,we could have avoided it.
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§%. Remarks cdncerning the ”elerstrass preparation. theorem.

1. Consider p(z',t) = t%9 + J c.(z')tJ s Gl

a polynomial in t without multiple factors,and let A(z') be the

e O@ikc »')

discrimiunant of p with respect to t.

Definition 3.1. Consider U c¢® an open set.We say that U
has property (W) (with respect to p) if there is s M2 A TG

such that:

n-1

-~ the proJjection of U on C isklzﬂ <oy

- for each 2', {zﬁ<fn ythe number of roots 1'of 4he equation

(z'yt) = O for which (z',t) fc~U is the same.We denote this
b 3 A

number q(U).(k-tuple roots are counted k times).We also denote

[ (t - t;).

p(z'}ti)zo

i

B 200

r
: Zz ,ti)etf
2. Suppose that U has property (W),and consider « e N and £e 0(u).
The global Weiers trass preparation theorem (cf.also proposition 3.3

from below) shows that there are gje(x |z'l< ) and h e 0(V)
such that |

Pz p ; gj(z') T } : (1),
| 0<J < xg(U)-1

Clearly (1) determinates g. uniquely.snd we denots
, xq(U)-1 J
: ) : :
1} O(U)~9f“] 0( |z'l<~) the map with components

i
i=0
J=05ew ey 0 (U)=1 .

T
& = .
HEE

3. The Weierstrass preparatisn theorem holds slso in the

set up of formal power series,but then we must work 1oca11y._

Thus choose y with p(y) = 0, |y <m',and denote py the

T

Yeierstrass pseudopolynomial associated with at. v.Thise means
[ PO l; i N

for eome gl = ([t yh>q(1) s D i cL(Z‘)kt~yn)J,
% Jeolyy Y
c3(y') =0 that p/p is holomorphic neaxW'auu that (p/D JeyiZo:

tha

e

For every f e FV we can now apply the Weierstrass preparation
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theorem and find gJe F.,vandh e i such that

R ) T F.(2')(t-y)? + p*n | (2).
T <eqly) 9 % J :

We now consider g€ Fy sueh that .3 £z )(t-yn)u -
: Jxaly o

i ;T— SJ( z1) tJ and again introduce a map
£%1 FY > Cﬂ Fy,,by zs(f):gj. &Y vis.eontinuous if

we endow PV,FY with the Krull topologies. ‘

4. The Nelersfvass preparation theorem is e classlcal toolito.
reduce "asserticns in n varisbles" to "assertions in n-1 variables".
 We will ‘use it with this purpose in §4.In that paragraph we need
several propertieé of *he Welerstrass decompositions (1),(2).Nost
of these properties are standard.We mention them explicitely for
later convenience.

Proposition 3.2. Consider U with (W).

a)Let r be in 0O(|z'I< m ) «Then Eq(rf) =1 gg(f).

b) Coneider T e O(U) and denote r.. = zg(tJr),Oéii,j < o a(U)-1.
U
P Bl )
Z_ 15 £5(0)
¢) There are Tj € 0(U),polynomials in t,such that
: s
U \ = U ) “

Slﬁll&” asgsertions remain velid for E (dn ‘the last part;the

(%D
e,

i Then forievery feO(ll), fg(rf)

T. are then Weierstrass pseudopolynomials at y).
Proof. Only c¢) requires comments.Denote o; € O( lz'li< m ) “suech

thing TRtalY) > F (239 p=lianies felionantnat

J< oLO(W) - .
tf ! >__ E '(f‘) td+1 = 65 (U\_,‘({)Z___- p_ltJ = ptj h,
: < wq(U)=1 . 9 Hew 3o < el Ui
- U U . :
whence FNG(U) ety - ﬁq(U)—i-t(f) * E&q(U)_1(pif).Thls gives
lnductlvely TG‘-Q(IJ)‘I" o TO‘Q(U)"i + pi;

5.To state the next proposition,we introduce a notation:

let U be with (W),and consider y e U,p(y) = O.Then we introduce
1

o o<q(y)-1 ' «gfU)=1 ' 2

b 4 = Fy' > 7] Fy' in the following way:
0 0

ig(g)kvls the «coefficient of +E in (DU/pv)ocz g;tJ

Jectgly) - Y
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e

Proposition 3.3 ."Suppoge U has property (W) and consider

Fe 0Ly end yiell.
0] i ' U oy o
Bl E (B =Bl .o i, & (f (py/pU)» P
yn’DU(y"yn)zo ]

U c ... : A S «
b'> EA“Q(U)-q(f) —;;;’IJU(Z/',.VH):O fo‘q(y)..g(i (Dy/DU) z

eyl ALY Y) £ O endiif ti(2) eee,t iy (2') are distinct germs
! 2/

q(
in Oy, such that p(z',ti(z')) = 0 ,(z',ti(z')) e U,

U : 5 5 X =1 : 1y 3O v
Eq(uy-1(T) = 14«_1)!21((2/91;) (&7 iI;Tkm-ti(z )) (3).

Proof, alibyedefinition, £ip. to.> =:Z:£¥(f(p P e KGR
: : a0 J b ]

o : .

1 O R R » $98u ey X J x
yoahich - givessf =7( . e bl

Yo ARk & (py/py,)" (2 £5(py/Py) " It Py by

It Rollows that £~ T - (pe/p )7 (T ed (8 p/ng) ™ yeds fi
‘ y Pl 4 J° 2R
n

divisible by Dy
b)'follows from &a).,
¢c) With &i(z') as in ¢),it i3 clear that we can determinate
Sg(f) tor o ye (y',ti(y')) inductively by

priedoey = o/t ir(a ¥ (2 13- 3 S1/05-p)
5P< J<xqn=T |

j“ n‘ ”-Y"
ty 5tz ‘ £J-(f)»

In fact the Eg then satisfy

$ea 2 (008 (2 T e (2 Wiz, 24(21)) = 0.
- ¢) follows therefore from b). v
6. When we want to relate €0 to e/, the following technical
iemma ie useful

Lemma 3.4. Consider y,iy'l<» ,p(y)=C .There is m' >0 such

; . . . &
that for every keN there is a unique function gJe 0( \z'=y'lkn' 'xC)
with the following properties:
I o ’ 5 i e
- g’ is a polynomial of degree kq(U)-1 in t

= Duleh, ) = Ol = gy(z’,t) =4

. : ; i
- p”(z',t)/py(z'x) s @a=—0 oila¥ L)
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- pylz',t) = 0 = (grat)f etz )= Difer 1S Rk

- for y with 4 (y'). # O0,there is S ,2 polynomisl in t and z ,with

coefficiente in Oy, such that gy(z',t) = S(z',t,yn).

: : s ' b k :

Pr ! = - . + e
| Proof.:Write (py/pU) FGREARTI6AN th + py h.It is easy
to see that gy = (pU/py)k(fl gjtJ) satisfies the properties from

the lemnma.

Proposition 3.5. Let gy be the functions from lemma %.4 for k ye,

a) e9(g¥ ) = £7(f) for all T e Fye
12, Ey(gyf(py/pn)“ ) for all feO(U).

Proof. a) is easy to verify for feC

by gl s )

]

Y.It feollows by density

therefore for general f. b) is a consequence of a).

Proposition3.6. Consider y*' with A (y') # 0, U with (W),seN

and let P be a polynomial in t and z with coefficients in 0

ybs
Z

'))=0,

Denote t1""’tq(U) € Oy.,distinct germs such that p(z',ti(

-and such that (z',ti(z')) € U.Further denote gy the functions
from lernma 3.4 for some k2 s.

Then there is o€ N end R,a polynomial in t,with coefficients
in Oy' ,such that ‘

: ¥ U ) :
% g(y ,tk(y & P(Z'7t’tk(z'))(pU/p(V' f(Z',t> = F/’AG-‘ °

y U (1))

Voreover,when p,P are define¢ for ry”{<~)(wben DgPare
polynomisle),then we may choose B to be defined injy‘f<'n
{to be 2 polynrnomial). ‘

Kbt

oof. o] v S
Frog pU/* i{z')) and therefore

(y‘ytk_kz')) iFk
" gy(py/pu)s is a polynomial in t.The coefficients of +7 in the

above sum are for every » symmetric polynomial combinations of

[

<

r from symmetry considerations using

[¢]

3

the t st +Thiisidag o
PSS >
the last part of lemma 3.4.The proposition now follows.
7. One of the main objectives of this paragraph is to.compute

2/2z Eg(f},when. A(y') # .0, 1€ s<n-1.We nay reduce ourselves to



" ~+ 3 f? 7 u ok e o ™ ~
the computation of 2/9z gaq(U)_1(f),for which: we have formula (3).
let us also remark:that if t(z')e&Oy, satlafucst Pzl oy YY) e ==on

then it follows,differentiating,that
26/102 = ~GonEdz V(" 710" )) /U2 Bt tr Sy . C4).

roposition 3. 7. For s<n, A(y')Y # 0 ,thepe sre QgrRg. € 0,4 [t]

polynomizals in t,with coefficients in Oy’ and oce N such that
u N U - : c i , G
( 2/923) qu(rf)mx(f) = E“Q(U)—*(( 9/928 + (Q /A7) /2 +ES(A ).

When DcEP,QSanc R, can be chogen in P.
Proof. . We consider functions t1""’tq(U) ss in proposition

5.% ¢) and use formula (3). In () we have to der Ate a sum of
3

composite functions and obtain7 ( 2 /2 Zs)ikgq(U)—1(f) =
Z (2R e, + (3t 6a')/0m Y 94T
k : & 3 i3
(e Tttt oo (21))=. T o@mer Y (o +
e k H
£ty /22 22/00) [T (¢ - 1(2) )= :
1%? 21, 135 = - g e
-oc (e /elel s (s 416 )% (Z_ et S (et (2)).
Lk 1k b= i) '
e now ohserve that o (2/91)“‘*<2tk/9z8 POt/
k na =5
Ele it (2 et 5 (2 ) = 7 (9o t) 0 et )]
17k . ’ X k'
ﬁtk,/97 e/ (e ty A YA o gy are the funétiohs fron

1l
lemma 3.4 for some k72« + 1 and a similar assertion is truer for
o= 9*:,{/32@ - ’21:1/928 '
22/ N(r L 58 Ll D B e et )
k sl et (7’) i#k .

The proposition now foilows when we apoly (4) and proposition %.6.

M7,

Corcllary %.%.Consider Jb,..., (U T e(x bﬂl<~;)(D.),
B! (D1""’Dr 1) .Then thers existseeN and a differential
operator 2¢0(13){D) such *hat
e e e E,;'ﬂ(“ (@ £) for all fe0o(U).
k A N :

b)Y VWhen ?}5€ﬂ0t€ the functions from lemma 3.4 for wome creat k

b
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Proof. &) .followe from proposition 3.7 and propositicn %.2. To
.prove b) suppose first thel fe 0(U). Then we heve

. ok : . 4 i S Bl ik T A
ll{l e?(gy f(pw/p Y o= lin, wiew.of proposition 5.5 )Aﬁijigyf) =

o U =iy ‘ P i

d.Consider U,p,pi,...;pm € O(U),end x € N - such that:-
~=p.-heg i no.multipledfiactors: and i~ of fnrm D= t3 + EE: e (7')*'
: J<.q
~ U has property (W) with respect to p,

- po(is in the ideal I generated by p

ELEEGE 1T Ol 2% lztl<m ) ia-an O(z', jz'l+m) module,and
0

1,...,pm in Ol

-

e , G ke ; s B T
it deielesrathat P e dadn T .40 ond only 3t Er(;)e EI(I).

s
5

1o

With the-aid -of propositieon. 5.2 1%

®

(e g(U)=1)xb matrix p',b=( «q(l)-1)xm, such that

18 also ezsv to compute an

sU(I) = ptelio zlilzt|<ma] '.

