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STABILIZATION BY LINEAR FEEDBACK OF LINEAR
| DISCRETE STOCHASTIC SYSTEMS

A, Halanay )T and . T. Morozanxx)

Abstract, Considar a linear discrete systerh and assume the matrices
~defining it are stochastically perturbed. Conditions on variances are obtained
that allow the system to be stabilized by linear feedback and if such conditions

are fulfilled a reasonable ccastruction for the stabilizing feedback is recommended.

1. Introduction
Consider a linear discrete system of the form X [A + w] X S
 fpemen 1n

w_here C, and Dy, are - random perturbations with zero mean; We shall assume some
independence properties and look for a linear feedhack
which insures a stable behavior . We shall see that in order suth feedback to exist
the variances of the elements of C,, and D, must satisfy some limitations, andin
this case we shall recommend a construction for the stabilizing feedback.

The final result we obtain is the following. Let Q Z# 0 such that (A Q
is completely controllable and let X 7y 0; let f},u ,V) be such that the eque *ion

P=qQ +A* PA +):.1'(Trp) - K'pB {'R +B PB+ VI (TrP]" B PA
has a solution P » 0 . Choose . s
[R + B PB 431 (:rp)]'l E¥pA;

Then, for g 5= an the zero golution of the system is mean square
exponentially stable for all random perturbations C,,, D, vith zero m.ean value, with
independent elements and such that the variances of the elemcats of C,. are not-larger
than /.k and the variances of the elements of D, are not larger than 9.

Descriptions for the set HG of allowable pairs ().L ¥ ) aregiven from

Which it follows that if A is £ x P, thea £ 4 and that if the speectral radius
| s K e
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of A is largér than 4, 9 cannot be larger than a number specified inTh. 8 bélow.

To get these results we have to study the general linear- quadratic -
optimization problem on infinite interval for stochastic systems,Br such studies we
have to mention monographs by Astrom [1] , Kushner [2], [3], Khasminskii [4],
Wonham [5] . The linear - quadratic problem for the case of an infinite interval
has been considered for [t# equations in [5] , [9],[10} , [11] and for the discrete
case by Zabozyk in L 7], [8] Lel. /

2. Preliminarins

~ ) 0} - #
Let {.ﬂ; v, be a probability field. If x is a random variable
-and %CC% is a 6- algebra of subsets offz by Ex we dencte the mean value
and by E [x | C;J( ) ., the conditional mean of x with respect to? . We denote
2 2
by L (ﬂ,) the set of random variables x with Ex « oo . If A is a matrix (or a
“vector) A® means the transposed.’ :
i A (u) ¥ B (w ) are lzarrwl,ofmmatrlces we a2 that { A (-),
Bk (o), k7/0} are mdependent if ) '}w : A (&3) € rk’ B (au) Qr‘
K?O} iw,A (uo)er} iw B(w) € FLL forallsetsof
x2,0 "\ J -
matrices [‘k, ; g 4
We say that the elements of the matrices A‘{ (e ),.»»'}3"-l (w) are

i il Po,ask, k30, } 1

p, q;k_ S

iddependent if

6)% N Ak (w)écLi.g~k

o ; ?
Floal T Tl ddes: » C’{ . 8
' JLw : a’lg;k ) 4“"Lig;k.k J S bp,q;k(méJ P’?;kg

k0 i,g p.q
We shall consider linear discrete stochastic systems of the form

= TS
M) x,,=A (@) x +B (w) u, 10%0

where A (w) arel x1 matrices with random  elements and Bn(w)
are 1 x r matrices. ;

We associatp the periormances
%
@I (x§)=E &g [ Q x (@) +u (@) R u ()]
where Qn % 0, Rn>. 0, and X (w) are defined by

X o i) s & Biee) fn, R
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£ r 3 .
with ‘f ik :R —>R Borel measurable, and un (o) = \fn K (x (w)) .

