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Let £ : X —>» ¥ be a proper morphism of conplex spaces or
algebraic schemes and F a coherent sheaf on X flat over ¥, or let
f: X ——>1Y be a differentiable famwTv of compact complex mani-
folds and ¥ a sheaf on X, locally free cf finite rank. for any
point y €Y we can consicer the fiber Xv-= (f"1(y),
and the sheaf F /“ ', which is (in fact its rest:

e .
coherent sheaf on XV. For any positive integer n

o

sider the n-infinitesimal fiber X(n) = (f—1(y), O,
1

. n a0+
and, cdf:espondingly, the shea ( F & /8"

he aim of this work is the study of the COuOWOlO gy
Hq(xgn), fén)) (= H: (X , F/ﬁi+1F) ) when n —> 00, in connection
with the direct image sheaves ROf (F). Precisely, we siudy the
functions n —> J_ (-1)2 ainm 1 Q("(q) E(n))
n —>» cin JO(A(D) én)) when n —> u>(1 accordunce with the
Hilbert function associated to a module we will make a shift of
the argument n to n+1 and in the algebraic case, of course, we
will put length instead of dim).

The results are of three types. First of zll there ar

existence statements: one finds polynonials equal to these func-

tions for larce n (for the first function F need not be flat),
secondly semicontinuity statements with respect to y ana thirdly

continuity stztements (i.e. necessary and sufficient conditions

,.4! '
Negigoh

such that the polynomials do not depend cr ¥y

2



Following the results of [10], [11], [45], from some condi-

unction y —s dim Hq{Xys F ) (i.e. "initial®

7
J
)) one gets informations concerning REf. (E) and the

—~\1
, 7))y,

In our worx, on the contrary, from some conditions about

the polynomial associated to the function n ——sdim bq(&éﬂ), Féﬁ))

b g
and about the le system :;(an) F\n)) )
J b 4
ine paper ends witn an analogue of the comparison Orem
(101, [11] fo: differentiable 1ily of compact complex mani-

Some of resulis of this work were announced in a Note in
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82 (26 janvier 1976).

I. The znalvitic case and the zlzebraic case

1. 1f & is a local noevherisn ring, m its maximel ideal and
M an A-module of finite type, then we denote by P(i) = P, ( ) the

assocliated Hillert-Samuel polyiomial, i.e. the polynomizl. associa-
ted to the Hilbert function n — H, (i)(n) = engthA(M/mnM)i’ﬁhen
A is an anz2lytic (or a formal; algshra over the complex field €
and ¥ is an A-module of finite length, then léng‘h B = dimpid
(where I is considered as a vector space over § by means of the
morphism £ — 4 } znd in this case we prefer to write dim n (ox
) instezd of length..

Lemna 1. Let Y be a complex space and 0 its structural

sheaf. Then:

(i) For every coherent ®-module G, the Hilbert function

n —> di?:uw/uf;") is upper semicontinuous witih respect to ¥y, i.e.
J J

for every y €Y thcre exists a neighbourhood V such that

dim(G_,/m_,G_,) £ dim GV/miG") for anvy n and any y'e V.
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(ii) If Y is reduced and the Hilbert-Samuel polynomial
P(Oy) does not depend on y, then ¥ is nonsingular.

(iii) If ¥ a2 connected complex manifold and G is a

[N

et
-

coherent sheaf on i then G is locaelly free iff the Hilbert-—Sa-
muel polynomial P(Gy) does not depend on y.

Froof. (i) The problem is local on Y. By & suitable e
ding we can assume that Y is a connected manifold. We will congi-
der Hagata O-algebra 0' = 0eG, The fibers &# re local rings WLth
maximal ideals m! = myﬁBGy. For all integers n 21,

J
n n n-1, n
o){_/;_«,-y (0 ea,)/(;-.a,,_ ® my o ) (@ /, \ ) (G /1»« 1(}},).,
Since P(0_) does not depend on y end (Y,0') is o complex space le],
3 :

then, in order to prove (i) we can suppose G = 0, In thig case
' k s i

ot

the statement is proved in [16] (ch.I, §4): by using the algebra
of principal parts of order n-1 of ¥ one shows the se emicontinuity

nevty of the

3.
&

for a fixed integer n and zfiewards one uses the pro
fanmily of Hilbert functions (n -—> din (@ /m ))1 of being “eccally
finite on I.