Further we introduce the following notatiocns

xq(y)=-1
MV = {ge [ Oy, ; & 1s 1in the Oy, mocule generated by
o O v
At .0
12 pl“y)}/
NY B &jé }”1 FV’ : & 1s in the Py, nnodule genera=ated by LV}\

4

“q( -1 -
r% v, yaogris-insthe Oy,module generated byz?(I)},

xVLT,')]'
{ do(U)—1 s
N — o € F ¢+ gis in- the F module generated by )
U,y' & E—I yl 3 6 ,V’ ablidle »Ei‘ < L J ‘AU,yv}.
Proposition %.:9..8) i (Moo= M
e = (y‘,yn) o U,y
Laplytyy Je= 0 .
% T ﬂ —~
b) m 'LI, ) (M) = e 5.
57 'r(x Vo oAr )“O 7 g : L’y
3 ,i~n):) % VU, Il
. 3 - b £ s
. Tn particular, £Y(f) e kv§—~>13 e/ (P} e Moy guits
. o o Sk 12

Proof. 3 follows from a) by flatness,so we must oaly prove a).



Toliprove ‘the nontrivial inelusion,considerig e, ., y i,
' AR ol

3 ‘o ¢ oo j — S N - ¢ = JPEN
This means that gigjt = 2‘(pU/py) pshi + e hy for some

: e N ; 2 A g
hy hyezoy, ywhich are polynomials in t.Dencte g’ the functions
from lemma 3.4 Por kizec o1t Followe that,Zgﬁ J N ny*p%

= &
o l £
1s divisible by DV for every y«lhis: inmplies ge:mU -
§ 1! 9

9. We conclude the paragraph with a result which relates
‘Zq(v)“7<f) to the remzinder of the Welerstress division slgoritm
when « =1 ,Thus denote T.(F), Jj<a(y) ,functions such that o . (z)=0

] ; ’ v

¢

JWhen A{z")#0,

<

implies (f - ZE(f) t9)(2) =

B T e e T (et (20 )62y 2 (2000 s
S k #ie ]
Row obessrve that Eiq (y)= L) = DS 4/(&x-7—1\'1'))( /31)
5 k J <ex¢

BRI T e ) S e ) e
1#k -

(2243 (2 ¢ e

= (7 :')i."-a’.-- YESEY ) -
A J=1 00500 ) j;é (t (z '\,b iz T
3
A Ak : A PN i’ i$ e | oF -+ { - t
o i I Ll - ("i(z‘))'\ztjt"k"l\:if ))l -&(LK'\Z‘)-.L_;(Z )).
i#k e 1#K oy

e can now use lemna 3.4 as in the proof e¢f provosition 3.7
and conclude:

T.emma 3.10. There are R (f' s L)y polynomiels in t,with coeffi-

clents In @, y2ad“oe N such that
. ky

£y _1(f) = )

3
°<q(.‘f) J‘<O( G(y)

N a
1((4/9V)Jf “J(Z';b/<ﬁ is

o
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§4 .The construction of Noetherian operators.

\

1.Cefinition 4.1. Consider ze(fﬂv a germ of an analytic

~variety and 7= (2,,...,3)) € O-(B).

a) (V,2) is called a Noetherian operzator.¥or fesF: we say that
”

e To(V).I£((V, 21),(v,9%) are

Noetherian operators,we write (V,?‘) = (V,Zz) sfe For ks £

(V,2) £.= 0 when Z:Bi Ty
(V, 91 =’ 22)f = O-

b) We say thet (V,?) is an algebraic Noetherian operator,if V is
algebraic and if QieP(D).

Theorem 4.2.(L.Threnpreis-V.P.Palamodov). consider a sxn

¢ 0,.Then there exists > 0 and a collection

ig. g :
of Noetherisn operators (Vk,ak),k=1,...,ﬁ-with the following

matrix p = (Fij)’ P

properties:

-~ all coefficients of 'the ak yand all the functions p; y are
analytic functions for |y-zl<»s.The ¥ ars analytic varieties
defined in ly-zl<~.

~ for every y with |y-zi<m,and every feLT;,the following two
properties are equivalent:

(i) there is g e F? such thst pg = f
(11) (VE,25)f = 0 for k=1, .ve,pm.
Moreover,when pij e P,then we can find algebraic Noetherian
opérators (Vk,Qk),k=1,...,/L,fur which (1) and (ii) are
equivalent for every 1'éCn.

Remark 4.3. a) (ii) is a nontrivial condition only when

y eLJVk.Fﬁrther,denote V the germ at z of the set

V = [ y; the rank of the matrix pij(y) is < s ).ﬂis a germ of
an analytic variety,which will be called the variety of p (in
the polynomial case,V will be =n algebraic variety). When yé€ CV,

then (i) 1s satisfied for all f.Therefore at such points y,
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2r € T0(V5) for a1l f.This implies easily (of. the proof of
porposition 4.6 below ) that the coefficients of 2? are all in
Iv(Vk).In perticulsr,we may change the operators (Vk, gy
with (vn v,2%).

S o V'UV'' for some analytic varieties,then the

condition (Vk,ak) f = 0 is equivalent with the condition :

b) When V

) ? b
(V5P e Bend (W e =0,

3 ° . lx k\ o - 3
Definition 4.4. We call (V/ 2R R < R a collection “of
y ’ s M

Noetherian operators associated with p,if for it (i) and i1 )

in thec~em 4.2 are eguivealent.
tooposition 2.6 shows that Noetherian operators associated

with a given p are essentially unique:

k

K
y 97)

Proposition 4.5.Consider p = (pij) a sxm matrix and (V
= L ¢
T T : A i s
k=lgeee; 4, (W, 7)) yr=15000,9 ,two collections of Noetherisn
3 ; 9 y § 9 3 b

operators,associated both with p.

Then there exist : h, e 0., dyx # 0 and Iy e OZ(F) such

P
K

1 k k : :
that (Vk,h @ ez (Vk',thP ¢T) and such that dr f =0 implies

k
a = 0.7hen(vS, 35y, (WF, 4T) lgebrai .
vk hkr T =00 ¥nentV=,2%), (W | ) are algebraic,then we may

S = P 5) 3
choose ,lke”hkr e P(Dj.

]

2. Before embarking on the proof of theorem 4.2,we briefly

study modules defined with the aid of Noetherian operators,

Proposition 4.6. Consider (Vk,ak) k=1,¢e.,4 8 collection of

Noetherian operators and denote:

= If e F;; (VK, 9k)f = O.k21, wnie gl

i ; J k
a) Suppuse M is an 0, module. Then fe M implies (Vk, 2 (B))fzo
: : k kit
for 211 £ and ell k.Conversely,if for 2ll feM ,(V , 2 ‘B))fzo,
VB, E=iafu then W g an F, -module.

1~
b) Supvose that all the V© &are irreducible,ancd suppose that ¥V is

) - il
an O, module.Suppose that r ¢ |J T(V"),for some re0, and
g 1

thatorf € M. Then: e .
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fc) Stppose'vk =V ,k=l,e0e, that V is irreducible,aﬁd suppose
;that M is'an 0, module.Tren M is primary. '

‘ Proof. The first assertion in &) results by increasing
induction in |8|,using the fact,that £ e M implies z>= f & M.

. The second assertion in a) is obvious. 4

b) We know that (Vk, ak(B))rf = 0 for all k and B,and want to
conclude that (Vk, Qk(B))f =0 for all k and B.This follows by
decreasing induction in I8l .In fact,for [B|great, (Vk, 9k(8))f =40
is trivial,and then we use o5 B)rr = r?k(ﬁ)f &

+ .2 (a/92)% KB
e

thet r Bk(B)f e Iz(Vk),and since the latter is prime ( by a

f/yt.We can now .conclude by induction,

theorer of Nagata-Zariski<ef.B.Malgrsngel3] ),we obtain

ﬂk(3>f & Ig(vk). ¢).follows from b) .

3+ The proof of theorem 4.2 is essentially by induction in n
and s.We separately formulate the two main steps in the proof.

Proposition 4.7. Suppose:

- theorem 4.2 is proved in n-1 variables,

- there are given p1,..f,pm € Oz.
Then there exists a collection of Noetherian operators

k,ak), k=1, .eeyt Wwhich is associated with the 1xm matrix

(V
5 X Qk a1 :
(p1,...,pm).For p;e P the (V7,27) can be chosen algebraic.

Proposition 4.8. ILet se N be given.Suppose that theorem 4.2

is prowed for any ox m matrix,with o< s (for arbitrary m ').Then

theorem 4.2 is true for eny s xm matrix.

Proof of proposition 4.7.
The first thing to do,is to reduce the proof to the case,when

- the ideal I generated by DyseceyD in O0_ is primary.In fact,we

m Z

- may write T as a finite intersection of primary ideals,and

construct for every such ideal,ar associated ccllection of



s

‘Noethc—ian operators (proposition 4.7‘33 in an obvious sense
related to ideals!).The collection of operators which arpear,is
then associasted with I (this follows by flatness o

We now apply lemme 1.10 and ob+aln p~tq+ 2. e (z )t ,g:,p“e I,but

J<Zq .
such that the dlscrlmlnant‘A of pin t is not in the radical of I.

For any fixed ce N,it follows that f = Z:p .8 . ,gb e_y

zﬁ Pi=08 O g . ,for some pée Ty o will be “hOsen below.

Further,we choose a neighbcrhood U of z,which has pronerfg (w)

1

,1f and onJy af

wlth respect to p,and denote (J, » the operators constructed in §3
‘for p*. We conclude from §3.8,and the induction hypothesis,that '
there 2i-e Noetherian operators (Vk Jk) yK=15000,t yin n-1
varicsles, Wk irreducible,such that f'c [F .] - is in the module
generated by EJ(Z:D OfU)) in EF J¥9 if and anly if aw- J‘) = O
k~1,...,p¢.ﬂe can labbel (W Jy) in such a way,that for some N
T{plg ey A é‘I(W Y for lugk.gu' but 4 (W Yifor wilvaok <ng

(if there sre such k ).We now apply corollary 3.8 erd obtein o
i‘j‘,,,-;;f;fama € O(U)(D) such that A" Z;J. Ej(f‘) = :U(5%r) for ren(y).
The rroof of propositiorn 4.7 comes to an end,when we prove:

Proposition 4,9, With the notations fron above,

(E % &) 0w, U O R A ER W

is a ccllect_ion of Noetherisn zperators associated with PisecosDpe
Procf (W@ freely use notations from §3.).

