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QUANTIZATION AND PROJECTIVE REPRESENTATIONS
OF SOIVABLE LIE GROUPS 3

Henri Moscovieci and Andrei Verona

. Introduction

Refining the Kirillov orbit method for the construction of the
irreducible unitary representations of a nilpotent Lie group, Kostant
has developed a geometric quantization theory of obtaining unitary

representations for an arbitrary Iie group from symp¥ectic manifolds
on which the group acts as a transitive group of symplectic automor-
phiems. When applied to or*its of the coadjoint fepresentations,

which possessa canonical symplectic structure, ¥ostant' quantization

procedure goes along way towards constructing, in many'significaht
cases, all (or"almost" all) the irreducible unitary representaticns

of the given gfoup. This method was‘particulary succesful for solvable
LieTgroups, in which case it provides both a geometric criterion for
ﬁeing of type I and, in that case, a complete description of the
unitar& dual.

Besidés the orbits of the coadjoint representation there are other
symplectic homogeneous spaces for a Lie group G, for instance those .
which corrres@ond to non—coboundéry 2-cocycles of iis Lie aigebra g;r, .
In}fact, when ¢ is connected and simply connected, a1l the simply
connected symplectic homogeneous G-spaces arise in & canonical way
firom 2-cocycles in ZQ(gL) (cf. B.~Y. Chu, Symplectic homogeneous

spaces, Trans,Amer.Math.Soc.197 (1974),145-159).
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Altﬁough we caﬁ not afford to go into details here, it must be
said that, by Kostant's method, 2 unitary representation of G can
be obtained from & symplectic homogeneous space X only under the
additional assumption that X is a Hamiltonian G-space ([Kl, §5) and
this is the case when and only when X covers an orbit of the coad-’
‘Joint representation of G. :

‘We rave found that&when the quan%iration procedure is applied
to a gcneral symplectic'homogeneous‘é-space one can still obtain a
representation of G, which is no longer unitaxy,put & projective one.
This remark allows us to constrnctAirreducible projéctive represen-—
tations of a solvable Lie group G starting from integrai 2-cocycles
on its ILie algebra gL (Theoremf.4.1) and to classify some of them in
terms of the orbits of G in Zz(gl) {Theorem5.4.5}, In the special case
of a pilpotent {or, more generally, expnnentiél) Iie group, our con-
strmction provides a complete classification of the projective
dnal (Cbrollary Si4.6).

Now let us describe in a few words our construction of projecti-

G2

ve representations. Assume

o)

is a connected and simply connected Iie
Z:10up,. First, to each conycle QQQZZ(Gt) we associate a strungly sym-
plectic homogeneouns G-space <Xm’9c¢)’ namely the orbit through 0O ir_l ?*
under the affine action of G corresponding to « (ef. the paper of

Chu quoted above). Then, after choosing a polarization'gy of é?’ at
w, we attach to each line bundle with connection and Hermitian struc-
ture (I,%) over X,y with curvature form 6,, a projective represcata-
tionﬁrgL,x;g)‘of G whose equivaleunce class ﬁéJbvdepends Q@ly on the

egnivalence c]ass-e of (T.,4). Under no additional hypoth:esis we

(&Y

have noti.ing to say aboutﬁggb; it mey be or may nol be irreducible
2

®

Even worse it may happen that Ty =C. However, if G is assumed to
.«)l

-be solvable, the results of Auslander and Xostent EA»KJ ailow us ToO

!

conclude thaﬁ'ﬂ%b is irreducible and independent of the choice of
4 =9 -

the polairization. Purthermore, G acts naturally on the set of all
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such isomorphism classes of line bundle with connection over sym-

plectic homogeneous G-spaces of the form (Xyr8.) with w running

over 22(2;), and the map Zk—~e-ﬂ2 =7q?5 is constant on the orbits
2

of G. This construction is particularly fruitful in the case when

G is of pfdjective type I (see p. 20), when it yields a complete
parametrizatioﬁ of all eguivalence classes of irrsducible projective
representations of G. If G is exponential, then it is of projective
type I and the above parametrization is realized oy the.orbits of G
in 22(2},). It should be mentioned that, in principie, our method of
constructing irreducible projective representat.ons works whenever
it is applied to a class of Iie groups which is clcseﬁ under central
extensions by R and for which the Kirillov-Kostant method of obtai-

ning irreducible unitary representations works.

The material in this paper is organized as follows. Section 1
'contains some facts about extensions of Iie groups and algebras we
will neéd later. Section 2 deals with the relatioﬁship between pro-
jective representations and group extensions. Section 3 is devoted
to the study of the symplectic homogeneous space associated to a
2-cccycle. The concept of polarization for a 2-cocycle is digcussed
in Section 4. The constfuction of a projective representafion of a
Tie group G by quantizing a symplectic homogemeoﬁs G-space is given
in Section 5. This section also contains the statements of the main’

results, while their proofs are given in the final section.

Q. Notational conventions. In order to prevent misunderstandings we

list below some notations we wili use in the paper, which might not
be standard. |

0.1. T stands for the group of complex numbers of modwlés ¥

0.2. The complexification of a real vector space V is denoted VC’
while the complexification of a linear {or myltilinear) map A 1is

denoted by the same symbol A , without adding the subscript C.



- 0.3. If a Iie group G with Lie algebra ?_ acts (smoothly) on the'
left on a manifold X, we denote by LX(g) the diffeomorphism of X de-
fined by geGy sometimes we shall write simply g.u instead of Lx(g)u,
for ueX.

- The smooth/vector field on X determined by'x:ég; is denoted by

X(x), recall that

I‘X(x)u(f) = g-f(f(cxp(-tx)'u))‘tzo i RE Cw(X), uéX. _

When X = G with the natural left G-action, we-shall omit the sub-
sctipt G in the above notation. F-.rther we shall write Rtg) for the
wright translation by g’legG. -

Forrgg;G; I{g) denotes the inner awtomorphism L(g)eRr(g).

O.4.Wif <g.is The ILie algebra of the ILie growp G, ?*' denotes
fhe real dual vector space of z} o '>‘g —> R ‘ne canoni-
cal -pairing, Ad ' ad the coadjoint representations of ¢ and ; on ?f}

Db 1F g} is a Lie algebra, L(x) and Sf(x) will deno*e the
interior product and the Iie derivative with respect to yé&g,

0.6, If 1 1s a smooth vector bundle over X, ]ﬂ(X L) stands for

‘1
\

the vector qpace of all its smocth secicions. %

1. Extensions of Lie groups and algebras

l.1. et G and X be two connected ILie groups. By an e ctension of
& by K we shall mean an exact sequence

8 ‘pv‘

(Myp)+ 1=y > M > G > 1

where M is a separable locally -compact group and i, p are continuous
homomorphisms,
let us add some comments on this definition.

, e
(11,0, Y K belnz se > ¥er(p) is in fact a homeo-

parable, 1 ¢ K

!"‘s

morphism. Owing on this rem"”P we shall identify K to Ker(p) via 1,

viewing 1 as the inclusion map.
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‘ (112) Since_Mvis,separable, the canonically induced map M/K—>
G is a2 homeomorphism too. This and the connectedness of G and K
ensure us that M is also connected.