We denote by H the set of functions ¥ such that x () and

k, x :
; 2 2
n (« ) described above satisfy \xn\ € L [ﬁ.)} lunl e (ﬂ), we denote by
(~] : .
Hk,x the set of fqnctlons 3 in Hk,x such that Ik %y )& oo

"8, The general linear - quadratic problem

We shall obtain some general results concernirg the problem of mini-
mizing (2) for the class of control described above.
Theorem 1. Assume A, (+ ), B, (o ) have elements in L (ﬂ, and

{A («) By(e) nd> 0} are independent.

The following statements are equivalent : (i) for all k and x HIZ - 74}5

ii k2 ist -~ < ' B o st
(ii) for all k and x there exist f €: Hk such that Ik = ¥ inf, Ik )

» X &
~o H
& k, x
Prcof ‘We have to prove only (i)==3(ii) , that is we have to show that if
admlss1b1e controls exist then an optimal control will ex1st Let Hk Bk be the set
of functlons as in Hk x but restricted to n ¢ N; iet :
N -
Ly ®) = Z_ Pl Qx ) sl Byu )]
where x , U are associated to P € H_ .~~~ in the way described above, If
. n n t k » Xy N
f € Hk " then it car be restricted in a natural way to & function in Hk - and if

o] i i [
Pe H we have Ik, N (x,\? ) é,' Ik (x, T )< oo for all N 7 k. Th.i Eroblem :)f
m1mm1z1ng Ik S forp € Hk, <N solved [2] , [12], [_13_']} let P the corres-

-

; we may cnnsider it in H and

pondirg optimal control. Take \f €H k,x, N

k, x, N+1

~

N »
Ly®P &l (P)e Loy &)
855

since this inequality is true for all \f , we deduce that L T\I( ok T ) &
~ N+1 -

TRRNIEEE L R o . |
Take now \f € Hk 2 that exists accordingto (i)

9

We have
~ N = [aY A
£ Z )
e e T R Ik(x‘f’ e
: Ll _ 'V N 1 e
The monotone increasing sequence SZ I‘{ N )J N is ,,husm :

bounded, hence it has a finite limitFrom [12]  [13) itis known that I (%, )

: N
is a quadratic form in x, Ik N(X, ¥ )= X Pk N= It follows from the above
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; : Sl SO e gl
reasoning that hm‘ Pk,N = Pk exists, Since S (%, CF ) > x‘Qk x it follows
N> : :
that P, 2 Q forall Ny k, hence P ) Q- From [12), [3] it is also known
y : = %
that Pk,N satisfy Pk,N = Qk +E (Ak P k41, N k)
B, g '
-E@P ke, ! By T B (BkPkH,N 2 EG Py A
If we take the limit for N—»>% we get
: -1
=Q +E& R A) - EER ;B R +EE2, B)) T BB P A
\ il L = ’ gl _b]_ »*
Let now Yy (x) = Lk X, Lk— - (Rk + E(Bk Pk+lBk)) E (kak+1Ak)

. ’ . : 2 ' X ~4 * 3 v
Since the elements of S (o) and'LBn («) arein L (ﬂ) it follows that f& € HK,JC ;

We show that :

For 5 Vv o= : ol <

Ik (x, T& y =% ka hence \f K € Hk % and moreover ¥ ka € Ik ¥ )
f > € ] ;.; w t , 5 3

or all \f hence fK is optimal, To do tha let, Pe H, 2 X the

correspondmg sequences by using the equation for P (which is trae for all k) and the
N
mdependence assumption we deduce by computation tha.t e

e / LR N p
n¢1 n+1 n+1) E[ ,un xn ,Ln) (Rn

e .~

E ¥ ‘R u) = E'P s
(XnQan + un nun) (x x) x>

n+l r)) (u_ s ’{ﬂ

+E (B P
" nr\

hence N

: 1
IkyN(x,\f):x 190 3 E(xNPx)+E = L(u—xL;(R+

+E(B P8 )) = Lnxn)]_ :
It follows
~N e~
e ¢ By 0 B BE-ERRE € fnx s

taking limits for N—, oo

T 3 )¢ £px
X kX k(x,\["‘)\xk

: ~
hence Ik(x,, \PK ) = x% P%X . On the other hand for any other control °

]

~N . . . !
.Ik, N(X,\P )}, Ik o (%, \f ), hence Ik Fp > kax and the

theorem is proved.