To prove (ii) and (iii) we will use the followingy &>otew-
ments:

- "Let A be a local nostherian ring, If the Hilberi-Samuel
polynomizl of A coincides +4itn the Hilbvert—-3amuel polyncmial of
a regular local ring, then A is regular®.

C i e

- "Let A be a2 regular local ring anc & an A=-module finite
type. If the Hi 1bert-Samuel polynonial of M is an entire maltip le
of tae Iilbert-Samuel polynomial of 4, then K is free.

One proves these statements by induction on Kruil dimen-
sion and using superficial elements in the sense of Samuel and
Nagata [17] ; see for details [2].

(ii) It suffices to note that there exist polnis yef such

regular ring and to apply the first statement.

I

that Gv is

fices *to no*e “hat there exist points veY such
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that Gy is a free @y—module and to apply the second statement.

2. Let £ : X —> I be a proper morphisn of complex spaces,
F an analytic coherent sheaf on X and y €Y. Ve denote by m both
o

the maximal ideal of OY v and the ideal-sheaf given by this on 1
§

we denote by A the ideal-sheaf fh(mv)OX. Consider the analytic
J -

Yy
. : -1 o= \ - %
fiber ky = (£7'(y), O"/ﬁ_ﬁyl: (y)) and the sheaf P = E/ﬁ Fs
v o
which is (in fact its rcotr\culoﬂ) an analytic coherent sheal on
X_. Consicer also the infinitesimal fibers x§n>

(f'1(y), 0./ .q+1 " 1('f)) ~nd correspondingly the sheaves
0 g
‘\(n) e - I'Vl-‘l 'f(Ol I S (O) = B
ARy (% = Xy e B - F).
By Grauert's conherence theoren {jO], for every g =2>U and

n>C, the C -module

Qo (w/an+lny o g%, ¥ a0+
R fx(ﬁ/xuy F)y ~ H (f\:, L uy
is of finite type and since it is anihilated by m§+1,

) - }YO(-X_(II) «\(ﬂ))

...
ol
L]

dimCH‘(L!n), F(n)) < 180

v
.

Je shall write shortly n > C ins ead of "n is Jarge
gufficiently"”.

-

Theoren 1. Let £ : X —> Y be a proper morphism oI

3
]
[©)

spaces, F an analytic coherent sheaf on X and ye¥t.
(1) The function of ililbert type
o aye(n=1) (-]
n — H(F,f,y)(n) = z: (-1)% aim n~(iy . Ey )
is polynomial, i.e. there e21sts a polynomial p(y,f,y) such that

P(8,£,7)(n) = B, £,7)@) (=1L (-1 din BY(z, F/AGF} )

q
yor n > 0; moreover deg (7, f,y)<dim ¥ (existence statement).

7

Y  J

o LA - . 3
dim HE(X ' ) is the Fuier-Poincar® cha-

(2) ?(F,f,y) = ;C(Xy, # )*r(0_), where
aQ 7
( .

%(;\yy ::.‘f) =

a

racteristic of the sneaf ¥ and vig, ) is the Hilbert-Samuel poly-—
J J

nomial of the ring 9_; particularéy, P(F,T,¥) is locally comstantd

with respect to y when ¥ is a complex manifold.



= 5,“ i -
(b) If %(XY’ F_)>0 (respectively %(Xv, F’f)<0)’
then there exists a neigﬁbour&ood ¥ 61 y such that ‘
F,£,v")(n) <H(F,£,y)(n) (respectively H(¥,T,y')(n)=H(F,£,y)(n))
for 211 n and all y'e V (semicontinuity proverty).
(¢) When Y is a reduced complex space and CZ(Xy, Ey)#@
then P(F,f,y7') = 2(F,f,y) for y' in a neighbourhood of y iff ¥
is nonsingular in ¥ (continuity property).
(iii) If £ is a finite morphism and ZE‘(}?,i‘,v):ﬁé(i{y,i?‘y)-l?({’}y);
then F is flat over ¥ in the points of :y’
Eroof. (i) By f20] (Cn.IIZ,B,1) it suffices to prove that
the difference function AH, Ai(n) = H(n+1) - (ﬂ), is polynomial.