(1 .1, 3) Moreover, M admits a (unique) structure of 2 Iie group
whose underlying topology is the orlginal one. Indeed, to see this.
it suffices to note that M is w1thout small subgroups and then to
apply [¥-2, Theorem, p. 1697 |

When in addition X is central in M, the extension (M,p) is
_called central.

The set of all gurensiafslipeftm central extsrsions of G by K
will be denoted A%@g&gdﬁ%ﬁ%%%gﬁq E;ﬁﬁo(G,K) ., Purther, we denote by
}%&%@%@2&%&%&%@ Ext (G EY": “the factor.set of grt(G K) At
g%&é%%@%%@@ﬁ’w1th respect to hie usual equivalence relation. The

equivalence class of an extension (M,p) will be dencted rM,97

l.2. From now on ¢ w111 be always assumed not only connected

but also simply connected.

e |
Tet (M,p)éf&i@#G,K). Since 7Ti(G) =0 z‘ﬁé(G), the homotopy

~ exact seguence of the fibration M-——Ee>G sihows that the inclusion
map ¥ &—>M induces an isoébrphism between m1(¥3 and T’(M),
therefore M is simply connected if and only if K is so.

Now let I be the simply connected covering group of R, with
L
Ker(pk), _

Givén (M,p)éagbg(G,*) we shall define (M D, i {Lb(G K) as fol-

v T2k the corfeSponding projection. We identify ‘ﬁi(K} to

lows: M, = M/ T,(X) and and p, 2 M, —->G is canonically induced by

P : M —>G. The map (M =" (1 T,p ) from ?zf(GwL) to fxé(G,K}
will be denoted by g%ﬂf_, while the induced map from Tx*(u L) to

- Ext(G,E) will be denoted by ( Cov. .

Conversely, for (N,q)é&bxﬁIG,K) let us define'(N#,qw)é§§£é§G,L}

. . A &
in the following way: N is the simply connected covnrlno group Ooi
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% and d# = qePys Qhere'pN : N'—> N is the covering homomorphism.
It is easy to check that Ker(q ) is isomorphlc to L, hence,'after
identifying then, (N o] ) becomes really an extension of G by L. The
map thus defined (N,q)— (N*,q”) from &2L(G,K) to £24(6,1) is deno-
ted by 5ot and the tnduced map from Ext(G,K) to Ext(G,L) is denoted
Gov' .

To conclnde this subsection we notejtha? there is no problem in

verifying that Cov#_and Cov#:are mutually inverse maps which put in

a. one-to-one correspondence BExAa Iy
#1ith Exto(G,A) . : b
1.3: let I end gp denote the ILie algebras of K and G respectively.
An extension of % by ' is an exact sequence of Iie algilias and
iie homomorphisms
(nijyﬁt e —e—>Lf e Wl ‘I;e'g}*-—¥> 0.
Z%en I is con*ained in the center of m y the extension is called

@%nt;al

The set of all extensions (resp. central extensions) of gL by I
will be denoted Gmu' Jqﬁ) (resp. exl Q} L) ) and the correspon- —
ding facmor get relative to the usuval egquivalence relation will be
denoted ext(?ﬂ L) (resp. ext (gﬂ iRy D“vxj we shall denote the
#gnivalence-clnss of the extension m,wv).
| There is a simple relationship between @%@k@ﬁ%@g@ﬁgﬁggg%%%@é?
ﬁré%éﬁ@% Wxto(G sK) and ext (%7 £ which we proceed now to describe.
Firsf of all le:¢ us remark that in view of the previons Snbsécticn
- there will be no loss of generality in assuming X simply connected,

' Now given 4'An) IS ? yK), by passing to Lie algebras we get an
extensivn (M, y )€ 8',1;?; ?,f) which we denote (ﬁc (M,p). The map i
Ext K)—‘ﬂv-fVchn L) so defined indnces a map Lie™ from

/s?

ExﬁﬂG,h) to ‘e: z(? S5

W

- Conversely, to each element ON,Y/)&:&uQKg,,f) we associate an

extension (M,p) é:;&;ﬁ(rn,w*) of G by K as follows: M is the simply
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connected Iie group with ILie algebra m _and E—aMana M —>0

are the Lie homomorphisms whose differentials are f—M and y :m
SR 4 % , respectively. We have thus obtained a2 wap ;ZCQ# : %zo(y,.i)
_-.yégnato(G,K), which indvuces a map Lie, from ext‘o(gj) I Jase Exto(G,K).

ﬂ:
It is juet a trivial observation to remark that Iie, and Iie

#
6w induce one-to-one corres-

are mutually inverse maps which
pondences between exto(ca-;, L) and Exto(G,K).

ol By Zz(;l) we saall denote as usually the vector space of ail
2-cocycles on gl relative to the trivial action of g on R.

For each wezg(?) one defines a central extension (lllw,‘ffw) of ?}
by R in the following way: mw ig the Iie algebra whoze underlying
vector space is Extg , the bracket being given ts the formula

[(rsx)s(ss3)] = {=w(xsy)s[x47]), ToS€R, X,5€ 575
the projection \'yw:mw-n»,y is just the canonical projection of qu‘dh
onto 2 , and R—amw is the canocnical injection of R into Rx? .

Now if w' =+ AL, with A¢ o}* , then the Lie homomorphism

\PA =T given by

‘f/\(r,x) =dteexix) )y vER, x&qd—zf,
ectablishes an «iuivelence of extensions between ('l'l’lmﬁfw) and
(1nw‘?Yw')' It follows that tne assignément we¢ Z2( ?}-)F“‘>,E31lw,\Fw_}€
ex%(ﬂ’m gives rise to 2 map [w]k—%[mmyu] from Hz(-;}) to extg(g;,z{},

It is well-known that this map is in fact a2 bijection.

2. Projective representations and group extensions

Given a separable Hilbert space H we denote by U(H) the group of
all its unitary awtomorphisms, endowed with the s‘cro.ng operatorial to-
pology. Purther we denote by PU(H) the projective unitary group U(H)/T
where the circle group T is viewed as the central cloeed subgroup of

U(H) consisting of the scalar multiples of the identity operator Id,
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PU(H) as an automorphism of the projective space PH associated to H.

By a unitary (resp. projective) representation of G in H we mean
& continuous homomorphism of G in U(H) (resp. PU(H) ). Recall that
two projective fepresentations T, s G‘——~>PU(H Yy 1=1,2 are said %o be

/

projectively equivalent if there exists a un? vary isomorphism U : Ha

*~—?H2 such tﬁatgllf U PH,—> PH, denotes the corresponding isomor-
@&ism of projéctive spaces, then a#ﬁi(g) ; Wé(g)oﬁ. The set of all
gguivalence ciasses of irréducible projective representations of G,
which we call the projective dual of G, will be dﬂnoted gre,

2l Tet (M,p) be a central zxtensicn of the connected and simply

connected Iie group 4§ by R. A uwuitary representation 57: M -—9'U(H)

P
will he called projectable 1£ §(10=e“n1rId. In this case there exists

a unique projective representation.ﬂ?: G —>PU(H) such that

i

C—>R-—>M —= ¢ —1

é?ufl gl ) §l
*T —U(H) —PU(H)—1
; ! PH

a3
commutes.