—



4, A particular case

In the following we shall consider the special case

An‘(o'.)) =A+C_ (w)', B (w)=B+D ()

where { C D ,n 20 } are 1ndependent with zero mean and E (an

. )}, E (d d ) are finite and do not depend on n, Moreover we shall take
le; q;n’) ij;n p,q;n
QL Qipr B =By

~

Theorem 2. Under the above assumptions the following statements

areequivalent :

0 L
(i) H:,x #}f forall x € R

: 0
(i) I, (X,‘f ) has 2 minimum on Ho

b4

(iii) The equation

3) P= Q-+ APA +E(CZPC )—APB(R+BPB+E >D))

has a solution P 7 0. ‘ . | ¢ g
Proof We have PN,N= 0 and il
! = o | B+ +
Py SREBLEAC) By @ Cl- B {arc)” Py o B E

: * -1 .
+ E((B+D ) Pk+1’N(B+Dk))-) E[(B+Dk) BN (A+Ck)]

The hypothes2as on Ck and Dk allow us to write

A+E(CP c‘—A*P PR+ B'P B+

¥*
By g TR BT k+1, N k+1, N k+1, N

k,N k+1, N

. -1
+E O, PP ) L

" Denote P. N-k, N Sk and remark

5 —Q+A S

X—
s kA+E(C SC)—ASB(R+B SkB+ (D SD)) S, A,

. . -} % éP v 7
From i) it follows that I‘O,N 0 Na1 < I (%,
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hence lim P0 N lim SN exists and is finite ; denoting this limit by S it follows

N o N->®

S2 Q> 0 and S is a solution of (3);‘ in this way (i)==> (ii) = (iii).
a9 ~
Take L= - (R+ B'SB+E (D SD ) ) B'SA, ¥ (x)= Lx; repeat all compu-

‘l . N . . e o0 oa‘
tations as in the general case to see tha! f is optimal, hence (iii) = (ii).

5. Stabilizability

Under the same assumptions as above we study now conditions

for the existence of L such that with' u an we obtain mean square exponentidl

stablhty We start with a general stablhty result.

Lemma 1, Consider che system

o

@ y ., =[s+ c@ly

) & *
where s? Cn () , n2 O} are independent, have zero mean gnd E (Cn Cn)

do not depend on n.

R Y

& L

If };*n ng \ =0 for all initial conditions xe R then
— 00 - 5 R

the zero solution of (4) is mean square exponentally stable, -

i -~

Proof. Let Z =E (y v), Z = xx* . We have
s n n°n” "o

—E[A + C YAy )] =Az A*+DZ ‘.
Zn+1_ ( Yo © nyn)(yn T n)] - n (m) ;

Let T be the linear mapping defined by

TZ="AF A+ D (@)

n+1
P Z_ & * ; .
ZO—.: xx if Z> 0 then -Z = it ejej. hence o ZO->O for all ZO>, 0.

We may write Z = TZn, hence Zn = TmZO . By assu nptlon g —90 for
L

But if Z is symmetric it can be written as difference of zemipositive matricas
0 ;

hence TnZ —> 0 for all symmetric Zo’ and the lemma is proved.
[o] . : ) :

Theorem 3. Under the same assumptions as in theorem 2,

_l_gg(AX , Q) be completely controllable. Then the following statements are equivalent
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(i) There exists Lo_such that the zerc solution of

xn+1=(A + Cn (w) + (B +Dn(°~) }) Lo) x

is mean square exponentially stable;

(ii) Equation (3) hasa uolution P> 0.