From the exact sequence

ﬁn+1r
5

0 —> F/ - F

g,.q »-.3
_h

- o /el
—> i/ —> P/ F —>0
J

one obtains the exact seguence

1 N n-\ n’ﬁ 111 l"
'R — q (J-,l‘ l-’ 1 ) —_— q *(J ’x’ /(\?’*- ) '-""9’ lia(.‘x., I’?+1 ) "“"""} e o %

therzfore

Ali("]) Z_ (_1}"2 cim Jq(}:’ﬁ]}_‘/ﬁ}z.{-‘!F).
o J

Now it is sufficient to chow thot, for a fixed g >C, the Tunction
e Qy algantt . ;
n —= dim d-(h,?y ﬁ F) is polynomial. The problem is local on
Y; replacing ¥ by a nelghbourhood of v, we can find sections
b 13 J J P

t1,...,t" E F(Y ) such that their germs in y generate the ideal

My o= o (‘“ /’“+1“) has a natural structure of

x[¢1,..., ]-:odule by setting T, —> %; . Moreover, applying the

theorens 4 and B for Stein compacts and the noetherlanity tqeornw
f Frisch [9]), one can prove tuai F* is a coheient

Oy [T 1,...,;T]—module (the argument is the same as in [1], Lemna

2.4). By theorem 1 from [1], -

oo
=4 =3 — =a u\ﬂv 57l+|
a9 (%), = 8 ui(r, a0/ TE)

is © 2 [;1,....* ]-moaula of finite tvpe. 1t follows, from the very

definiticn of the graded structure, that
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. 138 allo satit s =y n, n+i
8= 8 X, & F/E F) is an A = _@ (zny/my ) -module of

finite type. How, our last function is a geﬁuine Hilvert function,
hence it is polynomizl ( f[2C], Ch.II, Thebréme 2). To see that
deg P(F,f,y) <din ¥ = dim Oy’ we will look on the associzted
mnomizl of the function n —> dim HY(x, A?“/fﬂ+ F). There
exists & surjcctive morphism L —> & ——> 0, homogéneous of zero
is a finite direct sunm of modules, each of them
jsomorvhic with A or with a translation of 4., Since dim Engaim L,
and we lookx only for tae degree, the conclusion follows from the
_ ilbert function associated to the graded ring A
(n —> dim(m _/m?+1)) i« the difference function of the
Hilbert-Samuel function n —> dim(O /m ) of the ring OJ

(ii) (a) There exist the isomorphicms:

alg /a0t A R o1y n+d
2/ o /) @ g (/)

n, n+t L
we have identified v and mfr/my with +the constant sheaves

defined by th m), hence the isomorphisms:

KO(x, A25/8041E) = B0k, 7)) @ (/).
oF 2 § \7
Then we deduce that AL = %(er F)e Amuy;. In this case
J J ;

we have immediately that H{(¥,f,y) is polynomial; moreover

PlR,2,y) = X(X_, F_ .»(0_) + const, , but for the desired

. we have still to work. By shrinking eventually Y around

-y

equalit;
y, there exisis a bounded complex L* of free ®Y~mcdules of finite
type which satisfies the following property: for any coherent
LI-nodule i there are isomorphisms

R f (“ +"-~( 1)) ~ B (L° ®@Yza).

}L

This result (in 2 more general form) is stated in [14]

\J

I

(Eemerxung £.,4.1); a little weaXker -ssertion is proved in [18},
but the complex ucsed there satisfies the above isomorphisms‘(one,

con f£ind details in [3]; we will show in part II how that works



£

in the daifferentiasl Xodsira-Spencer's case.
e consider the coherent sheaves concentrctea in y with
St n
stalks 0_/m_. The cohomology groupes of the complex L VPl
: y ¥¥
coincide with

R*f_(E / ) o He (X, F/ﬁ??)

hence
Y~ (-1)2 aim BY(X, F/280F) = 3 (-1)? din BA(Ls/miLt) =
q Y q Yy
=) (-1)¢ dim( li =3 (-1)4 rank(Lq)edim(@y/mg)
q q . o

5 (-1)% rank(zd) = 3~ (-1)¢ dim(Lq/mqu) -
q

5= (-1)9 ain BAT:/m L) = 3 (~1)¢ dim_Hﬁ(XvﬁF = XX, E)
q q “

and (2) follows.
(b) and (c) follow by means of the egquality
E(?,f,; -.%(u = F,)'H(Qy) and also on the fact that the