Now let v ~—>U(H s ol 2 be pxogectable unitary represen-
tations such that Q§1 and 69 are progectlvely eqv’*alent through the
unitary isomorphism U : Hl e’Hz. For each me;M one has

: A A A A A A
(Uegy (@) = U+g)(p(m)) = 2 (p(m))-T = (g (m)-0)
~hence there exists a unitary character % : M —=T such that
‘ i ]
Solm) = X(m)-U-g,(m)-U

This means that _f2 and X:@gﬁ_ame unitarily equivalent representa-

’ ’me?“zi

tiong o N.

2.2, tle want now to attach to a giver projective representation
#: G—>PU(H) an extension (M0 )€ clI'(P,R) together with a uni-
tary representation 7*- M~—>U(H) and then to relate this construc—
tion to that discussed in 2.1. ‘

Consider the topological subgroup Ny of U(H)XG consisting of

those pairs (u,g) which satisfy py\u) = (g). Define T ===l to be
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te——>(t.Id,4) and q Npe—>G by q (u,8) = g. Clearly
T qa

g > G . 5 1

(Nﬁ,qﬁ): 1 i D zer
. is an exact sequence of topological groups and continuous homomor-
phisms. Moreover, q is an open map (since Py is so), hence NW/T is
homeomorphic to G. It follows that N is a (separable) locally com-
pact group. Therefore (N_,q )€ ng)G,T).

Iet us now define (M_,p e gx¢:(s R)ito be f&y#?K - ). The map
{(u,g)—> u is a unitary representatlcn of NT, which when composed
with the covering homomorphism Mﬂ_———eNW>gives rise to a unitary
representation i M_ ——> U(H). Tt is.en easy mavher <o ses that
aj =%% is projectable and that ? =9

Conversely, let (9,p)ér_115(G,R) and p: M — T(H) be a projec-
vable unitary representation. Put 7T=i? and consider, as above, the
associated extensions (I_. &f)& ERC(G i)l P )Q_XLL(u,n) Definé

now Y ¢ M —sN bygfﬁn)==(g(m),p(m)), and then form the diagrem

0 ~—M>R~——->M
L2717 i l b il
Qe >N,ﬁ_/ qm.

which obviously commutes., Since M is simply comnnected ¥ can be 1ii-
- ted to a Lie homomorphisz ¢ M —>M.,. which mekes the following

diagram commutative:
\
Ol ail |8 T

Actually @é is an equivalence between the exterasions (M,p) and

R Al Ve
M ,gﬁ). In add1t10n»one has =T

2.3. Let ﬂ : G —>PU(H;), i=1,2 be projeciively equivalent

representations via the unitary isomorphism U : Hl~*—~4>H? It is not

difficult to see that the isomorphism (ﬂb s N =—2N_ , defined by

P : T i
&U(u’g) = (UouelU  7,g), (u,g)enN_

Pid

establishes an equivalence of extensions between (ﬂr ) and

&q,e,-r
21 1
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(erz ,q.ﬁ;). Then ciﬁU t My ——>MN_ , the lifting of ng to the simply

1 P

connectad covering groups, establishes an eguivalence of extensions
; v

e
between (MﬂQ,pﬂ})_and (Mﬂl;pﬂl)‘ Furthermore, 9f1 and ﬂI;{EU are

unitarily equivalent representations.

2.4, Suppose now that (Mi,bi)e Emzb(G,R), i=1,2 and that fi 2 My
——~>U(Hi) are projectable unitary representations whose associated
projective represenfations §i - G-——?PU(Hi) are equlvale 2t o Dhien - by
combining 2.2 and 2.3, ohé can see without difficulty that there exis-
ts a Lie iéomorphimn<§: M,~——>M, which determines an eauivalence
of extpnnlons between (Ml,pl) and (M ,p2) and has further the proper-

 ty that §, end ps° ¢ are unitarily equivalent representations.

34 The symplectic homogenes.is space associated

to a 2-cocycle

In.this section ¢ will denote a fixed element in ZQ(Z;), g}being
" the Ile algebra of the connected and simply connected ILie group G.
. 3.1. To begin with, we shall define a fepresentation EL}of ZL
on Rq<?% by the formmla
ZO(5R) = (0,27 COX + U, xe o, (FA)ER*
The group G being simply connected, there exists a wnique representa-
‘tion T, of G on ij‘ whose diffevential is g, It is easy to see that
, | T,(8)(0,4) = (0,49 (8)A), £€G, Aegy.
On the other hand we obeerve that T, must verify
: i (»-/\I' 0) = (rx(g),rF, (8)): 8CG’ rc R,

with X.:(}——aﬁfto} and Fw :(}-—99 analytic. Since Tu)is a represen-—
tation, one can see that x is a ILie homomorphism and ﬂu satisfies

(3.1.1)  F (en) =ad(glE (L) $'File) s eshed.

Now taking into account the fact that the differential of T, is &,

one deduces that » is the trivial homomorphism and that E“) has the

expression

Gie) S s e e x €.
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Finally, one obtains
(3.1.3) T, (8)(r,A) = (r,ad (g)\ + 1F (8))y 8EG, (r, X)éRxg
Let us denote by Ad the natural representation of ¢ on
z (}) too. Explicitely, 44  (g)(S)(x,y) = ¢(Ad(g™ )x,Ad(g )y),
forge(} S‘QZ(?,X ég;
Starting from (3.1.2) one can easily see that
FAdw(g)w(evxp x) = Ad*(g}i;’w(g”l(_exz) x)g)y BEG, me oy
which, when combined with (3.1.1), leads to the formula
(3:1.4)  Ppavimo(b) = Ad#(g)l*}”(g'lhg), gsh €G.
Cons/ider now the linear map D, : Rx ?* et ZZ(;}), given by
D (ryA) = dA + rw. One has
Dw°'6“(x} = Llw)e 15 X\:g,
As X—> X(x) from ? to ?[(Z ( )} is the differential of the
nomomorphism Ad : G-w~>GL(Z (5/)), it follows th=t
(3.2.3) ... Do (g) = A3 “(g)e Diia 8By
Which is equivalent o
(3.1.6) Ad (g)e - w = A(F_(8)), gt
3.2. Let all notation be as above. In «ddition , let us denote:

G(w) = {g(._{}; w(g‘ 01 and vﬂ(w) “{Xé/ LAx)e :O} . |
d

The formmka(3:1.1) 1mplles that G(w) is a (closed

po—g

subgroup of G
and that G(w) = {gg,, F,(hg) = 7 (h) ik any h€GY . Therefore F

factorizes through a map s G/G(uﬂ-*wﬁ-g}*. : é

Since Lie g(w) = {x tg;; exp tx < G(w} for any te,ﬁ} and,. on the. .
other hand, exp tx ¢ G(w) [or any teR if and only if ((x)wW= 0
fefe (3020, one get

i
L
;
i
b
é,

E*t)i'thermoz"e, we observe thut, in view of (3.1.6), we have 4
{3.2.2) f\d “(g)w = w y SEG(wW),