Proof, If (i) is true, the function Nt defined by \f x) = Lox
belongs to H: e for all x, hence there exists a solution P » Q of (3) ; from the proof

of Th.2 we have

ead . X X 9 9

3

~ : : -
T w=1x L=-® +5 B+ EPD)) " B PA

: AR ~
We prove now that P> 0. Assume y# 0, y€ R , yAG Py = 0; it follows IO (y,‘[’ y=190,
hence y* Qy +y 7 RLy =0 hnence 3* Qy'=’"O,ALy = 0; from here and
v Py = 0 equation (3) leads to y A PA y+y E C; P CO)_j =0 hence

'y*A*‘ pAy = 0; Ay bhas the same properties as y hence y* (A“)k QAky =0 and with
y #0 Wé contradict the controllability ass'qm"ption. In this Way.(i)@(ii).

x it follows ‘that

v s g L b s
I‘rom E (XN P'XN,) Lx Py X*'PO,N

-

AN

) ~, ez )
lim E (X§I Px. ) =0 and with P> 0 we reduce lim I| x\]\ =0, i
L
N—= 0o - g : N= OQ :

we may apply lemma 1 and (ii)==p(i, {follows.

‘Theorem 4. Under the assumptions of 'heorem 3 if (3) has a

solution P»0 then 7

(i) P>0
{ii) P is the unique semipositive solution of (3)
s e . - - -x i N
(m)‘fr‘élbng 10 (x,\f) =x Px= IO (x,f )

n ¢ Ox.

~ ¥ Gl -1 *®
where P (x) = 1x, L=-@® +B PB+E (D PDO)) B PA

(iv) The zero solution of




-

x = [A + C_ (@) +(B+D () ) L _]xn

is mean square exponentially stable. :

Proof. The only statement to be proved is (ii).
Let Iy (X, ) =E (KNP’ﬁ\*) +IO’N(x,\f )

It is known [12] ; [13] that IN has a minimum given by

* _
X So,NX’ where
0\\
S s A+E(CT s C
= + + " e
k,N Q k+1,N (.Co k+1, N o)

A S B®R+BS BAE (DY § g )b m N P
R B BB PRy @) S NP By g A Sy
: Since P is a solution of (3) we de(ducle that i ' s P and

. % s+ A
; ¢ =P W i ‘ P ) S
then , step by step)we ge So,N e have fur her x Po, NE ¢ Io,_N {(x f )
A > * ~ ~
: — : = x < kS g \
IN(X,T ) =x So,N g xP;f; = E (XN‘ PXN) +Io,»N (x,? ) L
» ~ 2 , - : e
But E ‘),{,N_ ]———-,>~ 0 and Io’an(x,‘f J—=2 x 8x,
P —> S, hence
o, N~ -
* RE 4

x" S & % Px £ % Sx ;finally P=8,

6. A stability result

~ Conside the system (4) with the assumptions on ‘Cn stated above

and

®) Zn+1=[A +B_ (w) Jzn, b

\

Lemma 2. If the zero solution of (4) is mean square sxponentially

stable then there exists EO > 0 suchthat if E (B ) = 0, if the elements of PI} are

indepcadent and I ( bi}-n ) £ E (C?j-o) iy S for all i, j,n then the zero
9 Js S

solution of (5) iz also mean square exponentially stable,




=G

Proof. From the assumption on (4) it follows [14] that there

exists H » 0 such that
; *
Ef(A+C) HA +co)] -H=-1

Let V x)=x Hx, for n ) k we have

E[V(zn+ l Z (.)] (w) ~VzZ (w)) = (w){ [(Aﬁ
+Bn(c'u))H A+Bn\w)J —HJ Z (w) = -z: () (1 A zZ (w) =

It

¥
2l e TeeI- A Y 2z )

2

“where A i is a diagonal matrix with elements

i

2 8l 2
N ( \
z.hjj(E (bji;n)~ E‘n'ji;n ,)

» e 1 0 VA E L -«-—-— “- i E ; Z ;
Let g € (0,1), 1.0 if (bi].;n) € E (Cij;O
then &, [ -8,.>0, heace v ‘ -

BLV @, ()] 2,60] @) -V e)e a-g g e

H > 0 and the mean square asymptotic stability follows.

il
Theorem 5, Under the same assumptions as in theorems3 and 4

-

assume the equation

' > . )
=Q+A"PA + A M -£PE®R+B PB+O  (N) B PA hes
a solution P>, 0 ; here A ! (P, M), Az (P, M) are diagonal matrices with elements
; D ms,, Z_ p 2 respectively .
wlwiE