Euler-kclncare' characteristic X(X_, Fy) is leocally constant on
J EY
Y using the lemma 1 ( (1) and (ii) ).
(iii) The fiber Z, is a finite set and fﬁ(F)y ?’*x%}:, B

It sufficies tc¢ show that f (“) iz a free @y-module. Since

Rif =0 forg=>1, H = H(I,L,y) is reduced to

E o " mn"‘ - m .Q'
iy ) ~X§% le(xx/mytx) ai. (f (F)y/mff%( 1)

~~
=
N
1
(@7
[
]
i
(]
~~
P
Fd
o)
»
o]
L]

and 2lso %(X , F ) = ain(f_(F) /n_f_(F)_) . Our hypothesis

: 4 ¥y ® y ¥ = J |
2 o »). ""‘:}1 » - din o E | w a i ‘n
le(éﬁ(L)y/myfi(;)y) ula(;ﬁ( )y/myfﬁ(i)y) ol m(Oy/my)

s s 6 r & .
for n > 0. Let us consider a surjectlive morpnlism @y mwavix(F)y ,

where T = din (l ( ) /"yf”( F) ) We have the eguality of
Hilbert-Samuel polynomials 5(0 J = P(£(F) ). From [20], Ch.II,
Proposition 10, the associated polvno nial of the @y—module Ker ©

ia omarn henrerns Wor Q4 = 0O
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3, We preserve the above notations and we will éuppose in
addition that F is f-flat. Using Grevert's comparison theorem an
the complex L°® from the theorem of Kiehl-Verdier and Schneider [14
[18], one can transpose vl ithout difficulty to the analytic case
the cohomological formalism developcd in U1] for the algebraic
case (see [3] for details). Let g¢>0 be an 1nte ey ant y € Yo ¥s

™

say following the terminology from f11] that ¥ is g~cohomologi-~

cally flet in y if quﬁ(F)y is a free by«moaule and the map

— :q q_ *H" - .G W -
G5, (2, (= 0D ) —> LB/, (=180 n) )

is surjective. The following assertion holds:

‘,l

T

"F is g-cohomologically flet in y if7 the canonical maps

PR o aQ Qo
o e S (30 8 v), Rz (¥}, ~=> ﬂq(ly,xy)
0

are nauurQT 1bOFOIpFi“'

w
M
o
]
-l
H
eJ
(0]
(@]
ct
H
=
rn
bJ-
'.:_'S
ot
Ey
}.J
(6]
(@)
9]
w
ct
=)
(4]
=
®

y % ; :y.
RAr (¥) /eBR%r (F). ~ HL(x,F/80F) ",
ES y

et L° be a complex, in a neighbourhood of y, given by th

=t

theoren of XZiehl-Verdier and Schneider. The following assertion

holds:
*? ig g—cohomologically flat in y iff the sheaves
. Q- q _ e g+
Coker(L™* 1 —> 1Y), Coker(L® —> L*") are free in a ne ighbourho
ofy ".

Theoren 2., Let £ : X —> { be & proper morphism of comple

spaces, F an analytic coherent sheaf on X, flat over ¥ and g0

(i) For zny y €Y the function
n —> ain 52xPD,xl0=1)y (= ain BUX, B/AUF) )

is polynomial of degree < dinm_Y.

ii) Suppose Y nonsingular. For any y €Y there exists a

P

neighbourhood V such that



(iii) Suppose Y nonsingular. Then F is g-cohomelogically

flat in y iff the polynomizl associated to the fu mction

(n-1) p(n-1)y

n —> dim LG(“Y b

independent of ¥' in a neigh-

Proof. The problen is local on {, hence we may suppose

the complex L* defined on whole Y, For any y €Y and eny integers

y ¥y
(i) Let a? : 1P —s el be the differentials and
$) - :";' ) Liw 4o v
LA T L . d?(n) : L;/UYLP — L*H/ml P 4he differen~
: y v b
tials induced by aP, The complex L° yields the exact seguences:
QQ“'J'( )
n
g-1,;n.9-1 'y Q7. B q-1,.n q-1
LY ' /m L= L — LY/a"LY ——5 Coker 4% '/m Coker 4 > ()
y vy Yy y T y
a
d~(n) £ i
q 7.0+ v ~g+1 . n-q+1 P Q /D 1G
L“/mnuq --»--9-L9 /o L 3> Coker 4%/m Coker 4% == 0
ey - § 3T y ¥ B