Now set X = J/u(uw and Ist g G —>X, be the canonical projec-

tion. From the definition of o1{v)y (3.2.1) and (3.2.2) we deduce

4



B

that there exists a vnique G-invariant closed 2-form @, on X, such
that (q(6,)); = , where 1€G is the unit element.
To simplify the notation, when no confusion can arise, we shall
write shortly X,q,6,F,f instead of X.,19.,:9,E,,f, respectively.
For each xeg; let us define fXEiCm(Xw) by |
X ale) )= Krte)i > viget.
It is an easy matter to see "hat the vector field rX{x) def“ned

ag in 0.3 satisfies the followiung relations:
(3.2.3) Ig(g), rye(x), = re(ad(g)x),, . v €6, u€X;

(3.2.4) re(X)g(g) = ~q*(1f‘(g)%(Ad(g"l)X)),‘ gEG,

3¢2.1. PROPOSITION. (X, 48, ) is a strongly symplectic G-space.

Proof, Precisely, we shall prove that

V(B»Z’-S) ' L(r +(x))8 = arX, xegi

To this end, let us first note that, since q* is injective, it suf-

5"§ices to check that
(Llry(x))0) = & (a™), xcef.
Now let g€G and x€ ¢ . One has, for any yé?,,
(M (Lryg(x))0)) aIe), 7> = <<L-<r,(x))@)ﬂg),%(g»q (y)>
q(g)(*x(x)qa 1 Iyl 8)e °q (y)) - (Ig(g™ Ly 8q01)) (% (X)q(g)’Lt b)°q Ey))=

- eq(l)(ilx(g" )* re(x)
-1y

q(g)‘iq%(y)) = eq(l)("q*(f\d(g. )X)tq*(Y)):

wW(y,Ad{g ")x).

i

On the other hand,
| <<q*<dfx)>,,.zl(g).y>
d X .
»exp ty), X:)\t T E%<:Ad (g)F(exp ty) ,x\>‘t 0 *

(g >X/\ = (A (B (U)W x> = wiy,adt(d .

i

L a(£%q) L) >

i
Qa
Ci"
2

.ﬂ

+
e
2

This proves our assertion.
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3.2,2. Remark. In contrast with the construction given in [K]
for the case when « is a coboundary, the map x+—>fX ig no more 2
: (e 0]
" Iie homomorphism with respect to the Poisson bracket on C (X). Ho w--

ever, i@/satisfies
Gezsy (o527 = 207 Cwga,y, xyE Y.

3.3. We shall say that ¢« is an integral P~cocycle if the coho-

moclogy class Ba]GFQ(Y R) is integral. This integrality property is
preserved by the action of G on Z (:P) Indeed, if w'= Ad (g)w
with g€G, then from (3.1.4) it follows $1at Gl = I(g)G(cu), hence

I{g) induces a diffeomeriruism i(g) —>X, y Such that i(g) 0 =

2 XQ>
&= Qw . This mesns that i(g) is an isomorphism of symplectic spaces.
Iit particular it preserves the integrality condi%ion

The subspace of all integral 2-cocycle in 22(3%) will be denoted

i
2.

4, Polarizations

" 4.1. A complex subalgebra B':?b will be called a polarization

of o a;t wezg(%) if it satisfies |
(1) Q is a maximally 7~otropac subsy u”; of ?b relative to 3
(il) Iy +-D ig a. Lie swbalnebra of ?kﬁ’: \
(1i1) E is AdGG(oJ)~stable.
If in 2ddition D satisfies
(iv) 1e9(x,x)L 0 for any x&'}’) .

then it is called a positive pciarization,.

By 1 we denote-the 1 ~radical of 2_ set G(w|N) = {:gg;G,

Eg(g)ﬁl & Ong. NOW‘WG sh»11 say Shat the polarization % is nil-admis-

.

gible if it has hine QIOQbLty:

(v) h NN, is a maximally isotropic subspace of "N, relative to
/ ¢ J mEheee

wln xN, and it is5.Ad,G (w11 )-ctable.

¢
From now on B will be & fixed polarization of gp at o, Consider
14



& Sk . (g
the Iie cubalgebras of i} given by: § slbflg} and ¢ = (E-rb )f)g%.
Then it is easily seen that :

(#.2.1)  g@)CbC oy

(4als2) bc =:‘)ﬂ)77 and ‘ZC - 7}*‘}?;

{4a1.3) d is the orthogonal subspace of € relative to w and
thus'the canonically induced 2-form :5 on' ¢/H is non-degenerate.

Tet DO and Eo denote the connecied Lié subgroups of G which

correépond to the snbalgebras § and @€ respectively. Since b
stable under'AdGG(og), D, and E, are normalized by G(<). It follows
that D = BOG(&J) and E = EOG(LG) sre subgroups of G.

With this notation, we shall say that b is a closed polarization

1f F(E) (=B (Br¥) s a closed notiin o
Lid, let (M,,Y,, ) €

o
=
o}
=
‘!
£

4.2. Leturning now to the notati

e ~ O g
ewib(%},j) and let (Mco’Pw) = e {u Ty L\})C{ lef(G,R) be the exten-
sions avsociated to the fixed 2- POGyC e W We shall identify ln
' *

R X¢ in the olbvious manner. Since RcW) is central, the chadjoint
Jd :
reprerenvation of W), factorizes through a representation of ¢ in
. J
¥ ; ® i 2 : 7 =
M. = R x(ﬂ‘ y Which is just 6w. It follows that on: has

K ,
o) Tlp (m)) =A%)y meEMN -,

Cas
(i ) A A " > ® - : :
Define V_,€ N as being (1,0)£ Rx ol . The danger of confusion
L A d/
veing ont of guestion, we shall drop in the sequel the subscript cu

inc N

3 & \L‘
= ‘fw 53 !

5
9 \Y‘w 3 Mw 99@0 s

.o
NAS

We will now list some facts which are verified in a straightfor-

Vs

P £ (—’\ ,_,,
CYgq is a polarization of{} at W if and only if D=

(i amo ) '\ff"((,u) o

P
B

L]

Ny
£
()
N
N i
M

iea polarization of 1 at v ( in the sense of EA“&E):
(4.2.4) 'b is & positive polarizatioen at . if and ondy it b is
a cosifive polarization at ﬂ H
(4.2.5) 12% B,E be the groups ossociated to the polarization.b ags
o~

R s ; : I : r
above, and let D, E denote the groung agsoeiated bto ) aEdin ! A-X,



T

5] then D "1(3) and %l— pmliE);

- 4.2,6) the polarization b is closed (resp. nil-admissible) if
2and only if b satisfies the Pukarszky conditicn (resp. is strongly
admissible).

These remarks together with Proposition I.5.1 and Proposition

1+5.4 from [A—K] give the following consequencess

(4.2.7) with the above nctation D is closed iu G and Da-is its
identity component;
(AsBisBy) ad }> is a closed polarization, then E is closed in G

and Es is its identity cowponent.
Furthermore one has

(i) el f E) is a closed polarigzation at w , then F (D) is 2

linear variety in 9f'.