/ When ,iéEO(J),lt is clear that (v, B)Qifi = O} For any operator

(V, 2) from the above.By density,we also_have (v, a)pifi = 0 for

f}_er.To prove the converse,we first note the followirg:

Lemna 4,10, The coefficients of (Q/Qt)PLQK(B) ( written in the

standaru form Z:ar(Q/Dz)i‘) vanish on W-x CIW{?=OI[7 [V.

f + T an = e
Ir feoet,for any £ Z:Djfl. :
17

. k(B
Auk Trnqf KBy 2 g ,which shows that (2/0t)% ) ¥(8)p

¢ 0(U),and any B8 we have



Sab=
venishes Sox AL Rien ¥ wC(fp.=ol@ by,
tion 4.9,suppose that for

si
(o (/0T 2P

To raturn to the proof of propo

sorne f € Fy 3

r<«,and all B.This also implies that ((Wx C)f)V,(?/?t)TQ

V) fiz 0 AEoREEl s st
K(B>)

A £ = 0 for any @ ,which,in view of the pre ceding lemma,shows

that d 1( Bk(B) ATF) = 0 for ell B and k=1,...,u'.We now

wk ocg(y) ‘
use decrescsing induction in |8l ,es in the proof of prppusition 4.6
/ < 3 ] X k y g o Lo y
and obtain dyi 5xr(y 1(2 ot f)(pU/py) Y. = 0 (here g7.4558
“from leume 3.4 ).This gives in particular,
oYl - T ; L B
~(WK,A o) 12 gy(gyAcf) = 0 for k & 1,.e0y " which implies

4 .U Y :
(w ’J-) ly \gyddc-f) = 0 .When o~ is gregt enough,we aleso have

k k 5 A ey E
i 1‘5, gy AT )

of the (Wk, Jk) this shows that gXATf = Z:pjhi for hi¢5 FY'

O for s '< Kgm.In view of the choice

sy

Finslly we remark that we uway divideont g

r 1 T A T 4+ s A 3 TS, N 4 e P
In® tie tesge,when p.'e P,the proof of the cOrresponiing part

; x . ; 3 » ol
in the theorem is practically the same.We then choose U = C

?
and apply lemma 1.10 in the polynorial case.
Note that the proof is much easier,when dim V = O.
51 Remark 44114 a)In the ‘proof of proposition 4.7 we could have

Used induction in dim V(I).Thie ie nstural to do in part II.
b).Suppose that the ideal I generated by Dy Ppy St 07 is

rimary and that dim V = k.Then the projection on the subspace
o

< e e : : . :
Zoa ﬁg is for any z,, @ veriety W ,which also has dimension k

(note that the projection is proper in view of the fact that

: s 2 v a |
p vanishes on V and has the form "D = e 2:; c.(z‘)tJ ,tszp).
: J< 9
. ot . . . O
v and W are not nacesarilly irreducible a2t points close Lo z -,
hut in anv case they are unions of irreducible varieties,z1ll of

dimeneion k,at such points (this is a theorem of C.Chevalley.
cf.A.Crothendieck [1] ).It is then easy to show et an. the

B S - . e B £ A e 3 L, ) e A A
notations from the proof of proposi tion 4.9 already. the
L t b «)



already the Noetherian operatofs with dim Wk = dim W are a.
collectﬁon of Noetherian operators associited with aZO(I).In TECh;
this follows from proposition 4.6.To see this,denote M' = {f;
(W, £97 = 0,ain W8 = aim W} w00 = {25 (W5, K)p = 0,dim W< dim wj,
Then EZ(I) = M'"N M''.Since gZ(I} has & primary decomposition
formed:by modules associated with varieties of dimension k,we must

have M*' = M. .

Proof of proposition 4.8.

We first intrbduce awnumber of notations.

1

Thus denote p' = (p11,...,p1m),p (pr A2 »yand consider

iji >
matrices q’,q' with” entries in 07 such that the sequenc:s
k 1 1 :
1 .49 m D Jeit ofh ' 1 e
OZ — OZ —_— Oz’ OZ : OZ AL R O s 8re exact,

By flatness it follows,for all y close to zy,that the sequences

K 1 1
I m p ! gt e nd s-1
> F = F F > F —F
Fy T ¥y Yy y

It is clear,that pg s F has a solution,if and only if there is

1 g = fi,and if for any solution F for p1 g =7,

are: alse. exact..

a solution § for p

there is a solution h for p'q1h = f'—p'g”,f'=(f2,...,fs).The'

solvebility of p1 g = £, can be characterized with the aid of

k

1

cnndlblans (Vo )f = 0,ks1,.00, o ,for some Noetherian operators

(V 9 ).To study the solvability of p qlh = f'- p'g,denote (V QK),

Joi= ﬁ*+1,...,l’ Noetherian operators associated with P q1,and

k

G, o ), k =v+1,.0., x ,Noetherian operators assoc1abed with p’q .

Such operators exist,in view of the induction hypothesis.'

We now have the following easy remark:
1 1 oot 15
Remark 4.11. puie piq! Fy =y Pl enilag. F .

In facf both inclusions are equivalent with u e(q
1

k1+k'
yq')F e

—ed

In view of thls remark (Vr PIU=0, 2 =vslii.. » Jis

equivalent with (Vk, 2

p Ju =0,k =l e ey vIVTE PO Towse that
there are AK<EO s dvk A # 0 and Akf € OZ(D) such that

G - b b = > Aue 010U Monee Shonfin 8
1



-05~

1~

ﬁhen D g = f1
1

of p'g h=f' - p'E with the =id of Noetheriasn operators

,we can therefore characterize the solvability

applied only on f.In fact,‘(Vk, gk)(f"-’p'g) = O for k=ptleeeyV
is equivalent with O = (Vk, ;{g7k)(f' - nlo) = A(Vk, ;\';k?k)fv'

-(Vk, Z 2T) £, = 0,for the seme k.
T Xr 1 ;

The solvability condition for pg = f is thercfore (Vk, Qk)f1=o

.k-'-' ,--o’/"‘, ”(2 ?f' ZAKI‘ f1)=O,k=/uL+1,»..,‘ °

§ 5. The local extension theorem.

At thie moment it is possible to give a proof of the
fundamental principle,along the lines of the prcofs given by
L.Bhrenpreis [2] ,V.P.Palamodov [2] ,and more recently,J.E.Bjisrck(1]
In these proofs,the following theorem pleys (in different variants)
s centrsl role (cf.e.g. J.E.Bjsrex [1] ).

Theorem 5.1. {( "the local extemsion theorem " ).Let p be 2

"sxm matrix of polynomials,such that the mocule me is primary,
and Cﬁnwlde“.f> O and 4 >O.mhen there exist: ‘
pr > 0, ' %0 4,0 2O L0,
-a polynomial R which does not venish identically on the varietyfgfg
—axset (Vk,ak),k=1,,..,ft of aléebraic Noetherian operétors,
agscciated with p,
such that-the follewaing is true:
it 2% v end it fe Lo jz - 2°t< p (1 + 12%1)7 Tl lsf‘ies
;z;)li*f Sl 1 ton S N R R lz°\ e,
then there 1is %1;[0(12 - zol<:y'(1 +[zo[)—J')]S such tlat
el

z for |z - zol<p'(1 + le()_{w snd such

o IR
that ¥ - Rfe plo(]z - ZOL<?'(1 + 12°D) sl

. Using ch.VII from L.Hérmander [3 ] ,it is possikle to show
that the fundamental principle Tollows from tre locel extension

theorem (cf. § 2 from J.B.Bjsrk [1] ).



For completeness,we scetch a proof‘of theorem 5.1.
In part II of this paper,we will turn,with more details,to
another proof of the fundamentsal principle;in which the main
emphasis is set on the structure of distributions
concentrated on algebfaic varieties,

The proof of theorem 5.1 relies on ch.VII from L.H6rmander (3]

We first mention four lemmas.

Lemma 5.2. Suppose the local. extension theorem is valid for
I(V) for some irreducible algébraic variety V,and cohsider P20,
.JT>O,Q6,P,Q & I(V).There are ccnstants é,K,p',J‘ such that if
heoll]z - 2% <f>(t-+lzol)°d} #atisfies (Qh(z)l ¢ 1,for z ¢ Vi
Iz = 22000 p(1 = [2°1)7 7 ;then ()} « (1 +[2°])K on
v {lz = 29 < Pt 1 w9y

Proof.Chcose R £ I(V) anqug.eo(lz - z% < §?(1 +lzg I d’)

—

—

—~ ~ £ L
such that |h(z)] ¢ €(1 +]z°)¥ on lz - z°]<f>(1 +12°1)7° and such
o~ ‘ s - g:
that h = RQh on Vol = z°) < F 1 +]2°%) «Further,we use
theorem 7.5.11 from L.F¢rmender (3 ] and write = h = RQh® +

+ Z:pihi,with p; generators for I(V) and h',hi,gatisfying

[h*(=z)] + E:{hi(z)l( &1 +{z°!)K on V1 zi= g% :f'(1 +lz%‘)—J'.
Obviously,h = h' on the latter set. ;

Lemma 5.%. Consider V ¢ W algebraic varieties,and suppose

theorem 5.1 is valid for the irreducible components of V and V.
Let 2¢P(D) be such that 2 f vanishes on V if f vanishes on W.
Then for every p,J ,there are p',J",C,K such that the folicwing
is true:if he o(lz - zol(961 +lzol)nJ‘satisfies jh{2)] « 1. 0on
WNlz - 29 < p (i +12°%y~7 sthem [lEE) & otz ) on
v lz - z°I<’f'(1 +iz°l)"J'.

Proof.In view of proposition 2.7;we mey assume that V = W,and.
we may also assume that V is irreducitie.Now choose R & I(V)
and T such that |H(z)l € €(1 +12°)7 onz=z%c p(1 +[2° )~

and such thet Rh - h vanishes on V.Therefore, 2Rh =)h,when z V.
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Further we observe,that if 3 satisfies the hypothesis of the

,(8)

proposition,then so does forceny. .8 (induction dn Blt) .
We now prove inductively thét]RDCB) hiz)l s ehd +rz°()K',

and finally apply the preceding lemms.

Lemma 5.4.Consider pLof form p = T s g%%q cj(z')tj.Then
for every f,f there aregﬂ,J' with the following property:
- if z° satisfies p(zo) = 'Oythen thére ig.ip/d < Cige | BUCH thet
_the set {z; |z' - zé\S e' (1 +[zé\)—5' ol =t Ve el +Izé\)-d-
has ‘property (W) with respect to p.
This follows,e.g. from §2,ch.IV. in B.Mélgrange Ed. 1 .

Lemma 5.5.5uppose that UCZCn has property (W) with respect to

il Sadit
p andasof ferm U = [z | 2! -zé\sg'(1 o EAI AR

it ="t L< el +\z'\)-é-.Denote'A the discriminant of p with
: o o)

respect to t and supposes W ekl

is an irreducible algebraic
variety such that A ¢ I(W).Then there are p'', d"",C, Kie such

that if h <O(U) satisfies | (2/9t) f(z)|€ 1 for ze UN [Wx CINp=0],
r<eo,thenldP(£) (2 ¢ 01 +[2' X for lzt-zile o' (1 +[zll)” e

This is not hard to prove,if we‘use (3} from.3 5.

Theorem 5.1 can now be proved with arguments which are parallel
to those from §4.To do this,it is however convenient to get rid of
thé\R from.the statement (to make R = 1 ).This can be done with
the arguments from §1.2 in J.E.Bjorck (1] ).We can now extend
the theorem also to the case of modules which are no more
primary {this extension can be evoideé),and then we stert
induction in n and s.What should be done in the induction in s 1is
obvious.For the induction in n,we work on sets lixe those from
lemma %©.4 ,D associated with the ideal under study as in §4.VWe may

» ;

then project with the operator £ to n-1 variables and apply

the 1ocel extension lemma there.



PART II. The proof of the fundsmental principle.