X
Let L=- R + B PB+A2(P,N)) B PA

Then the zero solution of the sysitem

= ] + + L) '
R g T G (eo) (B+D_( ,) L), x

is mean square exponentially stable for zll random periurbations Cn’ D with zero
e



=10 =

, < 2 2
mean, with independent elements, and E (¢,, ) £ m, ., Ed,, ) £ .n,
ijsn ij ij;n ij

Proof. Consider random perturbations for which the variances are e

A A
equal to m, i’ nlJ respectively. Denote them C D From theorpm 4 it follows mean
I\
square exponential stability of the system correapondmg to £ C D ; we apoly then

A
lemma 2 to the random perturbations Cn i L‘nL and Cn + DnL' For applications might

be useful the special case mij = nij =9 ;in this case the equation that gives
the solution to the stabilizaiion problem is

'S St L * -1 >
P=Q+A PA+pI(TrP)-A PBR +BPB+V I(irP)) B PA

s

>0 00

It is ncw natural to study the set M o:ﬁ pairs ﬁ:ﬁ;ﬁ}mch

this equation has solutions P2 0.

Theorem 6. Assume (A, B) completely controllable and all

assumption of theorems 3 and 4. Then (i) (0, o)e XG 5 (ii) if ()A.)*)) € ()f( there
exists &> 0 such that 0,0k 8y X 0 N & e )
exists such that [0, s [ N

K 4
Proof, First assertion is wel}Emown and the second follows from

lemma 2 and theorems 3 and 4.

Let now X, jzjx()w), ()&,O)QJ/C}

4X = {ve@w (ov)eﬂ} ? e@oo) y&)ﬁ)eﬂg ;

‘}:i‘( T Sup-,x' ’ /IJ. = -SUup. X2, }’:32 sup. X :
. From theorem 6 j!-)ﬂ i=1,2,3, X"[O‘/«L‘) :
=0, k. )
X, E)’)'\:./ 3}:)"3 }(J\}., )}3_ .

X )(XSC:_)((CX1 x X

3 2 5

; ~ o~ v
From theorem 3 it follows tha’cjx.,‘ )}kz,}')\:g do not depand on
Q ard R.

Theorem 7. Under the assumptions of theorem 6 (p.)\?) GJ‘[C
7

iff



i - S
5 , s
ol gTr% u,[(e"it I-+¢A+BM~ )"1 (eit I- (A+ BM) '1_]' i

20
EWL -n -

+*9[:( A+BM)) 1 w* M(e I-(A +BM)) J}dt(l

where i = \] -1 and m is the set of all matrices M such that 52 (A¥BM) <. 1

( ? (A} means the spectral radius of A, i.e. 5 (A) =max |»| )
. ' XeG(A)
S (A) being the set of eigenvalues of A).

_Proof. Let )*')9)63/6 C D random parturbations as in the

fxroof of Theorem 5 with E (c }-’v E (d'b )")T From Theorem 4 it

follows that a matrix M will 2 xxst such that the zero solution of

@A +C () +@D ;) M)
X g =@ +C (e2) +(BD (@) M) x

is mean square exponentially stable,

From EM) it follows the e:-:istence of H> 0 such that

N

E[A+C +MB+MD)H(A+C +BM+DMJ H=-1
hence
. \ ' 3
(A+BM)'H (A+BM) - H + T H)I +9(TrHM M=-1
Since H>0 it follows that M € /7{,.
Denote by S, (M) the solution of

(A+BM)* S, (A+BM) -‘Sl'= -1

~and by S‘2 (M) the solut‘un of

(A+BM)* S, (A+BM) - S, =- M¥ M.
We have S, (M) > 0, S2 (M)2- 0 and .
- H+ po (TrH) S, (M) + ¥ (TrH) 8, (M) = s, (
hence - el

a4 S N
H=5 O+ DL S,00 + ¥ s, M0 (TrH).