Indeed, from (4.2.1) and (3.1.3) we deduce that-{AdM(g)Q ;;gégi} =
~S r (d)); a€D 3 .'rﬁ, and our last claim is now a direct con-
sequence of Proposition I.5.6 in [an]

Finally, let us observe that, in view of (4.2.5) and Proposition

.20 5 [A-Kj , one has

(4.2.10) if @ is solvable, any nil-admissible polarization of o
5 (,:

at W 1is closed,

4.3. From now on we srall suppose that L? is & positive, closed

Dolarizaflon of 07 at W . Since the 2-form culﬁwéﬁ is Ad D-invariant
1% 5

wad L(y)(w|éx& ) = 0 for any yeb , it induces an E-invariant 2-form
" on E/D which by (4.1.2) is non-dogenerate. In particular there exist
on E/D an E-invarient volume element. Therefore the modular function
L. of D céincides with the restriction to D of the modular function
ZSE of T, We pick now a sirictly positive function @"”C(UX such that

'ﬁ(l) = 1 and r( = ﬁH(F)Z“ \e)"lé(g) for any gé{G, g, Uhen Fox
each get we define (3 £ (8/D): by §3 (qﬁ\a)\..fﬁ ajﬁ(g)”lﬁ A€ G,
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where qp 3 G —=G/D is the cénanical projection.

4.3.1. IEMMA. If xeD, g,a€0, then (qp), (L(a), x)f, = O.

Proof. Actually, the stated formumla is valid even for x € ¢ .

Indeed, one has

(ap), (L(a)x)p, - S5 (B (ap(arexp 1)) |, =

4 @(g’la~exp tx) an g B ’la) -
= Ef(?é(a»exp ) 4t=o." E?‘?f%%j‘—);tzO e 0k

- Before finishing this subsection, let us fix one more notation,

for later use:}b will stand for the gunasi-invariant measure on G/D
which corresponds tof5 and to a choice of a left Haar measure on G.

Recall that for any:fGCc(G/D) and g€ G one has

(4.3.4) | G/S:D%(u):f'(g"lu_)d)il.(u,) = G); f(u)@#(u).

5. Projective represen’ations constructed by the

" guantization procedure

Throughout this section w will be an integral cocycle in Zg(g,),
b will denote a closed,. positive polarigzation of g atwl , D, E will
ke the associated closed subgroups of G X =X @ =0q,,y @ =6,,,
B=Tr, have the same meaning as in 3.2. ;

o As in [K], let ;(;(X,e) denote the set of all eguivalence
classes of Somplax line bundics with connection and invariant Hermi-
Vfiam gtructure over X, with carvature form ©. Since «w is assumed to
be infegral,izi(x,e) is non-void (cf. [Kﬁ)w Pick Z%EQZ(X,Q), then
(Lgd)égéjand let prp L-*>X‘denote the corresponding projection.
Now let égg(x) be the group of all diffeomorphisms of X which leave
6 unchanged, and letg(L,a() be the group of all diffeomorphisms of I
which commute with the scalar multiplicaﬁion and preserve both the
connection form and the Hermitiam structure._Then, aceording to

theogrem 1,13, 1in [@], one has the exact sequence of groups

(5. 1:1) 1T —-~~—~‘;»\§ (L) —>Z(x) —>1



g

where the:injection T-———‘}»E(L,N) is defined by thc scalar action of T
on I and the projection E(L,d)*“‘f?ﬁ%ﬁtx) is given by ek—eﬁg,‘@ deno-
ting the unique diffeomorphism of X such that prI?e'z @oprL.'
Consider now the projection py : X = G/G(e) )——>G/D with fibre
D/G(w ). Since F induces a diffeomorphism of D/G{<V) onto F(D),
(4.2.9) implies‘that D/G(w ) is connected and simply comnected. Note
also that © vanishes on .he fibres of Ppe These two renirks ensure us
that the parallel transport along curves which are completely contai-
ned in the fibres of pD_depends only on their extremities.~Thus for

cay two points u,v&€X such that pD(u) = pD(v) one can define unambig-

wously an isometry Pu,v : Lu 7IV’ namely given by the parallel
transport along any curve contained in pil(pn{n)}-with initial point
vu‘and end point v.

Define now an eounivalence relation on L as follows: a~d i¥ pD(u};
= DD(V\ and Pu,v(a) = b, where u:prL(a), v:prh(b), The corresponding
guotient space will be denoted I/D, while ﬁb i L\w~%>I/D will stand

for the canonical projection. It is perfectly clear that pry factori-

zes through a map prL/D : I/BQ-M>G/B such that the diagram

P
m._..Q...-};L,"D

L
i
prLl, (R 74
X »>G/D

Pp

commutes. Moreover pry . : /D —>G/D is a complex line bundle with

Hermitian strncture ,>> inherited from the Hermitian structuwre of L.

5.2, Let all notaticl. pe as be as above., Consider the vector spa-
ce [(X,L,%) consisting of all sections s¢|(x,1) such that Yr‘gs = 0
for eny tangent vector ? with (pngg = 0. It is.an.easy mattex. to
see that for any two poinis u,v&X withva(u}zpﬂ(v) one has Pustﬂuﬁ:

3 L
= s(v); hence s determines a gsection sDéJ‘(G/D,IfB),

Sle2eX, “TEMMA. Bhe map sk~%}sD establishes a one-to-ogne COTTESPON-

dence between PD(X,L,OU and | (G/D,1/D).




P

The proof is straightforward, so we omit it.

5.3. Consider now the sybspaca Jf(L.&{b) of FS(X,L,A) consisting

of those sectione sefﬂ(X,L) which satisfy:

/
/

€5 3.1) 8 =0, XE.' y 8€G3
- v{7q)¢(lh(g) x) 5
(5 3.2) G/SD} B(u)” dp(n) < eo

/
Take then the ODVlOuo scalar product on ;7(L A b) and let H(qu;b)

be the a55001ated Hilbert space.

We intend to define a projective representatng of G on H(Lgﬁ;b).
To this end let us consider g€ < and note that, in view of Remark 4.4.2
iﬁ [Kj and our Proposition 3.2.1, Ly(g)éig (X). Choose then an ele-
ment e¢ £(1,4) such that e L.(g) (see 5.1) and define 3"H(L %3 ﬁ)

—>H(T.,%3h) by

%(8) = (Byop) Y Pleceri(a)™), sefiLsh).
We shall prove that f (s) satisfies (5.3.1) and

(543.3) jl!(g (8))p(w)l“dp(u) = /f I s Paptu)

which means that f élKH(qu,b)) Indeed, Leeplng in mind Lemma 4.3,1,

|
w8 have V

vcj (I(a') X)§e(s) = q (L(a) X)((rgapD)l/?) (eosol (g)

v (pyorp) 2 7 (essely(£)™h) = {ap), (He), 21 (B!

q,(L(a), x) =

(eonsL (g)™1) + (8, op,) Y 20! s) =0 ,
. Pe?n) _\Zﬁ,m(ga)&x)

for any xgﬁb and a €G. This proves that §e(8) satisfies (5.3.1). On
the other hand, {5.3.3) is a direct consequence of (4.3.1),

Now if e' is another element of E(L,x) such that 27 = LX(g), then
by (5:1.1) %" £7%e with’téiT, whence j%, = tf,. Thus ¢ determines a
well-defined element in PU(H(L,%’E)) which will be denotedtﬁ(L,«;bngL
One sees without any difficulty that gk~m>'7(1¢<ﬁ?)(g) is a homomor~

phiem of & in PU(H(L,X;PH)). WMoreover, the following result, whose
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proof we defer until the next sec +'on, holds true.