Therefore, using the additivity, it follows:

dim uq(Jé/rﬁL§) = ain(ger al(n)) ~ aia(In 53”1(3))
= ain(n/nd) - ain(In 63(n)) - din(in d;nT(ﬁ))
J v J
= - ain(z2 /218y 4 aim(coker 32" (n)) + aim(Coker aZ(n))
¥ - i 3y y
e A3 m Y'q+ ’,,‘n;-‘q+1 14 m C -‘"‘_ev dq*‘? ‘,"{1} COK@}J dq""’t +
&LA(Ly mohy ) + dim((Coker )y/hy( )y)
+ din((Coker a2 /mﬁ( oker d%)_) ,

Thus the function —3> din HG(A, /u ”) is polyncmial and its
associated polynomizal equals:
S z(z§+1) + 2((coker a%™1) ) + ?((Coker a%).)
b/ b

O A - ; - q+1 .
(ii) If ¥ is a complex manifold, then ?(bgk ) is indepen-

dent of y on connected components and we pply the lemma 1 (&)
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(iii) If P is g-cohomologically flat in y, then Coker d'%~
and Coker a2 are free in a neighbourhood of y and the conclusion
follows. Conversely, by the hypothesis and tzking into account
(i) it follows that P((Coker d“"1 @ Coker dg) ) dces not depend

on y' in a neighbourhood of Lemma 1 (iii) vmpllcs that

i

Coker &~ ® Coker % is free in a neighbourhood c¥ y; tre
3 - "‘1 s < .
sheaves Coker %' and Coker at enjoy the same property and then

F follows g~cohomologically flat in y.

(4

Let us give sone conseguences of the theorems 1 and 2.

Corollarvy 1., Let Y be a reduced complex space and £1 X1

an snalytic family of Riemann surfaces of genus g # 1 [5]

S (-1)9 ain xQ(X(n),OX(n)) - %Z (=1 éiwpﬁg(xé?)’ex(n))
y'

for any y,y'e X and n >0, then Y is nonoipzular,
#¥e only note that CZ(X",@Y) 40 for anv ye¥.
i
2

t
Coro 11"”? ., Let £ : X —> Y be an analytic family of .

compact cowplex menifolds in the sense of Zodairs-Spencexr [?3]
(i.e. a smooth proper morphism of complex manifolds), F. a locallj

free sheaf of finite renk on X and q =0 an integer. Suppose’

k) kT e »in ‘ i
dim H2(3 (*),ffn)) = dim H* AS?) é?)) for any y,y'e¥ and n > 0.
Then iqf_(?) is locelly free sheaf of finite rank on Y.

Corollary %, Let £ : X —> ¥ Dbe a proper morphism of

complex spaces, ¥ an analytic coherent sheaf on X flat over Y,

y a nonsingular point of Y and g >0 an integer. Suppose
” - -
B (X, (n )"Sn)) = 0 for n >0, Then H* k(n) “(n)) 0 for a1l nj;
% J
in particular, EQ(XV,EV) = 0 and also qu&(v) = 0,
& ek TR

1y from the hypothesis by comparison theoren.
The following two corolleries are for case n —3> 00 jhe

f the results siated in [§1]\u0”0¢1 re 4.6.5), [)J

0
{(£%pos€& 15) for case n = 0; the proof can be done similar o n=0
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Corollary 4., Let £ : X —> Y be = proper morphism of

complex spaces and y €Y a nonsingular point guch that

r1 { «r n ~ N 3 3 1
H LL§ ) 45 ( )) =0 for n>>0. If P and G are invertible sneaves
v (n) |
~{n . . < &
on X such that the sheaves :y and Gén) are isomorphic for n >

then there exists a neignbourhood V of ¥ with the propexrty:
glel(v) = ¢l (0).