§ 1. Distributions concentrated on algebraic varieties.Their

e

projections and liftings.

toDefinition 1.1.For ACGCT & compact set, vcc? an algebraic

veriety,p e P without multiple factors of form p = 19+ ) c-(z')tJ,

and.et e N, we denote o ;
=SV ETA) = {ues L Goate) : supp ucfA,fﬁ = Q'forall T eI(V)J,
=S p, o A) = ples'(cn); supp wEA, Do =0

i S N {pves'(cn) : 8uUpp WCA,u(g) = O for all g ecg)(cn)

:__:-f_Q

which p(z)fp<«, implies (9/2t)5 wmta) =05,
We obtain a first information for the ‘2above spaces using:

Theorem 1.2.Let Q be a matrix of polynomials,and cousider R
PRt AL LR . A

~ %
Sien that S Bt G

>Pt is exact.For every t, a> 0,
vy > 0 there are constants <',C,£ such that i¥

- ¥ 0 A : o} 1 P e .
\;vuéiS'(Cl;{fz- - zi!s a} )Jr Forwadne 2 el weatiafids B = 0

. : - . n o} Nt
" and Huﬂtg},then there. 18 Ve Ls'(c’;[{zﬁ - Zi\$3%f Jl teueh that

u= Qv and [vi_,scC(1 +[ZO§)KQ

This is a consequence of wellknown results of L.HSrrender il
S.Lojesiewicz [1] ,and B.Malgrange [1] about the division of
distributions by polynomials.In the ;éesent situation)theorem 152
follows qﬁite sasily,if we know that/is true for the case when
Q is a single polynomial.For the—convenience of the reader,
we indicate this reduction in §5 from below.

2.Proposition 1.3. Denote A = {z;lzi —z?{<a} Al {zgiz. =

$aty} .V,VJ W,W' aere slgebreaic varieties.
a) Suppose V =LJVj. Then for every ue S'(V,A),there are
uje S'(VJ,A') such that u :Zuj°
b} Suppose V is irreducible and consider ae P~ I(V).Then for every

wes'(V,h) theretls veST(V,A") such that avi= u.Burther if

g ¢P(D),then there are Vo € SY(V,AY ) ‘sueh thet “u"AZ: ( >VO,
; : 5
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¢c). Suppose . & e P{D) is suech gtheat 4., T =60 implies g & £ =0 For

Vi

ot

all fe P.If ues'(V,A),then "2 1 €S '(W,A)
d) Suppose ae® vanishes on V~ W'iThen for every ugesS'(V,A) there
is weS'(W'MV,A") such that xu = xw.

Voreover,for every v ,there are constants z',C,K,which do not

C

depend oa z ,such that if HulL(1 ,then we can choose Ujs ¥y Vg, W

such that

.g Hujﬂt. +ﬂv”z. 4+ ;%'ﬂvﬁnz; + Hw”z. + Htguﬂt. Ko o (zol)K,
J-s S'(V“j

that quj = u and such that o] eI(VJ) implies gw. = 0.By theorem 1.2

.Proof. @) For uesS'(V,A),we want to find u ) auech

this is possible if and only if Au = O for all Ae (1 I(VJ).

. ']
Therefore a) follows from I(V) = [ I(vY). R o

- b) We sesrch for veS'(V,A) which gatisfies Ay = npeand: agya= 0
for all g €I(V).The coppatibility conditions of the corres ponding
system zre that r eI(V) implies ru = O,i.e. the hyDOth681S on. e
The second assertion in b) follows from the first,if g is of order
~zero.#e may therefore apply induction in the order of g.To do so,

first choose v such thet av = u.Then gu = gAv.= A gv -

(s

#0
¢l is triviael

4‘/f! g(fj A(Yj v and we can apply the induction.

d) ‘Denote i Vfﬁ{a~ @} .dHen ¥ .= V‘U (VAW'),and we apply a).
The last assertion in the proposition follows checking
conatants in the preceding proofs.

3.The main tool which we use in the study of the spaces

=1

. . . : I
SY(V, ) aspEojection on € .We will econsider here projections

of elements from S'(p,o¢,A).
Here and evervwhere in the rest of this paragraph,p € P is

without miltiple: factors,of formap. =ct Z c:(z')tJ.
3<q

Defins tion 1.4. e define ﬂ%: S'(pyotsA) saig e (Gp 1

L

B the projection of A on gl by

(Tul(g) = u(tk g) gesie T i



~ W

< g1

The map S' (p,d Ay FT S'(Cn~1

yB) defined by the

components ﬂg,..., w111 be denoted JU,

ot q—1
The next lemma is dual to lemma 3.2.pért i

Lemma 1.5.a) Consider r a nclynomlal in n-1 variables.Then

Jf(r tJu) — ﬂﬁu.

b) Consider r € P and denote rjk the coefficients of tk iﬁ

f-u Jk t + p“h.Then j[;;( 2 % er ‘& :

=i

Yhen W Cc™' is an algebraic variety and

r e I( twxc) f][p == 0] ),then,for‘u = Lt € I(W).

The proof is obvious.

Lemma 1.6. Consider  A.= [z; b= z?l&ﬂa} .For every c there

are e .« G such . that for nesS'(p;x,A) which satisfies Huﬂz<1

the following two assertions are ecuivalent:

)
ot
S
5

(i) there Is v e 8'(p,«,A) such that u =27 send such thet

(ii) .7["_“5. = Og }: = ‘O,o;c@’()(q"‘"uo
Proof. (i) => (ii) is trivial.To prove (ii)=>(i) it suffices

to.show thet or all 'geC%CJU which satisfy 2/9* = O,we have
ulg) = QiIn fact,we then apply theorem 3%, 22 from L.Formander [2]
and obtain u = 2/2% v which has suoposrt in A and wvhich can be
estimated suitably.In view of 2/t p"v = ( = p*2/2t v =) =0

we have p* v = 0.Thus suppose g satisfies /0% g = O.We can then
apply the Weierstrass oreparation theorem and find Bpree1g do“T

Oo(Cn"1) suich that g = Z:gjtj + p>*h for sone hesC .1t
zollows that ulz) = i u(g- tJ)

4. In order to define an inverse to the mep N ,we first must

extend sorme consty UC 10hs from § % yPaR
’ : o . Moo ks Dal : ]
Lt fipetiwetan il e Por Fe " (C7 ) Tunetione 'g. = g:6E n

d l:)
S : a5 i A t‘) =i @ 4
n-1 variebles,which are defined when (z') # O 2nd are C there,

snehethnt
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zeV, A(z') # O, p< =>(2/2t) (f --.Z£i(f‘}~"])»’z) = Q.
Here W= lz; plz) =0} end.l is.ths discriminent of » with

reapac

“

ot
—

Ot

-

n the notations ¢f0m $ 3,part I,€ corresponds. to

g gl

.Obviously,we could have defined & for funetions
defined on more general sets with property (W),but we do not
need 3uch extensions here essentislly.

Meny results from § 3,part I,can be obtained for the present
situeticn,using the sare erguments,

mbus there are pclyrcmiels Tj such that E (f)ie gxq_1(Tj'f),
and when A(y') # 0 end t.,...,tqeaoy sre ~distinet germs which
satisfy D(z’,ti(z')) = O,then clcse to y',

S R AN d'.'“‘p A ! U 1
g (E)(8) = (IARHMIZ. (2/0%) <‘/J;L(t t5 (22!, 4 (21)

: ¢ : T
This shows that,for ¢ great enough,the functions 4 ¢.(f) cen
J
be dafined also onA(y') = 0,and that the extension is of any
civen degree of regularity,if we chcose o conveniently.liore
nrecigely,for every k ,therc are g,» ,C,K such ih&t‘Av'Ej(f)'is
k=tirmes differentiztle @nd such that
(o =T . g : ’
sup. [ T A g.{r)itet )l ¢ c(1+ 1z ¥ v D e 2t
'u,-L k ) ,Z W lx}\ W 4./,2'
(R R
1 Al r g l = v K
Here we have used that fipiese. a7yl s T+ Y e
Fon e @ thie s wellknown end for [ #0 it follows by
differentiation of p(z" ti{z’)) = @rhsing induedion,
Propesitich 1,7. For every'a, k,there are 0,%.,.¢ C,K such that

if L.O,oqo, 0(1 6 S'((jrl“1 { lZi = Z?’t\( 9 j ‘; oou,fl""} } ) &an d i'f‘
luj(g)lé sup sup - DY 2(z')] for =211 g:ngO(Cn“i),then
i€ x SRR :

p—g
Q
s
Py
&

Z: nLEA” £ .Y 16 8 distribution
: J J

e
53
q
=
O
®
a
L ]
=
L
e
=
1t

e . J g
. : 0 - i \;<:
in S'(p,x,{izi—zils a,¢z1,...,q-1}x[lzg el + [LO{) )

B - I o
such that f‘q(A(ruO,..e,A w  PHEYeTe :filf?ac (1+12°1)X (Dr(2) ]

n
7z eC



Further, m is an inverse for T ,in the sense that
i (wps o —~
W(ngf)u,---,qu_113 u) =y yL o all e AGWn e s
The proposition follows easily from (2).

Proposition 1.8. a) For every z,there is z',0,¢,C,K such that,

i in the proposition 1.7, || <1 then”

i ,.
J’C

ﬁrq(Zfruo,...,éfrudq_1)Hz.-( c(1 + Izél)K.

b) There are polynomials R 10 £ 8<x ,and o' e N,such that,if we

denote 47 the operator of type m nssociated with p for =1, then

h qr)(o,...,o,A W) =T @ o49eR L GO ),

e) When o = 1,W.Cie™™ l,uJ &g ", lzi - z?lg a8,i=1,44.,n-1),then
f«;(fuou,...,fu p)e st uxciav, (| 2,27 ¢, 1¢n}x[1tt,\<c<1+1‘z(;l>Kj).

—

- G‘
d) supp Qﬁvﬁ'u?.ea¢ﬁll u) (3 ‘supn 1.
0 xq-1 .
Prooi. a) follows from propczition 1.7,b) from lemma 2 10
part I,znd c) is immediate It remains to check d).
" Since we may multiply with ¢3 for some convpnléﬁ ar et
suffices to show that,for all sufficiently small sets U with

property (W) we have supp ﬂﬂdrﬁgu,..e,ﬁﬁﬁxq_ju) N &ﬁ(z’)#O}C:.

C. U0 NGz ) £ 0] ,if supp v C U.supp. uiC.U impl%es ﬁﬁ =98
88 is eagily seen. X

i : il | :
Further,it is immediate that n(d?ﬁbu,...,é?ﬂuq;1u) E el

Bt suffices therefore

where B i3 the projection of supp u on C
T a7

to prove that (A ﬂgu,...,A ”qulu)(f) = 0 for any

e Cgo( Ut C NUAE2") = 0),U' the projection.or Ueon (& s end

which satisfies:supp f N1 U = ¢@.

Now choose t1,..°,t. = Q(Cn"z\.ék(z')=0 ),distinct functions

1} el

such that p(z',ti(z')) O0.If the suppori of f is sufficiently

small,then we can labbel these functions in such a way,that

(z',ti(z')) & U,izi,...,k,(z',ti(z')) & Usizkbl Lo ha, fer any

n=1

z' in the projection on ¢~ ' of supp f.Now we write

f7 (ti & (z Je! for some f.Y.c C (L ) and choose
1<k:
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gj(z') e}Cgo(Cn-1),j~<c<(q-k)—1 suehithatik €ig g, ppus
implies (2/2t)% (£'= Zg:t9)(2',t;(2')) = 0.In view of the

-

unicity of the ij(f),it follows that Zizj(f)tJ =

= [1 (¢~ ti(z'))oa( Z:gj(z')tj).Therefore,

i¢k
PN P o TS Z 8Tl es(£)) = uA”x e5(£)tY) =
= u(A” !:1 (= 1 (mr )™ (ZgjtJ) = 0,in view of the fact,
i<k ‘ A
that py, = e R ti(z'))uon supp Z~g.tY.
i<k 3

'5.We need a commutation relation for ?/?zsn7 which is dual
o corollary 3.7 from part I.We first observe that,with CgiRge B

those from lemme 3.6,part I,and for A(y') # O

(3/22) £ (D)) =2, ,((2/224Q A" 3 /3t+R /AT )T) (3).