5.3.1. PROPOSITION. 7T(L,% n) is a projective "opresentatlon

of G on H(L,«3hH)

Clearly if (1',«') is snother representative in the class g, then

VI(Lf,&';b) is equivalent to ?T(L,A;E). Owing on this fact we may de-

note the eguivalence class of ‘F(L,ﬂ;b) by Wz &.
. : 9

5.4. In the remainder of this section we shall state our main re-

R AR

sults. The group G will be assumed in what follows not only connected
and simply connected as belore, but also solvable. The proofs of the

results stated below will be given in Section 6. ;

ool oo THEOT owﬂw et «u’”zfu,)

(1) The set of positive, nil-admissible polarizations of 2/

ab {0 is non-void.

P

| .
(ii) Tor any positive, nil-admissible polarization f of g at cw

e it

ﬁ any 6w> ['L d)lg.{;(Y 19, ) the pxoqectlve repreaentutlon

yu(L,d h) 1& 1rradn01ble.

{dgdy If }} and‘b are two positive, nil-admissible polarizati-

P i 455 W s R

ons o of %L 5{ QQMH K QQ(X(,ew,y then. ﬂ; ; = ﬁ} e

Ik = !_’

The choice of the poiarizaticn }} being thus immaterial, we way

denote the class Trﬁéﬁ} simply by ﬂ% 3

we shzll define now an action of G on the. set ;p :ZEXQZ(KNQGQ} '

4
¥

(2 running over Z (m), as follows, For g€ G, WED (j) amd._ 4. = ;(wa)?g

b

g e : -
& Lo Xw,@w) let g ﬁ,denasp the cqulValepcp class of the gull-back of

{L,4) by the diffeomorphisa 0 0 ) (T _ gCM)w“’?{kw’Qw)’ where g-w

+* : : ab
stands for Ad {g)w (see 1.3). It is an easy matter to see that

€5

2 sl b | £ IR \g
(g0 )—>g is a well-defired action of G on « ;-
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; R 4
5.4.2, THEOREM. Let 52 { V’u Then 71'@ =7, if and only if

there exists g& G such that Z “]f7

Ao

In other terms, the mep {k"-%ﬁ% from.ciz to the projective

b ; n
dual G" of G factorizes through an injective map from ;fG/G InteG ™,

To cvate our next results we need some more deflnlt ne,

Pirst we shall say that (M,p)€ & LL (G,R) is a type I extension lf

M is a group of type I. Now a CoﬁjcleCUé:Z{M) (resp., a projective

representation 7 of G) will be called a type I cocycle {vesp. 2 type

I projective representation) if the corresponding extension (/Wajpj7 )
(resp. (M pw)) is of type I. Let us remark that if (m,p,;":hi_(G,ﬁ)
is a type I extension, the same is true for any other eguivalent 2x-
tension. Thus one can speak ab> t type I equivalence élasﬁes‘of PLO=

Jjective representations. The set of all such equivalerce classes of

i I
trreducible projective repre lions of G will be denot=d GT“ Also
; . ' ’ ek f,
the set Z%g%), consisting of 2ll type I cocycles in Z“(m y 18 G-sta-
ble and thus Qfé 2= &#cz;(x_ .)» W Tinning over Zy (m), is a G-stable
it v

subset of g The following result is a geometxlcal characteriza~ |

_only if for any

GE€27Me) of the form ﬁ”»m.; —m?\,, with TER and A€o, the cohomology

e e o e it 5 i = s b e a o St

in H“(XF,R) vanishes and Qr(G) (xqr(xﬂ)) is a locally
o Aoy e s A S AT e S B S A BB s iy S ML e [T i ooy o st i o Ay
closed subset oy o™,

AR e e i M e TR C,,

Now ae shall say that G is of projective type I if each projec-

fle repiesentation of G is of type I. Since it can be ea.ily seen
that any extension {(M,p)& fnib(@,ﬂ) 1s equivalent %o an extencion
of the form (Hrgrr) with ¥ a projective repr ; entation of G, it
follows that ¢ is of projective type I if and only if any extension

{M,p)é;@ﬁ[o(G,R) is of type I. Clearly if G is of projeciive type I

then it is of type I (in the wsual sense).
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5.4, 4. THEOREM. C ie: of projectiv fvpe I if ind only if for

i (G) (» £ (K )) is a loca11y closed subset of g,m

Returning to the problem of parametrizing the pro jective re-

presentations of G, we have

5.4.5. THEOREM. (1) © € o & if and only if T, ae

. T
(ii) The map 6 F“**’?Q induces a bijection of ;5é/G onto Gy -

(iii) If G is of projective type I, the map 2 . T,

induces a bijection of ‘k%/G ontomgj{

In the special case of exponential Lie groups,'the above vesult
prbvides a parametrization of the_projective dual of G by the erbits

of ¢ in Zz(y). More explicitely, we have

5.4.6. COROLLARY. Assume G exponential., Then G is of projmctivg

type I,-and the set QXL(X y9,,) reduces %o a single element 'i(uJ)

for any WE?Z (q) FPurthermore the map Cd“—*”‘?{gh from 7 (7)M_~

W 12 W
a" factorizes tarough a bijection of 7 (3)/G opbo G .

6. Proofs

6.1. Returning for tre moment to the general case when G is not

neceQSaklly solvable, let wWel (?), b be a closcd, positive polari-

zation of g} at ) eead T =X , 0 =098 = g B = F,o M=y,

Mo=Myy =Dy 3 =00 B E,f 4 Dy E be the r.ssociated data (see

3,0, by be 2)un Beb Y = M/ME ), avhexe M(Q) = {’ meWN; ad (m)V ::Q}
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and letfg 3 M-—7L>Y be the canonical projection. Then d‘? induces a
M~invariaant 2-f5rm 6’: 5@ on Y such that (Y, €) is a symplectic ho-
mogeneoua M-spfée ( see EK]). In view of (4:2.1) 8nd (3.X.3)s MY ) =
= p“l(G(&))},fso that p ¢ M;———%G induces an isomorphism'§ s ATy S )

| <
(X,0) of symplectic spaces which has the ‘additional property

”~J .
D(Ly(m)u) = L(p(m))B(u)y, mEM, uey.”
' ] ) ~-€ ) e
Assume now W integral and leo; { = [(L,xé]gé£c(x,e). 0f course,
(LyA) can be viewed also as a line bundle with connection and inva—

iant Rermitian structure over Y, the projection being this time
1

(58

D opry; 3 when regarded as such, its equivalence class in iﬁc(y,cr)
ig} ~ :