Corollary 5, Let £ : X —=> 1Y Le a proper flat morphism of

complex- spaces, Yy & nonsingular point of ¥ and I an invertible
sheaf on X. If 't (\ (n) *(“)) 0 and L<ﬂ) is vary ample for n>>
then there exists a neigh bouvnovd v of v such that )" 1(V) is
very ample with respect to the morphism f"1(V} — Ty

Corollary 6. Let £ : X ~—> ¥ be an analytic family of

v

mpact complex mauifolds, veY and q 20 an integer. If
a

s

9(x] (n) 52 (n)) a2, for n> 0, then i+ (TV’SEI,) = ¢ { S denotes

)
For the proof we only consider the sheaf S2¢,¥ of relativ

L%y

())

the sheaf pf ifferential foxrms

differential forms, vhich is locally free of finite rank on X,
¥ s’ n @
and note that (S v>£ )::S? ; see [5] .
A/ K(n)

Demark. We do not kuow if in the statements (ii) and (iil
of the theorem 2 one can change the nypothesis that the space 4
is nonsingular with the hypoth vegis that it is reduced. “”ttxcula
1y, we do not know if the following statement is still true:

"Let £ —> Y be a proper morphism of complex Spaces,

]

eaf on X, flat over Y, v€¥ and 20 an

by

F an analytic cokerent s
— , N = . 6 1 n
integer. Suppose ¥ reduced in y and HE(X, (*) “é )) = 0 for n >0,
Then HI(X ¥ ) =0 ".
v S
_For instance, in oxder to hove a substitute of the state-
ment (iii) in the case "Y reduced" we would require an assertion

lixe the following:

"Let ¥ be a reduced complex space and G an aralytic



coherent sheaf cr Y. Suppose that there exists an integer €20

such that E(Cy) ¢+P(0_) for any y €Y. Then G is locally free',
N

%e ignore if this is true.,

4. Analogous statement can be established in the glgebraic
case (then we will use [4] instead of [16]).

For example, one has the followiﬁg

Theorenm 3., Let £ : X —> Y be a proper morphism of locally
noetherian schemes and F a coherent sheaf on X.

(i) For any ye€Y, the function

B Z (-1)% Length *{q(x,f/f}é}:@)

is polynomieal. ;oreover, if F is f-flat, then the functions
n —> length HU(X,F/4°F) are also polynomials.

Suppose Y 1s a scheme of finite t{ype over an 1gehraically
closed field and F is f-flat. Denote by Y' {tie set of closed
points of Y. Then:

(ii) (a) If Q_’,(}{v,.‘é‘v)>0 (respectively 96( )<O) for

s ' Y, PN o 8 .
v €Y', then the function n —» )_ (- ~1)% Jengitn u*(x,x!ﬁyE is
G

ively lower) semicontinuous with respect to yeY',
) If Y is nonsingular, then the function
a

¥) is upper semicontinuous with respecty

£ 0 and the polynomial
th HY (*-s ~/ﬁnr)

c’r'

(b) Suppose Y nomsingular and let g >0 be an integer,

Then F is g-cohomologically flat in the points of Y' iff the

o]

o 4.1

i LY, " o e n
polynomial associated to the function n — leng hq(k,F/ﬁyF)

4

is locally constant with respect to yeX',



II. The differentizl Kodeira-Spencer's case
1. In order to siudy Hilbert-Samuel polyuno orials for
differentiable families of compact complex manifolds [15], in

this section we must extend some cohomological facts from the
algebraic and analytic case to this case. This can be done in

{81, 1121, 1131,

n

=tive analytical space

l_.l
o

the generzl coniext of re
but we restirict ourselves %o this classical ca

Let Y be a differentizble mar nlfOLd 2nd E the shezf of

o

cerms of C -functions, with complex values, Let £ : X —> Y De
~ diffeventiable family of compact complex manifolds and ¥ a
sheaf on X, locally free c¢f finite rank. Frequentely we shall

use facts and notations from [7], [8]1, [181.

- -

Let v be a point of ¥, By shrinking Y arow und ¥, WE€ can

Yo 2
find a rezl number Ty rxssr's1, and a finite number of relative
carts

g ¢ Uy -——->Dk(1')x‘.( s Oekx<k, ,
such that: for aay r <1 and any open set V of ¥ 1if we note

Q )
(o=
~~
¥
»
«}
~

o, (r,¥) = 3 (D (x) X V) an (U (7, 7)) g s s DY) 18

. %

L . 2 - =T far
sn zeiclic covering relative %o ¥ of £ (V) (D%(r) is open
polvdisc). #e have L'(f-Q(V),E ~ ¥ (¢ (U(x,V),F)), where G is
he Gech complex of alternate cochains. Phe correspondence