 In fact,when we derivate (1),then we arrive,since'gfi/gzs=o,
at exactly ‘the expressions which occur in the proof of lemma 3.6
fromipart L.

We conclude from (%) that there is a first order differential
operator Ds,with polynomial coefficients,such ihat (still for
A(y")#0)

& AT GO B P B i) (4).
' We now obtain the following

Proposition 1.9. Consider J;,...,{;q;1 differential operators

in n-1 variabies,with polynomial coefficients.Then there¢ is o

and 2€ ?(D) such that _

Lt {j d 5 () (y") = éxq_1(9f)(y') when A(y') # O.
Moreover,for every z<€¢R there is o such thst if

W e S'(Cn-1,A) AeHSes then

t - LO+T t G40 £ i
,'rj( d(_OA ‘,”‘]’COI, Or‘o((‘]..‘]‘—}‘ VT) = &"‘7(0,.00,6,‘5 W) oe

(this means in particular,thet both sides of the equality are

welldefined.)



Proof.When ¢' 1s great enough,we may write Jk initheifeorm "« 3
B 2 -
Aﬁgk = aB(AF?/?zl) l g .(Agé/an-1) e for some aB,which
R , , ;

are polynomials in n-1 variables.The first assertion therefore
follows from (4) and &(f) =€ (T.f).The second essertion
follows by duslization.

6.Prodosition. 1.10, For every.i.a, Zythere are, <!',o0,k;C,Kewith

the following property: deunote . = [%;'(zi - zgls a] for some

= Then

2?2 €
a) For every u eS'(pyoyt) withlh;”z$1,there are uje:§?(p,x,A)

such thet ATu=2- _ (2/20)% u., lu.ll, € c(1 +12°DHX,
C o Bk J it

b) Suppose that for some us e S'(p,x,ﬁ),uj € Ho b
: %y di 2 e AT w6,
§<x (@/9t)"us = O.Then us= 0
Proof.When @ 1is great enough,we can apply lemma 1.6 and
& =) i .
RS r7 Foer s = ‘ A o O
proposition 1.7 and find V1€'S'\p,d,a), llv1lhy SO TR 1-)K

— (s o=z
o - Al a -
-/, 8UC ‘t'L‘- C == & ’7,\“ ® e -77: ) = :)‘/:’\‘)A\v o
/8 hthat A w fq\A Ty eeeyds &q~1u, (2, )V,
We may continue this procedure,and asrrive at a representation
L2 B — " — k,;_‘i 2 s
A u=z;.(%@£ﬂuj+(9ﬂt) Viyq For some u,eS'(p,x,4),
J<Kk J
Vi1 € S'(pyx,A),8ll estimable.It suffices therefore to show that,
when k is great enough,then supp N e {z;zﬁ(z') = 0}.

8

To see this,we first observe that,for soms 7ceN, D“f(z) = 0

for sll IBl¢~ and all z with p(z) = O,implies u(f) = 0,and that
(2/20)9(2/9t)% £(z) = 0 for p < ,plz) = O implies us(f) = 0.
For every fescg°<cfl\ {A(2')=0}) we now consider

& ame
fjaé Co (C ) such that | :
p(z) = 0,x ¢« k, o< => (2/20)° (972t (£-3 B 0,
s < k,asg~1

Therefore,if k is great enaugh, L u(f);dwu(z % ¢ fqg)(z') =

= ((?}/9%)J u%(Z FoR e Ve 2:((2/2€)Juj§(f).This proves a).

.L.‘.- S A

J J
b) follows frcm the proof of a).
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| 7.Definition 1.11. Consider p> 0, 4 20 and sets A-,B Calie
We write A C B and say that B is a2 (p,d) neighborhood

; (f ,J) 5
of A if the set {z;distence(z,A) < o (1+izl)” "}C B,

5 ) n : :
Proposition 1.12.Consider V. C C en slgebraic variety,

a >0, v> 0, z€é R.Then there are >0, J > O,z;,C,K and
coordinastes,with the following property:

ifnve S'(Cn;flzi
wy e SPCCEEE = il at»}), lvil, + twil “dee a4 B =

o
- zsls a}), Yufl, ¢1,then there are

such that v ="v + (9/?En)w,sunp v C:(f &) e
]

We postpone the proof to the end of §3 from bhzlow,

§2. The fundamental principle in S'(Cn,A).

1.Theorsm 2.1.Consider a)ih y>0 and p = (pij) an sx m

o i k ;
matrix of polynomials and (Vk,9 )yk=1,¢eey0 @ collection of alg.

Noetherian operators associated with p,..
Then for every.z there is z',C,K such that if

Wie fS'(Cn,{lzi - zgl.g sl vl=, H11H1<1 satisfies

tpui C
Sk o , : ;
then there are v, € 8'(V, {\zi = arls a+tv}]),k =lseee, . such

that kaﬂz, ¢ c(1 + 12°1)% and such that

Hoale
Tl zr 0 W,
X k

Note that the converse is =zlso true:if (V,2) is an algebraic
Noetherian operator such that (V,2)ph = O for all h épm,and (i

tthV = Q.

v € 8 (i) yithen
Before starting the proof of theorem 2.1,which is dual to
§4,part I,we mention the following corollary of proposition 1.3.

Proposition 2.2. Consider Li,Lk%fip(ﬁ),k=1,a..,wx,j=1,,..,s
J (¥

% k 5 s :
end Ve sadasil ool algebraic varieties.Suppose that
i DS e~ el BN dy $70 D oy e =0

(W’WLjﬁﬁﬁf:hk ij) Roph c?,dvh # 0, hy €P(D).Then for every =,

there sre z',C,K such that the following is true:
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for every wea! V ilz1 - zglsai),mwﬂz,gi,there are

W € S'(Vk, ilz:.L - ( at v) llwkll. e 1+ 12°)% such that

2+Proof of theorem 2.1.

In view of the opreceding result,it suffices to find algebraic

. ; k k ;
Noetherian operators (V )k ,...,f& and estimable

2%n)

v, € SUVS, lz, -zll¢a+ v ') such that (V = 0 and such that

e
= Eitak vk.This will be done with arguments parallel to those
from §4,pert I.As in that paragraph,there.;s imduetionl in n: and ss
Since the induction in's is completely parallel to the arguments
from §4,part I,we will only perfcerm the induction in n.

&) Thus suppose,theorem 2.1 is proved in n-1 var aulc; and

1), . ok : |k
auppose we S'(C 5 iz < a ) satisfies Pyl == P DS 0

ity

»

. for some polynomiale P; € PuYle can reducé ourselves to ih:

<1t1atjon when the i1deal I generated by Dyseee;Dy, in P is

e

V;primary«We now choose pe P end & N such that p hes no multiple

factors,p = 13 4 32;5 “cj(z”)tJ,p°%zI eand such that the

ikeriminant A of p with respect to t does not vanish identically
{z; Di(Z) = R TR
Further,we observe that it sufices to prove the assertion
from the s%etement for A®u,vhere eeN is some fixed nurber,which

will be chosen leter In fact,if we know that

Ay = Zﬁ?k Vies VTGES (Vv k lz zglg a+y/3 ),for some
Noetherian operators (J k) associated with pl,...,pm,then we

.can_apply‘proposition 1.3 forithose Vk with A & I(Vk)

tyk :zf"ég E By o for v e 80UV, oy - 2Qigere W ).

write v

k

m e ) $"~" t k<8: o R DN ‘. Uy
HUeS vz vy =y My 7 Vg ¥ibee intT 3l vmeams That tihe

k. e

i K il
supmetion igronly for those k for which A & I(V )-, satisfies
Ny = O,for come great ¢ and also p. R O.%Ve may therefore

apply induction in the dimension of the associated vsrieties.



R

/ b) We now epply proposition i.1C and write A® u = Z:. CD/Qt)J

gtk
. for scme u; e §1(p,u,(zi - zgl‘g a+V) which saticsfies
HujH5<ER 1+ 12°1)%. 1t also foliows that piA“'u- = 0,for

J
1=y e eep ilands i Clc, '
Itbclearly suffices io prove the theorem for all U

To sum up,we cee that we have reduced the proof of theoreﬁ 2+
to the following

Lepma 2.%. For every Z,a,¥ there are z',0,€,K such ithat if

o) A .
- -(<a) satisfies ; 0= O, d=1 seneseinll
9 9 3=ty

0
- Zl| $ a+ v ) eauch

ue S'(p,, lz5

and llull_ ¢ 1,then there ere v, e S' (V el ;
that A%u = Z: s v, and hv%ll ol a2 I

Proof.%We apply the indu tLon hypothe51s in n,and may therefore
write }ﬂ’u = Wy

Gt 4 121", Here w*C c

Bow W, & S(w ,{[z -2 O\at+v/2,i= 1iyie saig il g

X A-1

[!wkﬁi.$ and (Nk,;k) appesr as in
§4,part T.When o is chosen great enough,then AF%&:wk = @ for
11 k for which A vanishes identically on Wk.It follows that
Al = Z:AFt}k Wbt g:B' j‘k(B) Wi nyWy o Suitable.Here Z' means
again that the sum is ex%ended cnly over those k for which dwk4y¢o,

“FPurther we multiply withAF' nd arrive at a representaticn :
AT Mo piAT 5T s nyes Z'tfk(B)A z wxwl'cg,where z',X are
as great as we want,if‘we chcose 6' great enough,and where
wiﬁ € S'(Wk, [zi - zi\( a + V/2) satiefy an estinate

ediE: 03

ﬂwksnf.§C'( i+ , 2 independerte of x' and X.

+¢v
For ¢' great enougn,this gives Ay =
t k(8), x +x?! ; t. k8 x
~M(Z ( ) QB) - e 47(0,...,O,A WﬁB) for some

3~ ¢ P(D).Further we may apply propositien 1.8 te write
CELly 3

if  x ie great enough, u (?,..q,,,A w' hB' =

= E: \¢/Qt)d R. fq(o,...,a A% wr g) Tor some R:eP end some x .
J<et :

Now we apply lemma 4.10 from part I (or rather its proof) and

propesition 1.3 'd) and conclude that .there are Wwa €
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s [whx c}n{p=omv, lz; - 9g< a+ v) which can be estimated,éﬁch
2
that *9*%(2/01)9 B, 7(0,...,0,0% wp) = Yo FB0 0009wyt

!

This proves the lemme,

D fneorem Ze4. Let V be an irreducible algebraic variety,

w gé V a subverlef3,and zeR,a2 0, > O0.There are f’ 2 sOK

w1th the following property

iifue s <V’lzi - zi,g a), lu L <1,then there are

V,V. € S'(V,]zi - zglg at W ) J=1y cceyh sueh that

J

0= vy CB/QEJ) v

- supp v (_ Cw
(pyd)

sl - Z“VJIC. Al 1Rt

We postpone the proof to theénd of § 3.

i

§ 5. Distribution spaces with repid decsy at infinity.