'will be dsnoted 6 « According to Theorem 5.7.1: in [K], tanere exists
a unigue character TLx)lg: M{Y ) ——>T #hose differential islﬂi?hﬁ(v)
o Fa¥d ;
(WM (V) being the Lie algebra of m(N)), such that K is the equiva-
lence class of the line bundle with connection and Hermitian struc-
ture (L,«), where : \
: ~no il

(1Y 1 = FI&C is the line bhundle over Y associated to the princi-

, v "
pal bundle § : M —>Y with structure group M(N ) and to the repre-
sentation 7 : M(Y )—> T = U(C). In more detail, MxC is obtained

L
as the orbit space (MxC)/M{V ), wvhere the astion of ¥M(J) on Mx(C is
given bys: n<(m,z) = (mn’l,vlﬂn)z), neMM),(m,z)c MxCj; the projection
NS 4 I T 3 )
prr + I —=>Y 1g:the map [@,z}-~4>§(m), where Lm,z] stands for the
orbit of M(Y ) through (m,z), while the linear and the Hewrmitian
~S

structure on L are those determined by the usual ones on C.

(1) X 19 et dom e e DR v 42y on mx(c-fo})
Y N Pl i »a3 L . . q 9 m 7 PO | ? -} /';

.

&

. . . : ~ i : 5 Gy i
éﬁ being the left invariant 1-form on M corresponding to Ve .

: ; = g & A :
As it i=s known (cf. (A-K]), Q‘ex ds to a unigue character X =
Len

TEN
ns o :
=X, of D whose differsntial is 27i9|d . Now let ,%(;c,)‘;) be the

-~

AN
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holomorphicall :mdu"ed unitary representation cof M corresponding
J ¥ L &

to the polarlzatlon }) and to the character X (sce EA.-K_!).

6.1.,1. 1ENMMA. The unitary representatlon Si(x F]) of M is pro-

/

jectable and the corresponding projective represemtation $(%.9)

i o e RS SO

of G is projectively equivelent to T(L,%3h).

PJoof. Recall first that the Hilbert 'space H(%,b) on which g(?c:,b)
‘ ; @ .
acys cdomes from the vector space '%(%,77) of all ¢ ~funetions £ : M
—> ¢ satisfying

(i) . f£(md) = x(a) te(m), meM, de3B,
(dt) Tt + .zméj x>f‘ 0, xé‘?;

(111) /5“! (m)| 2afi(mB)< 0 - | .
M

e . : o ol ey
where . 1is the volume element on M/D correspording to/u- via the

N s
isomorphism ¥/D = G/D induced by p : M ——>G (cf. (4.2.5)). The

action of f(()\:’,?)) on }ﬁ{%,}?) is éxpressed by the formula

(006, (@)2) (') = (B, voppep) (@Y Zrw ), mym' €31,
: [p(m)” "D :

There is no problem in verifying that Qgﬁx,b) is prejectabvle, so
that we do not insist on this point. In oréer to prove the second
assertion, let us note first that (L &), when regarded ag a line
bundle with connection and Hermi’ian structure over ¥ (the corres-
ponding projection being 5°Dri), is obviously equivalent to (L,x).
Thus, {ur our purposes, there is no loss of generality in assuming
{Lgel) = (i,:) as line bundles over X. Now for each fC /Vft ﬁ3 let

Se X ~——%l.-be thelsection

' = L e
sp(u) = [571(w),2(P {u))] I
’ : : . Y
By a routine computation one checks that Sf.»’c.,/?%; I.‘ws?) Mnd that

the
assignment £+—> Sp gives rise to a unitary isomerphism U : H{x 9}?

)
7,
~
—>H{L,%30N). Let g€ G and choose m& M such that p(m) = g mn defi-
; S 3 ' - ;
aes an element e & & (L,X) by e ({:m',z’?) = rmm ,2'l, and eclearly
[i5t e m" ) i o
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g Tl =(prm Y Xopr i), ey,
which means that
G802, () = T(Lyxsh) ()l
‘This proves both thé fact that ‘F(Lgﬁaﬁ) is indeed a projeétive repre -
‘sentation, as asserted in Proposition 5.3.1, and the claim of the

present lemma.

6:2. In-the remainder of this section G will be assumed solvable.

All the notation remains as above.

6.2.1. Proot. of Pheorem 5.4.1., It suffices to'cambine {4.2.3),

Temma 6.1.1 and Theorems II.3.2, III.4.1 and 1V.5.7 from [guwl.

6242 Proof: nt Phe mS.4. v et ussbegin by provizg that if
_ 8 y ,

ééﬁfc(x,e) with X = X, 6 = 6_, snd { CJ%;(X‘,9'> with X' = X 4

/ ol
, are related by the equality brzig™ vngn Ty =T

1%

el uo

C«Q‘
Note first that w'= @d (V)u;, therefore, after choosing a posi-

v ! .
tive, nil-admissible polarization Q of‘?,at ., }} = Ad(gﬂ7 will be

°

L4

(‘\\\.s

a polerization of the same type at ww'. PFurther pick (L,4)¢
-1 % ; ‘ i
then (L',q') woddig ) (L,«)c Z « £11 the data concevning @ ,J?
will be denoted by the same symbol as those attached to @, b, f, but
affected by a prime. This convention will be wvalid all over this
section,
- X . ’ - «

and di\: M——>M' be the corresponding Jie homomorphisms, as in 1.4.
/

- X H
Now choose m &M snch that p(m) = g and let A = }7‘3 - :dﬁim)y +- Then

i %l % 4l e 1 5 s
G N e A ay r ('\!/ *w') - \}a*w'
; “A e 9 L8 e oL
while ' .
ot % ¥ A '
a 47 i e m YA ) e = N ;
u(Adm\m)\”}> = x‘nxd (m)d Vo= f’--dM(*'“‘} \}/ = ( d(}& ){‘"" ) 2 Y — 7
so that dA = 0, which means that A is a character of 1) . From this
o . ; . x o X% 5
reason b ig 2 polarization fox-lﬁ N o= Adw(m)Q +JX y bon.. Since
{18
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M is connected and simply connected,A gives rice to a character XA
of M whose differential is 2Fi/\ .

let now ’?L and X be the characters of 1(y) and D respectively,
assocmted to £ as in 6.1. Since 9! —-(Ad (m)\7 Ao ‘(’ , whence M*'(J)
M'(N' ) @(I(m)M(\'))), we can define a character ’YL of M'(Y') by
’TL /(X ()CéI(m"l))) @ iM' '). Consider now the diagram