¥ —> c*(U(z,V),F) defines a complex of sheaves on Y, ¢ (U(x),F),

?

znd its cohomolo jaentifies with 2°f_(¥). Let A be the set

{} 1~ Y ! 3 1~ ot ) S - 1 g
{.\2‘-0’...’&:‘1)‘ Cs-co‘ * e ‘A’Cnsl&x}. L0 :“ (I’Lo’qnoy.’{-n) \Iie

i

jefine U_(xz,V) = U, v) and D () = 1 »,_(r). The
detine Uy(n, V) = 3 Uy (2,7) and D(x) = [, By (x). Mhe
immersions J, define an immersion j, @ U {x,V) > D (T) XV, For
xc pone gets can nonical projections Tep : Dp(r)><V —3 D (T} XV,

One obtains thus an atlas U, in the sense of [71,{el. By a

i iy =R = o

refinement of U and by shrinking eventually Y around T2 for a

real number D P i T
x 3;_<.rxxg:1, we find for the link system of-
7

sheaves j (F) on U a resolution
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with free systems of finite rank. Por a link system G on U one

L o 4

< o 3 > Y - s 2 i
denotes by C*(zr,V;G) the associated Cech complex, of components:

¢ (r,V;G) = i:&& F(Egﬁr)><V,Gx)
o)

For each T, r <7¥ LT and any open set VCY consider the

double complex (Gl(r,"'R 3)1 and denote by ¢*(z,V) the as800iaw-

ted simple complex., By C*(r) we denote the complex of HL-modules,

v — ¢°(x,V). The morphism r° -é-jX(F) defines a complex morphism
¢ (x,7) —> < (x,V;]] ( )) = ¢ (U(r,V),F) ,

in fzct an guasi-isomorpiism. in parti

For an B-module i, we write for simplicity E‘@Efiinstaéd of
F®, (). IfT0 —»> k! > i — " — 0 1s an exact sequence olj’:'
topological Fréchet E-modules of finite presentation, then the
sequence

0 —> FOU' —> ¥ @1 —> F @ —> 0

P
is exact. Indeed, F is loczliy free end the problem is local on
X and Y: one can assume ¥ = @X and f a suitable projection. Basyly
the conclusion follows by x nuclearity arguments.

Consider tne complex C*(U(r),F®_ i) defined by

n

¥ —» ¢ (U(x,¥),¥ ®Efi) . The norphism
H* (U(z,V),F ) -——?"'(‘“1(" @Lf&) give the morphisms
)

H*(C*(U(x),F )) —> R*L (L claim that these are iso-

morphisms provided thet H is a pseudocoherent Frlchet E-~module.
For this, it suffices to show that E*(Ux(r,v),ﬁ‘®ﬁm) = 0 forV

sufficiently small and g >1. Let & be the topological dimensiqn
of X; one can suppose d< oo O0n sufficiently small open sets V

consider exzct seguences of the form:

n n rn
g a2 — d+1 S — o_—a> i —> 0. Then, on the open
sets f”1(V) we will obtain exact seguences
n n
d 3
F — s ST _C‘ 5 V ®~: .ﬁ’; U
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end easyly we get what we need as 14 (U (z,V),F) = 0 for ¢ 21 ana
H% = 0 for q>d. Now, from the proof of the finiteness theorem
[7], (8], by shrinking eventually again Y around Yor WO can £ind
a bounded complex of free sheaves of finite rank on.Y together
with an (-1)-quasi-isomorphism L° —s C*(r), for a suitable T,
r¥4<r<ar”,. Por an s-module i we obtain & complex morphlism:
L'® i —>C ‘() Bl —>C (U(”),L)@m*i .