1.In this paragraph we introduce distributioni spaces, which
are cheracterized by the fact,that their elements decay
rapidly at 1nf1n11y.devera; possibilities are hcre at hand.VWe
préfer o conbination lof L2=type estimates with sup-norm
estimates,which leads most repidly to the desired results.

il ' f n : ?
Nefinytion 3.1. Consider Lf: C -~_>Ig_a functien such that
/ ,

If(z1) - ¢(z2)lg AR 221 andrliet (be: *B%e R, BCR" a compact
A : £ n

convex =t and b,z €&R,.We denote ﬂg;B,b(C s= @) the stage of

distributione u € $'(C") for which there is some eeaCSO(Cn),

e FhrQrand C isueh that

leCz=y)ulz)ll, € € exp-(Bply) + Hy(Im y). + b In(1+ly()) S,
Fere ¥, s/ the support Punection of B.
Zf @) el nies For vedwe 1e i pihew b igvtnme JPorleveny &,

for some C,which depends on e.This follows from proposition %.%
frew below,Ir particular, . . p Les 8 natural Benech space
g Lt R

tnrOIOfv
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We fipst dntnoduce. .z ‘techniee]l defdnition:

Definition 3.2. Let >0, 42 0,c > 0,d > O be coustants.

e € ngﬁcn) is: called a (p,d) test function Cf.order (c,d),if
y € suon e = supp eC{z; lz - ylS (1 +ly()_J} and
Dr ezl Mo Wy 4 12T for (piea.
When e is a (p,9) test function of order (c,lzl+ 2n + 1),
then for ye supp e
[ [z h-2n+1 18Ce) < Gle,p, )T + 1yi)J(IZI+?n+1)

and it follows that

f18esH ¢ 14 4ent®! asas < Gle,p, N1 +1gh? (J2l+2nt1)
c

Therefore,when v € H=( ),and'e ig .5 (P,J) test function of

order (c, lzl+ 2n +1 ),tnen

—

el € 110 1 oty g T 2L E DT (2).

2
®
no
°
Il
~-

In fact,this follows from (cf.lL.H8rmander [2 ]  theor

levll, < (/13CSN (1 +1sD)

(zl

dasas ) ant .

. . <0 .
The main tool for testing if u.e HB B, b\u y=tp) is

rr

Proposition %.%. For everyf,d‘ there is K with the following

; ot
property: let be u e S'{ o ) and sunpose that there are c,C such

that for every (9,53 test: flunetipon; of o“SHr (e, A2 Ui Om e iy
y € supp e = leull «C exp=-(Bp(y) + Hy (Trv) + (b+K)1In(1 + | ¥])).
Then u is in HB B, b\Cn,ny).

lioreover,when 4= O,then we may take K = C.

Proof.Choose g ¢ L (c J«There is ¢' such that for every
y € ¢" we cen find (p,J) test functions e, of order
(S e g o L meme g RN e
integer part of C ) such that /‘eizzl on SUpp £(z - y).¥e now
write [lg(z-y)u(z I Z. le. fm)g(z—yjl(z}ﬂ <C %{ lleiuﬂz,
with © .= [1266]e +;§1‘f‘ agds.

2. One of the wain aims of this paragreph,is to study the

selvability of the system 2 (mltq the notations fron complex

function theory) in the spaces HB B, b.¢h13 problem can be reduced
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to the case when ¢ is large.

Proposition %.4. Tor every ue [HB B, b(C =) ] (0,x)t 7 there

iS vV € EH() F\ H(C *-f ] (O ke 1) 'md wWe [Hr\ B b(cn,“?)] (O,k)

sueh thot u = w'+ v,
Here X(O a He thevspaceiof (0,q) forme with ccefficients in X.
b Sl

n s ;
yChoose €,seh with the

:—n 3
Proof oy every A €77+ 1.7
following properties:
‘¢ 15 a pertition of unity im " ,and e el = e,

o 2:-L(\< 1},3“?{0 e'ACiZ; lZ = Ril( ?i

- supp eAC:{z; i

ol
»lDY-;Ai £ ID"e;l $ C yforifdclel+ 2n +1.

From the hypothesis it follows that Heauﬂz § C exp—(Bu(a) +
* Ha(Ima )+ b 1 1) . e mey then find v, e[HZ+1(Cn)] (0,k=1)
such'thqt@?ua ="e, Uurarnd such that He) VAH1+1‘S @ lleaullz 5
The lennma now tollows,if we take v =Y e, vy, and w = -3

Further,we need the following res ult,which is a consequence
;iof the Tresults Trom LieHOruender (%] (cf. O.1lices lbadae

Proposition %.5. There are constants C Kowith the
s )

Loo

-

sunuose ué€ [L C“)J (0,k) sétisfie
3

s

following property
fgg = 0 and [lu(731 expA Bp(2)+Ho (In 2)+b In(1+(z[) dz a7 ¢ 1.
Then there is ve [U7OC\C )] 0,%=1) such that 2v = v and
such that
fh(ziigexp~2(23¢(z) + HB(Im z) r y2In z|+ (b+K)1In{1+|2 )) dz dz «
; : <a.

min@u,o) and for

2 n 1 2
& compact convex set and xeR,,B+xX = (xeR", x = x' + x°,

In the next proposition ,we denote o

n

B'@ R

%! e B, [xlgxi.

2]

Proposition 3.5, There are ceonstants /K with the following

properiy:

‘1" 0 ’ AnBE e et j =
Suppose ue [ii,; B+ 3, b+K‘L =) ] (0,k) Satisfies 2u = 0

when" o Kn ad Ulexp 1<, 2>) = 0 Ffor xcbB + y3,when k=n.
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DR ekl on i o
?hen there is ve‘ lHB,B,b GC remieps)] (0, %1} such that 2.V = e

Remark 3.7. For y', K' sufficiently great,the condition for

e implies that u(h) = 0 for all entire h e A(C™) which
satisfy | Hl)lis Clexp (28 w (2 Y £ B+(p ' /2) |Tn z]" +(b+ 52 in(+ 1z 1))

‘This follows from T.Bdrmander [4] (ef.also O.Liess (11 ).

v

Proofifiof: proposition 3.6.For y, K sufficiently great suppose

Wn

that ue (H %)] (0,k) satigfies the

28,B+ y B, u+b+p+1(

hypothesis from the proposition.We may epply lemma %.4., several

times end conclude,that the proposition follows,if we can prove

n+1
28,B+ y 8,b+K+n+1" (gl (0,k)"

In view of Sobolevs immersion lemma,it follc.o that

it,when ue¢ [H

ot

e
coefficients U of the form u satisfy

\uJ(z)l SIC exp -(2By¢(z) +H§Im z) + 3(Im z]+(t+K+n+1)1n{1+ iz 8
and therefore that

f[u (z) CLD ¢\25q(z)+HBEm z)+  BlIm zl+(b+K)1In(1+ [z|))dz &Z « C.
Duslizing vrovosition 3.5,1it follows,in view of the remark,and

piincis y N
for: Kl sufificiently gresat,that there is v [Lloc 600 (0.k=1)
y X

such that [tvl( exn 2( 8¢ (= )+H { Taide)e +BRne T +izan 90 82 a0 . CH

n
'ha mplies v 154 & )
1131 D q CL%fx ,] (O,k"“).
Theorem 3.8, Coneider p = \pl4, an’ sx m matrix of polynomials.
There are congtants x, r,X with the following vroperty:
el - n g o A
pnoge 1 q Bl o e
SLT) [OX3N= 1 € [ xw,,‘a + X.B’b_},!;(u 9 kf) ] (O,}.:) 886 S (ES!
=+ sy g - e
2 pu= O,vhen kdn and  putexp idx,z2 ) .= 0 fon x e Btiprd,

e e FhaTa 3o : kil 3 N
when k=n.Then there is v e[_HB’B’b(C y=¢ )] (0,x~13 Such thet

3tov = pu.

Proof.The proof is by induction in ( what we call by slight
~abuse of laguszge) the cohemological dimension of p.We say that
4P is of cohomological dimension r,if there are matrices Tqseessln
such that

i 8
m} q1 Mo, QQ D3 qj I ol D 5
0-»P—> P ——> P—> . .. —3 P > P =

4
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By & wellknown theorem of Hilbert,every‘p is oficohomologiéal
dimension smaller then n;

a) Suppose that p is of cohomblogical dimension O.We'apply
first proposition 3.6 and writg tp u==5\ﬂ,with suitable v,

it theréfore remains to solve the equation v' = tp v,with

v in'[HE:B;b(Cn,—<p)]S.This can be done by first locelizing,
and the applying theorem 1.2.

b) We mayAnow agsume that theorem 3.8 ié broved already for ihe
matrices_q1,..,,qr in (3),and want to prove it for p;This can be
done by dréwing a suitable diagram.We prefer here the direct
é?gum@nt.In fact,we first solve,with proposition %.6,

—

= 5 t .
tp w = 2 v' for 'suitable v'.Then 2 95 v' = 0,and therefore the
: ; ? i =1 .
induction hypothesis shows that qrv' = 2-qrv",w1th Vet
satisfying suitable estimates.We can now apply iheorem 1.2 as
L g g J

: ~ t .y
in the above,and conclude that v -2v'' = 'p v,with some

-
—+

- ° t “w
estimable v.Obviously, p u = DisNs

3.We conclude the paragreph with the proofs of proposition 1.12
end of theorem Z.4.We prepare these proofs with a lemma.

Lemmer 3.9. ‘Consider V= {z 14 +-ZZ: e (a'\t“'r Obya > 05w > 0.+

J<
Then there are constants P 20,79 2 0e>0. ¢ '> 0,with the

' n
following property: for every 7 e Cithere are

= \p,d) test functions e! SIE e Fete 122 1) ?ndi]

i ;
K o [1,2,...,(}3

2 e

= map g o {1, ees, L (1 +lzll)

- functions pis e Co (€)y 1=ty eailet( +[z$\

such thsat

- Z(e!)2 =ils sonkifa s lzgie aolegiagyi

= lDr_fp"l SHEREOT (AL VYRR e

.t ’ “
~ the dismeter of supp eia ig less theny,
. L. .
= ARl L Ve I0 fand (e U e g ei X supp eig,them

gtitiz) = 1 iher o=t v/eq,

: 2 - g g v %y ) o}
- (ni}"(pzt)“ =an a (f,J} nelgnborhood of v}whenjziuzilg a.
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‘Procf. We apply lemma 5.4,part I,and obtain (p,d) such that if

zt ., Zite g

» satisfy |z' - Z2'lg Pl lz'l)-d:then the roots
| ti(z'),ti(g') of t »p(z',t) = 0,t — p(Z2',t) = O can be labbeled
in such a way that Itj(z‘) - tj(§7)1$ v/8q. |

Let us now fix z' and consider t1,...,tq,,q's q the distinect
velues of the solutions of t->p(z',t) = 0,and denote J;(z'),
i71,e00yq" the sets Ji(z°) = {2 Gy lo= til‘< v/2¢ } .Further,we
perform a partition in the set {1,...,q'l:we write

[ mmaitae TGl i L}Ia(z') such that

@

-k # RN Ee B e 1% 5 Tita)) Mg L2t

S G Ik,then there are i1,...,iz;eIk:such that 11 =i,
i, = ivwend sueh that T ALg PITds " (20 ) £ g,
: '8 s+1 :
Finally demote JL(z') , 21, ese (2" ) the sets Ji{zt) = & sl Lty
87 S J el

The following properties are then easily verified:
- the diameter of any JY is smaller then V,
= St gt i=mate il Jautet). = 0
=4 fEn Satls e 01 4 !z'l)-J—and if p(z',t) = O,then thsere is j
such: thet  {z;lz-%l < v/@gic | )  [=zjlz= ti(z')1 < i/ b .
ie1Y
The lemma now follows,if we chcose spheres Us s Bligs o oy

[er( 1 + \Zé[)Zné‘] ,of dismeter ¢( 1 + lzél)fdisuch that the
d

spheres Ui with the same center ,with diameter f/Z (1 +lzél)—

form- a covering for {z';lzS - z;l < 8 lsm P A=l TP e

* ,then we define (i) = G(z%).