M)

We deduce

T Y |
Ertl = (mrg) (M) +(TrH)E~(rrq (M \) + 9 (T?Sz (M))_\
hence . 3
(TrH) E- P (TxS) (M)) -9 (Tr S,(M) | = Trs, (M)
Since H > .0, Sl(M) p 0, itfollows that



<12 -

p-(Tr 8 M)+ 9 (Tr SZFM)) &
But it is knoov.yn that

s, ) = Pa S " aBm"
n<ao i
s, M) = > L(A+BM)*J " MM a+BM)”
i o

By using Parseval’ s equality we deduce that

it “" ;
5, (M) = fﬁ J [(_a I - (5+BMj ] MM "I~ (A+BM)] dt  and the corres-

pondmg -ormula for S, (M) and the mequality in the statement is proved . Assume

1 ,
now this inequality : there exists Mem such that }"' T S1 M) + ¥Tr S‘)(M)<1.

th

O s

S. (M)+ ¥ S (M
1. = )xTrS(M)—\?TrS(M)[}k 2():]

Since S1 (M) > 0, S2 (M)) 0 it follows that H> 0,

By using the Liapunov function defined by H we obtain E14] the mean square
: ~

exponential  stability of tie system associated to the random periuroations L. Dk
hence ( Vi) 2
}.L ,v) € J/C
5 : A
11 #"

: . o %
‘Remark, If Y(A) < 1 then 0€/Jib, hence j*;_‘ = 0o

Theorem 8. Under the assuraptions of Theorem 6 we have

~ 1. £
@it Sr:0m . and S Tt Trs,
(u)}«g—mgf_A:o ;
'("") Ii (A)> 1 th fTr S (M)>o 4
i) I > eninfTr -
. S) Né)‘({o . )/A’l" Mm TS (M)
- €
Proof e

If Mem then

*
0 & (A+BM) S (M) (A+BM) = S (M) -1

Hence S (M) }lr S AI) ;> Tr I ‘F/and thus by Theorem 7,

(i) follows.

~

1
Suppose that )J,s.: _/_E/_,



Tr S1 (M) +TrS, ]> in f rS ’M)>/®

73]
=
(=}
Q
(¢
Al
Sy e
[0
&
(-—J-“',

by Theorem 7 we have }13= —fi—— Hence fs j/
st M

'M, s il s, (M) =P, lim, 8, (M) =
n->ve n-300

There exis

- : » — —
-PZ, Tr (P1 + PZ) j& Q/
From

p ¥ . 3¢ ¢ 7
04l M ¢ MM + (ABM) S, (M) (A+BM ) = sz. (M)

(it follows that the sequeuce Mn is bounded. Hence, there exists a convergent sub-
sequence M . Let M _be its limit.
n 0 ;
k
We have :
MM+ (A+BM)¥P, (A + BM )= P
e o Pyt s
*
+ (A+ P (A+B =
I+(A+BM ) P, (A+BM )= P

Erom the second equality it follows that P1 3 I‘\ and since

; = ‘ ilv + ¥ . =
Tr (P1 + PZ) Trl, P1> 0, PQ;->/ 0 we can prove easily that Pl £ }?2 1 P1 I,
P =0, ’

2 .
Fron the above relations it follows that A= 0,

Suppose that A = 0. Then 0€ Wi, 5,© =1 8, ©)=0.

Hence ﬁ‘Q/ Butfs = and j"b“)“ :'-; . Thus -j%-':g'and

Suppose that -, M> 1 and in f 'Sa (M) =0,

(i.) follows. :

- Using the same ressonitg. in the proof of (ii) we get the matrlces

P2 and M0 such that P'2), 0, Ir P

5 f_(AJrBMO) 4 1 and (A+BMO) PZ' (A+BM ) -

-P =-MM
2 0. 0

Hence P, =0, M_=0, p (A) & 1, and thus we get a contradiction.

A
Remark . From Theorem 8 it follows tnat)il & "_Q: and if
(A) > 1 then R & H }12' min :
o ae = +}‘<\ ‘ff"f‘*
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