J M'XC > Mx%C

e

TC = ) W

p' l i p
T = g/ele B ) gralu) =

@

where the top horizontal arrow is given by En';z]Q-——%?
LI(m ‘)oQ,(m,) (m')z], the middle horizontal airow is induced by
I(m™ 1)1@ : M' —>M and the top vertical arrows are determined by
projections onto the first factors followed by vrojections onto quo-
tient spaces. The fact that this diagram commutea, which can be ea-
siiy verifiéd, together with the discussion about line bundles in
6.1, imply that, by composing the left vef?ical arrows, one obtains
& line bundle with connection over X' wh;c% is equivalent to (L',«').
This means that Wt is precisely the characﬁer asgociated to-éﬂ.
#urthermore, since Tt élf;“’;(m)rﬁ), one can s2e that 76 he
extension of 7& to D', is given by the formula

x (x (Yo T(m 1)) D l;a' .
Denote for S1mpllC1tJ 36 ”ﬂbol(m“l)[D' Now g((ﬂ.r Y} =
Q((X » X )0@ ‘B' b ) is by [A«»K Proposition 1.5, 13] unl'i:ar*ly
equivalent to S'((AS \B )" h)gg ;3 consequently S’>(X }7)0 is
unitarily egquivalent to 0((3@ i ):&m,}7) At this moment we obqerve
that Sa\,a | D )Jb }7) is unltarvly equivalent to E(QC ;j)@,x
thiough the unitary 100morphnsm T > %.f of H((X»l 0! )'x ?7)

onto H(9bm,}?,. Using [A-., IV.2.2)} : g();m f) is seen to be
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unitariiy equivalent to lg(:b ,b ). Summing ub these last remarks it
follows that 5(7{,' ,}7')0@% is unitarily equivalent to g(x ,T; )&%A .
To conclude this part. of the proof, that is to get ﬂiﬁz.ﬂész ’

it is enough to invoke Iemma 6.1.1.

Assﬁme ﬁow, conversely, that ﬂé zﬂ%:, that is ?T(L,x;ﬁ) and
ﬂ((L',d’;‘f} are projectively egnivalent, where 0&,(U'E§Z§(§L),kb
(resp. H') is a positive, nil—admissible7polarization of EL af o2
(vesp. ') and £ = [(1a]]€ X (x,0), €= [(1'a' )] Xolx,00).

From Lerma 6.1.1 and 2.4 we deduce that there is an isomorphism

.

ﬁ) N —=M' with differential T-’ 1 '9111' such thai §(;¢,}7) and
e \ =

g(kﬁ,}y)oq; are vnitarily equivalent. But §(X}y?f)¢42 a e

ly equivalent to'M§(19=%<§]Eb,?1Hﬁ%hence, by [AaK, Theorem IV.5.7})
‘ ¥ At Xl - :

there exists meW such that ¥ ¥ = A8, (m)Y) ‘end 7 -

= M (Do T(m))|m N)). Now looking at the construction of the line
vV e

‘bundle with connection associated to a character, which has been

/
recalled xn 6.1, it is easily seen that é = p(m)“lg’a

6420 3¢ Proof ot Proposition, 5. 4.3 Tet wic Zg(q) afidei (Y o g e

1%§t0(34ﬁj.'1n view of [A«K, Theorem V.3.2},uj is of type i if and
only if auy crbit of M, in nL: under the coadjoint representatioﬁ
is locally closed, and the cohomology class of its canonical symplec-
tic 2-form vanishes. Let us look more closely at such an orbit. To
this «nd choose (r,A)¢ R><g¥':)ni) and observe that, by (4.2.1) and
3.1 3) the opbit of M,through (r,A) is exactly the set

"-)f 5 2 13 ¥ 7 ]
{(r, Ad (A & r%u(g))éklk? 3 gé}G} ..On. the other hand, using {3.1.2),

one seeg that

| . _
B wrdnt8) =78, (g) + Py, (&) = 1F (g) + Ad ()X - A .

Thus the above orbit is obtained from {O} XFrw+dk(G) by translating

: : ! ‘ : W o
with (r,A). Hence it is locally closed ir W, if and only if
: S e < ; 3 i
pr%dk(G) is iscelly closed in 9 ., Purthermore one sees that the -
Lyt LA 4 : v
esin 43 aDE :.,{ : \ ', . ‘. 1 a2 : 3 o
symplectic space (“rm+dA , Grm+dﬁf 1s isomorphic to the symplectic
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space associated to the oarbit of M., through (r,A) inluj;. This

completes the proof.

6.2.4. Proof of Theorem 5.4.4. Noting that any central central

e¢xtension of’l?_ by R is equivalent to an extension of the form
(]n“),ya’) with W & 22(?), the theorem follows directly from Propo-
piltion. 9.4, 3,

6.2.5, Proof of T@gprem 5.4.5. The first claim results from

Iemma 6.1.1 and 2.2, To prove the second claim we only have to show
thaf an arbitrary type I irreducible préjectivé representation

of G is egnivalent to a projective representation of the form
T(L,%3H). To this end consider the 'wnitary lifting” ff:%% :

M = M —> U(K) (cf.2.2). In view of [A-K, Theorem 5.3.3], there
exists \?ém* and a character ’YL of M(Y) with differentisol Z‘Tfi\ﬂﬁl(\?)
such that, if we choose = positivé, strongly admissible polarization
@% of ‘M at N and denote by/ﬁ its correspvonding "D"-group gnd by x
‘the corresponding extension of 11 tolg, then.<§ is unitarily eguiva-
lent to indytﬁ,%), the holomorphically induced representation of M
associated to M and ?; (see [A»K] ). Since R is central in M, the

very definition of indm(q,ﬁﬁ ensnures us that
~ hagc _‘7
mgy(m hi(e) « XN Drg, e
on the other hand, < being prcjectable, we have
: T 271 .
Jm%mphﬂr):e gmj T ER.
It follows that <N ,r> = r for any r £R.
Now according to Section 1, we can assume 1} :Jwajfnr a suitable
, * « :
W€ 2°(g). Define ,\eg By X 42 o= <V, (05%) ) and. o)’ =08 0.
64
Further let f; 2 ~mw»ln’=)nus be the isomorphism associated to A

9 ¢ i S
Glearly J :\Qo%ﬁ s Where Q = Qw" Then
] 5

. = T
inde(’)/i' » T’? ) = indb‘q ] (ql’ 9 b " © (I_)?\
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whe re M' is the.connected and simply connected Iie group with Tie
algebra M', P, : M —»M' is the isomorphism whose differential is

b= v hn '=7Lo(<'p"!m'(w)). But indy,(n', §)) 1s just the
representation ’Iof ' we have denoted g(*x,‘ ]7 . where y' = x»(é [D)
and }?-“f (}Z) Letting (L',«') denote the line bundle with con-
nection over Kw‘ associated to Tﬁ s one sees that ?T(L',x';b Y.dis
projectively 'eguivalent to T,

- ; "ﬁ i J ¥
6.2.6. Proof of Coroliary 5.4.6. Since a central extension by R

of an erxponential group is again an exponential fgroup and since such
a group, when connected and simp’y connected, is of Twpe T, it ol
lows that G is of gfojective “spe I. Let now Wene (J . Because

M (Q%) is connected and simply connected, &f (yw,e ) congists of
only one element.(Fox more details concerning the exponeutial groupé
the reader is vefered %o [S}). The rest of the proof is merely a
simple consequence of Theorem 5.4.5(iii),
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