centers of these spheres are z
. It is now easy to construct partitions of unity with the required

properties. Tt suffices to choose p small compared with_vl

Proof of proposition 1.12.We may suppose that V is of pure
‘codimension one and thus thet it is of the form from lemma 3.9.
"We apply the lemma,and solve for all i, jthe equations

1 - : ] ] & O K'l
2/21 Vi el ei& u,such that lle! ei3 vijuz+1 GG Ll |



We assume here that Vij = 0 if e! o" 1 = 0yand set

151 ‘
V= el eis v4j.A1'p0ints (z',t) where e;j is identically one
0 0 N ¢ 5 g
iy
close to t,we have 2/7t e! e!! (e ) (e") he

e gy 1]
proposition therefore follows if p 1s small compared with y.

n \
Proof of theorem 2.4.When V = ¢ ,the theorem follows from

proposition 1.12.When V # Cn,we will use induction in n,

This induction will be similar to the induction in n in the proof

of theorem 2.1.
\

First we choose p ¢ I(V) of form o= 9 o c-(z')tJ,
Fog
withou® multiple factors,such that the dicriminant A of p with
respect to t is not in I(V).Further,we may suppose, that the
support of u is in a set with property ‘W) which is contasined in
{fzi - zgls aj (with the aid of lemma %.9 we can write the given

Vo l)Qna

&8 a sum of not more then [qc;(1 Jterms with this

Let us denote T the operator constructed in § 1 for P and

= 1o Qu=0 Forall Q €l(V) implies therefore that
Tu = Z'jK VL for (W ,J s k=1 Tyes09 Noe etherian operptnre which
appear in § 4,part I,end vke S'(Wh,izi - zils EYFTVYE ) Ty alil vk

estimable.As was pointed out ir § 4,pert I,we mey suppose that

k

ey
W is the projection on ¢™7'

of V (we are desling here with the
: . ; k . ;
glotal situation ).For every v we now epply the induction
k 5
hypothesis,and obtain ¥ e;s'(wk, lzi ~z§lS’a B2V S s el

estimablie,such that Tu - ‘th‘k §£ N §-Wj and such

J'(n J!
thet the v vanish in'a (o 8) neighborhood of A(z') = C and in a
k il
(f,é? neighborhood of the profecticn on Cn"] of W.

; 7 t -k .
Let us now consider w=u -=¢ 3 °d vk).(glnce the support
of v, avoids = {p,d) neighborhood of A(z') = O,we do not need
e
i : :
factors & here.).It follows that w(h) = ¢ for eny h which is

analytic near supp w.The same is then true if we conside w'=u -~ W
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t k v ) on the set ;}, of

/ where w 1s the distribution (L
property (W) considered above,and W = O outside that set.
The theorem now follows dualizing wellknown properties of

=concerning the solvability of the 9 system on convex sets.

§ 4. The proof of the fundamental principle.

1.Considef§2€:3n a convex domain,B CR a couvex compact set,
and REET @ Te is-an.entire function on C*' which satis-
fies |
{h(z)l ¢ 'Cc exp (HB(Im z) + b In(1 + |z 1) (1)
then h = ¥ for some ve E'(B),and we can define flh) = v(f).
Ne obtain for every b and-B a linear functional on the space of
all antlre functions which satisfy for some C the inequality (1).
Applying the Hahn-Banach theorem in an obvious wey,we can find a
Radon messure m ,defined on C™,such that [dlmkoo ,and such that,
with u =pm/ exp (Bg(Im z) + b (1 +izl)), £(h) = [h(2) 4 u(z).

For h = exp i¢x,2> ,this gives (if b > ()

f(x) @2 f tempt $GE, 200 dul 2y ) =ulerp ix,2%") " S for xeB - (2).

It follows from Sobolevs immersion lemma that u e HO B b(C o1
The representation (2),with v ¢ H b(C ,0) is nonunique.

If we had known that f is real analytic 1nfﬁ., then with thke
arguments from above,we could hawve shown,that there is 8 (which
depends on f and B ) and u e HB B, b(C lz|) such that
Pix) = ulexp,a Lx,2> ). for x e B,

¥ore generally,we will suppose that there is q:Cn-—% His
with [y (z1) - q(zz)IS lz! - 2 \,-z B8 and u.eHB B b(Cn,-tp)
such that:f(x) =fuliexp 1 {(x,2>) for xe B,

Theorem 4.1. (The furdsmental DTln“lUlO) Consider

= D= (p.-) an sxm system of polynomials,

= ’Vk Zk) K=1,e0ey,t & uﬂllectlon of algebraic .Noetherian

operators associated with P
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' 2
= L Cn->}u.such that [?(z Y ez Mg lz1 =y
-’fj,...,f € Ca)(ﬁl) and ze R such theit for every compact R
22 : : :
and every bjthere is B and u; € HB n b(Cn,~ ¢) such that
e

fi(x) = u.(exp i¢x,2>) for xe B and P(D.g)f -=Q.
X0 k

Ther for every B,bthere are z',8'> 0 and voe Mg B b(C - 0)
sueh that fix) ~{Z tgk v&)(exp i¢x,2>) . for xc—b,and such that
Q I(V Y- implies @ vk = O

Proof's Let B,b be given and denotelﬁ,K the constants from
theorem 308.Whep B is small enough,then P+, 8 is a compact in 2 .
If we shrink B still further y WG may.suppose that thofe are

us €‘Hé,B+i’B,b+ﬁC ~¢) for which (3) is valid,when x e B+ y3.In.

view o theorem 3. 8,there are Vi€ Pp, B,b(c = ?),B‘>-O,r=1,...,n

such_that p(z) u 3}2?(2/92“) V. «If we denote w = u - X (/92 v,
5 i k3 & . Il 24

then still f£(x) = w (exp 1,2 ) for x cRB,and we now have tp(z)wzo

The theorem now follows by localization from theorem 2 sl
2 Theorem 4.1 is not yel the fundamentsal principle,as this

; K :
18 steted in thHe in itroduction, since the v ,are not necessarily
|
Redon measures.The fact (which should be of sma]l\interest),that
. : ; _ |
we can 21s0 obtzin a representation with Radon measures,follows

from the following theorem.

Theorem 4.2. Consider V an irreducible algebraic variety,

m’g;v a subvariety,and ue NB <2 b(C F . P) suen thakdieih o= b
for 81l @ ¢ I(V). | |

Then there erep,s ,2',8', y,K V(:FB, Bk yae, b__K(C g8

and Wj GNB’,Bw fgyb“K(g - 1) ouch that Qi el (V) inplies
Q v= 0 thet n=ve 2 (2/2Z .) w.,and such that supp v CWh
j‘:l J J (PQJ.)

This Follows from localization of theorem 2.4.
To return now to the discussion frow pefore,we first see,
that in theorem 4.1 we may suppose that the supports of the vk

stay away from a (F,JU neighborhood of the singular PRt S0 ke
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c i sl ) : .
verieties V .We can now localize and then the result can be reduced
to the case,when Vk is an affine subspace.@or this situation

%

the theorem is easy to prove.%e leave the details to the reader.
Theocrem 4.2 is related to the concept of "sufficient sets”
introduced by L.7hrenpreis (2] .In fact such theorems can be

obtained from I.HSrmander (3] .

et Aol R p
§ 5, The solvabilitv in 5'(C") of overdetermineted systemsl,

1.In this parsgraph,we return to theorem 1.2.This theorem
follows from

Theorem 5.1. Let p and q be matrices of polynomimls such

-1 D R, . A i
B et s PR e exect  Suppose dhatu.e (SN

.

thet P°

iy, t . . TG o NS it
satisfies g « = O.Then there is.ve [5'(C )]~ such that u="p v.

Proof of theorem 1.2.From theorem 5.1 we obtain {(with the

; n. ) n
notations from theorem 1.2 ) that {S'(Cn)]t — 85 g (cMIE-

n k 3 ald -~ 3 3 o
e, fen(C )= dscexaet.Since 3' Jds ithe dus? of & Feeechol

ey ! : s e n
space,this implies the following: for every seminorm 2 in & (C ),

',C'
o . “T. AR e & .
there is a seminorm/in 846G ). and: C.>0sneh thatd AELPY = 0 and

Bl
L4

luCg)] € Clpl. for all ¢ e 3(C7),then there is v with u = Qv

and such that |[v (q)[< “Hk;-?urther,if W =0V ,end 35F gee-cg)(cn)yz1

X o e S R . 0
in [z uilé BtV 2uend plz) = Q fon, i E lui - Z.

; | ¢ a+ ¥
il

L)
then ¥ = ¢v is 2 solution with suitable support of the equation
u = Qv.Further,we may suppose v estimable,and therefore VAN wi 13
satisfy an estimate of the desired type,if [Dfols C,for Vylso,

¢ sufficiently great.

2.1t i3 eagy to see,that theorem 5.1 can be restated in the

s * : 2 s g
following way: the system u = 'p v 1s solvable,i1f and only if for
7 ;

every A= (11,...,am) with'/ A go=c 0t follows thats A, = G,
Tis . 2 : ; e
If Ap = 0 implies au = Q,we will say thet u satisfies the

compatibility conditions of the .system “pv = u (. or o thet the

s
)
®

t

system *p v = u is compatible).In this formulstion,theorem 5.1 is



. variables, 2

el G0 e

related rather to b thken toithe pair D,q,
Yle state separately

Theoren 5.2. Suppose p & P.Then for every ue S'(C

n
Ve Sl ) suehittist U= By,

~

Theorem 5.2 follows from resnlts of L.¥8rmander [1] =ard
S.Lojasiewicz [ 1] .Theoren 5.1 for general m,s follows from
B.kalgrenge [4 ] .For the converience of the reader,we show in
4his pacagrapn, f}aT 10 is possible %o reduce theorem 5.1 to
theoren 5.2.This will be done by induction in n and Se

3) Tnduction in n. Thus consider a system of form

Vo et , Pee P (s

J J i
We say that the system (1) has dimension r,if ths fimensions of
the irrieducible components of V ={zé—Cn5p1(z)=---=pm(z)20}are ol
smaller then T

Suppose that theorem 5.1 is proved in"n-=1

suppose that it is also proved in n.varishbles,for

2y}
2

o

“ systeme of Torm (1),which are of dimension r' < r.Then it is true

also for systems of form (1),when dim V T'e
Wé prepare the proof of proposition 5.% with some remarks
and lemmas.
Suppese-ithet For "sonmesuy (1) is 'compatible,and that idin =",
Let us choése Py &« end coordingtes (2", t)
5 b T, s feay, D clz") tJ such that p has no

multiple Fectors end. such that dim ¢vOf2;4¢z") = 01) <€ 1.

yeuch that forisome £.¢°P,

that: such e polynoriel exists,follows frem lemmz 15 1€,pert T.In
i : L | : s :

faect,write V = UM VeV ithe irreduciblet components iof V), and

Bl B - 54 S
Yet p™ ve polynomials associated with I(V') as in lerma 1.10,vart I
SR ey 2 1 LR S N i ZE oy lj\ all 3 ‘ 5 1
wihleh are “suchthot j#i"== pg T(VY) J(Such polvynbuinls can be

, i; i i, ) e : L
found in the ferm p~ = S +c(R )" ,where 5 is associated with

i(v Y by lemme 1.10,part I, ¢ is a suitable nunber and

i S i, < : ¥ : )
RiE e fiyes ST L(VJ)).The produetr oy Al thie e is thep o
i#d
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polynomial with the desired properties.

m
Lemma 5.4. Consider ¥eS'(C") such that p* ¥ = > f.u..

s Tt
Then the system ¥
P W O,p; W = us; - Dy 7 R T (2)
is compatible.In particular,p“~(uj - pj Vo= 08

Proof. Supnose 2, 25 ePiareisuch that 0 = A pF i AstBeS

. T (afj + zj)pj.since (1) is compatible,this implies,

J
= : . . = BT A L : L+ A e
0 ZJI ()fJ + 1J)uJ ApSagi+s 5 Ay U ZAJ Py V ZAJ u;+This

gives Zfzj(uj - pj ¥) = O,which means that (2) is compatible.

1 as we have used it in §2,

We now want to use projection on 7T
This time,the distributions which we consider,sre no more with
compact support.Two possibilities are here at ha:id.Either,we use
a -partition of unity,to make all elements with compact support
(then we have to write Jdown estimates ),or eise,we extend the
results from §1 to the spaces
ar(wW) = {u e s'(C™;QeI(W) implies Qu = 0} ,and
St(pyrec) = ifu e SUEET): ) =0 If p < sple) = On=d (9/28)" gla)=0]!
Here p is the one from before and W is an algebraic variety.

For notational reasons,we prefer the second modelity.

The proof of proposition 1.1C now gives the following result:

thére are o, ;0 and w
—\X

= z_(?/a 1) Wi

the unicity in proposition 1.10,that the systems

e SMCDy o )y 8 ,such that A‘r(uj = By 7) =

sand if ¢' is great enough,then it follows from

o*
p“‘wxz O,pjw% = Wi (3)x

‘are compatible.
In faet,af A, zj are such that ap + Z:szj = O,then
;L(?/Qt)x Z Ag Wix = = Ao‘zj(uj =Dy ¥) = 0,which implies

J
L het A Wy = 0 for all .

Lemma 5.5. Suppose that we can solve (jjx for allx .Then

. proposition 5.% follows.



NN

~

Proof.If ‘w, is aisolution for (3)x ythen'w = Zf(a/fowa satis-

o'+ o cl'+o

fies p*W = O,pJ- W =A (uj - pJﬁ?).If we wite’@J:A v,then
¢ 5

pj = (uj - piv) + g5 withzﬁc +féj = 0.It therefore remains to

find a solution f<sS'(Cn) for pj = gj.&pparently,we have not

made much progress,but the impcrtsnt foct is here,thatzf,+aéj=p.

To find f ,denote I C P the ideal generated by Pyse«esP ,and
aet 1= r\Ii be .the irreducible primary decomposition of T. %
Farther denote I' the intersection of those ideals in the
decomposition which have din Ii‘: roand L' the interseotion of

the remsining ideals.Now choose SeI',S & I''.We claim that
oG

pjf:’}gj,j:‘l’oo.,m,sA f:O (4)

is compatible,of dimension < r,and therefore solvable ty +*he

7 ) et R , G+ o ‘
induction: hypeothesigiin faet ,if T a.pP- + A S A = O,then XS eI

J d
i R ’ e b : Skl 2
and . a 84 € I.51nce A is not in the radical of I'',it follows

Thet o e T julich gives « S el,ide., »'S ={Zf3p- for some fﬁ1§Pe

J
| 4 o
i Iherefore (Aj +p34$¢ +€)pj = 0,and then Z:(Aj +/30f +J} 4 = 0.
> ]
" In view ofzﬁf~+0—g. = O,we arrive at 2_A.g. = 0,and the

J J~d
compatibility of (4) is proved.

We have now reduced proposition 5.3 to the systems (3)x .

Lemma 5.6. Suppose thet Wi € §3(p,m) are such that the systenm

‘p“'w = C,pjw = Wj is compatible.3uppose further,that theorem 5.1 is
L

proved in n-1 variables.Then there is ¢' and w such that
o~ o~ ]
P w = O,p‘j W :Ao“wj.

Proof.Denote 7 the (extended) operator constructed in §1.
We want to study the system TF(ij) =7ij.According to lemma 1.5
this is a systeinn of _form

Z p1 h.
. 1

i 2K = Oyeeey 2g-1,J=1,000,m (:5)

= Tyew s

which is easily seen to be compatible.If we now choose a solution

e A . ; —~ (T" 0—-' % .
h of the system (5),then w =7 (4 ho,...,zﬁ h ) is a solution

xa=1

Of. p(’( ’\7;: O’pj;‘; - AG‘JWJQ
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4)To complete the reduction of theorem 5.1 to theorem.5.2,

it remains to nerform an induction in s.

Proposition 5.7. Suppose theorem 5.1 is proved for oxm

matrices when o< s.Then it is also true for s xm matrices.

Proof. Recall the notations from §4,part I.First we observe

that the system tq' tp1 VT tq' u is compatible.Indeed, Atq' tple

t

implies )tq' p = O,which gives Atq'u = Q.We may therefore apply

the induction hypothesis,snd obtain a solution v, of the system
tqf'tp1 ¥i 5 tq'u.If‘ we can find a solution v' of the system

A i

]

é'“v" = - tp1v1,then (v1,v') is a solution for tpv |
To solve tp'v' =z g - tp1v1,we again use the incucition hypothesis.
In fact,the system tp'v' =04 - tp1v1bis compatible, since

-tQ'(u - tp1v1) = 0 was the defining ecuation for Ve

One may use the results from this paragraph,to give a proof

for the solvability of overdeterminated systems of partiel

differential equations.,



Comwnents and remarks.

1.Historical comments. The fundamental principle has first

been stated in L.Ehrenpreis (1] .Proofs were availeble only for
m=s=1 then.At about the ssme tirs V.P.Palamodov t11 obtained a
Variani oflthe fundemental principle,also for the case m=s=1.
Complete detailed proofs appeared in V.P.Palamodov [2] and
FL.Ehrenpreis (2] .Important resultslconﬁeéted with the
fundamental principle have been obtained by B.Malgrangé p 2
‘and I.HSrmander {31 .Recently a new proof has been given by
J.E.Bjorck (1] .For m=s=1 cf. also C.A.Berenstein-M.Dcs"al e,
The fundamental principle has been extended to hypeffunction
solutions by Keneko [i,2) (c¢f. &iso Oshimal1l ).

2.Reiated with the fundemen®al principle is the concept of
analyt.cally uniform spaces,introduced by L.Ehrenpreis (ecf.
L.Threnpreis [2 ] ).Only the proof of the fundamentsal principle
in L.Zhrenpreis [2]is in the framework of analytically ﬁniform
spaces.The present one is formulated such that it works in
weak snalytically uniform spaces,in the sense of O.Liess [ 1] .
2l oné wants to obtain the variant from L.Ehrenpreis [2 ] one may
apply the technique from B.A.Taylor [1] .

3.Theorem Z.1,part I,is not true in the ¢%® set-up.This
followe from wellknown examples of operators with no solutions
for the equation L(x,D)u=0 (examples of H.Lewy and L.Nirenberg ).
The theorem brazks also down in the analytic case,when we suppose

that the implication in it holds st Just one point.The condition

(L) from V.P.Palamodov (3] (in which the case when J_ Lij‘uj =0
3 2 J
for all i implies u. = 0 is treated in another context ) ,may

J
however be sufficient to assure that theorem 2.1 remains.valid,

when we only know that the implication holds at some point.
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4.With the arguments from §4,part I,we can prove the following

nroposition:

Proposition. Let pij(Z) be a s xm matrix with entries in OZ,
(Vk, ak),k=1,...,p-an agssociated collection of Noetherian operators
end congider,in veriables y =‘(y1,...,yd) a prime ideal I in O,

0 the germs of holomorphic functions in Yyseees¥g at Oescd.
Further let PysecesTy be generstors for I and denote W the analytic

veriety of common zeros of r1,...,rk.Then hiz,y! = O:‘O is of
H

g g

li J v V

and only if (V. x W, 2 jh = O for k=l,.eeyptte

form h; = 7P . for some g ¢ O ,0vPiy € 0, it
3 b
This pronosition ks= the following corollary

Corollsry. Let vC ¢® be an analytic variety,which is irreducibl

atiz? e @, Suppose that I (V) is generated by . ,...,fm €40 5

| Z
Now we identify c® with Rgg,and consider h,a real aznalytic function

in the 2n real variables Re z,Im z.Suppose that h vanishes on V.
Then there are real snalytic functions h1,...,h2m'such that

h = gg:m ('Ei(Re z,Im z)fi(z} + hm+i(Re %4 Im z)fi(z)).

This problem appeé*s in B.Malgrange [3]

5.0ne may ask what conditions shou‘d ba 1mposed on fG[C (Cn)]S
in order io assure that the system f = pg has a solution ge[C(C )]m
Such conditions are easy to obta’n from the form in which theorem
4.2,part I,appears in this paper (and which is somewhat gtronger
then necessary in eother proofs‘of the fundasmental principle ).
Let us mention first two lemmas:

Lemma.Suppose V is an irreducible analytic variety defined

near zero.Then £ €F {5 2dnn Ig(v) if and only if,for every q there

18.C_such that Iz:;ﬁ_ fBzB [ie . m \zlq+1 for z &V.
g 18l ¢ g q

This follows,e.g. combining results from B.Nalgrange [943 with
the corollary from above (it should be anyway easy to prove ).

Now consider h eC O,Cg; the germs of functions from ‘CGD(Cn)

Z



T Uy et
at z°,and suppose that h is def3.ed for lz - 2%l<y .1f
= Z:‘ ha;ﬁ(z-~ Ef‘ (z —;E)B .18 the Taylor expansion (written

in varigoles z,Z instead of ke z,Im z) of h at Z, 2% - E\(rq
then we denote h, = Z; btz 20 .Using the preceding lemma,we now
obtain,by Taylor expansion,spplied first in Z,and then in z:

Lemma. is in IF(V) for all z,|z - z \<n7 yand all B,
1f and7h? (9/9z) %) vanishes on V for all 8.

We can now prove the followirg theorem:

Theorem.Let (Vk,9k) kK=i,e0eym be akcolieé*ion of Noetherian

operators sssocisted with the matrix p.Then pg = f ,fe [CQ)(Cnﬂ has

a solution g € [Ca)(c L AP and srdy B (20w )

L for ﬁLl B.end a1l k

vanishes on V
Proofelnly the "1f" part is nontrivial.To prove it,we firsta
observe, thet plg (™" i closed in e e Tide T arinaniis
of B.mjlgrange (efe B.Nalgrenge [4 ] ).We can now apply r theorem
of H;Whitney (ef. B.Melgrange [ 4L ¢ch.II),to reduce our problem
 to0 the solvability Qf {hé system pg = f,when f and g are formal

power series of the form f =] F B(z - z) (z -2

A =B .. ] +
g = Z:gcls(z -z} i (2 - "2y JTHis gives fBz = pgﬁz,?ith the notations

RS SO e

Trom shove,and the theorem therefore follows frou #héorem 4.2,
part I,in view of the preceding lemma. :

6.A8 is only natural,I.have been influenced in many srguments
by the existing prodofs of the fundementsl principle.I have not
tried to menticr these (and other ) influences explicitely. |
There neve been external influences as well.One example is,that
I have added §5,part I,only when I became aware of J.E.Bjbrcks
paper.[1] .At that time howewer,the present paper was almost
finished,and I have not tried to usce the new ideas from
J.E.Bjbrek {1l here,

7. §3,part I,and §1,§3,part II,have teen prepared in snother

context,Tor the paper O.Liess [ij “Fox «pant i, cf. &l sofiCelhesaills | .
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