By composing with the morphism C*(U(x), f) Qi —> C° (U(wﬂ),x ®w,2,§)
obtained from the morphism
r(uu(r,*.f),‘;‘-)®Q(V):.-:(V) — (U (2,7, F) ® r(ma%,v) JEE)) -2

— DU, (2, 7),F @)
we get a morphisn ‘ :

L'® i —> ¢ *(U(x),¥ ®Ei‘é) .

which is functoriszl in K. If K is a pseudoconerent Fréchet

E-module then, by passing to the cohomology e get morphisms:
(z) HY(L ®-.1) .——y;»zqf,(?@@-‘zi) .
o $ * i
Gy decreasing jnguction on g >C we show that these morvhisns,

together with the corresponding morphisms obtained by ne ree
placing of Y by open subsets, are isomorphisms. For a snfficient-
ly large q this is obviously true. Suppose that the morphisns

(%) erc isomorphisms in dimension >q. Let M be & pseudocoherent

Fréchet B-module defined on Y (or on an open set of Y). The

problem is local on Y, so we can assune that there exists an
n

-xact segquence O —> 1§ —> I B ety e O o

e get an exact commutative diagram:

By .
EE > L°QR M“-—-aro

0 —C*(U(x),F®gN) —C° (U(x),F @B E70) s C° (U(x), F®E“‘) ~> 0

0 —> L QN — L°

(for the exactity of the second row we require the exac’

n
gequence 0 —> F@pN —> FRLE ¢ — FQpi — 0 and the fact
that M (U (x,V),F®N) = 0 for small V)

We nass this diagram to cohomology. As () are LELRnT-
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5-lemma, Remark also that (%) are functorial in ¥ and agree with

the long exact seguences associated to short exact sequences

0 —> M' —> i —> k" —» 0 of pseudocoberent Fréchet B-modules.

%e have proved the following:

d"
=

Theorem 4. L : X —> Y be a differentiable family

compact complex manifolds and F a locaily free sheaf of finite
rank on X. Then there exists, locally on Y; a complex L° of low-
cally free ﬁ—modules'of finite rank with the following pr@pérty:
for any pseudocoherent Fréchet m-module M the following 1somnor-
phisms take plac

Hq(L'®5Ei) = R (F @) (for q20)
functorizl in i and compatible with short exact sequences.

Remark. With the notationsféf [a], (i8], the previous
argunents should give the following general statement
"Let (Y,OY) be a me-rlnbea space of type (J) an2

f : X —>Y 2 relative analyticel space, proper over Y. Let F
a f-pseudocoherent U,-module, trons flat over Y. Then trere exists,
iocally nn ¥, a complex L' of free Oyfmodules of finite rank
with the following property: for any pseudocoherent Fréchet
OY—nodule 3 there exist natural isomorphisms

HY(L® @ 1) = RI2_(F @, M) (for g0} »

b Oy

functorizl in M and compatible with the short exzct seguences'.
(0f course, it should modify & little the definition of "trans—
f1at" such that if 0 — W' — i -9-K“ — 0 ic an exact seguence of

pseudocoherent Fréchet sheaves on an open set of Y, then the se-

guence 0 —> ¥ @0 M* — F ®© ®€) " —> O will be exact).
| ¥ Y )

e cone back to our case. An E-module i is said to be of
"analytic nature" if for any y€Y there exist an affine neighbour-—

hood V and a coherent €V~module q (®, is the sheaf of garms of
¥ 2

comple:. valued analyvic functions on V) such that EQQO =%
{
Y

: . - |
1 is a Fréchet B-module. To prove that one considers ionelly
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finite presentations for the coherent sheaves N and uses the
following result of lialgrange [21] Ch.VI, Cqrrolaire 1.5 :

nIf BP(V) —> BY(V) is the morphism given by an
analytical matrix, then its image is closed".

The sheaves ¥ are O-pseudocoherent and, by another result
of Malzrange [21] Ch.VI, Corrolaire 1.3, & is O-flat, therefore
¥ is pseudocoherent. If y is a point of ¥ and n>1 is an integer,
then the o-module ¥ concentrated in y and of fiber Ey/mg is of
"analytic nature", hence Fréchet and pseudocoherent.

Thus we get the following:

of

Corollary 1. For any & "analytic nature",

HI(L* @) a"*f*(? @, i (for ¢ 20) .
Particularly, Hq(L‘ m?‘é) QLHQ(I,F/agF) for any ¢20, n=1.

Corollary 2. Let gq>0 and y be fixed. The following

assertions are equivalent:

(1) Por any pscudocoherent Fréchet L-module I, the natural

ere
oA £ = Qs fo y . .
morvhisn RIf (F)_® ., 4 — RYf (F®, M)_is isomorphism.
. Yy iy y ¥ By -

(2) The natural morphiom
quﬁiF)y(— _q( ,F)) —-9»qu (»/8 “) (= Pq(} ,r”)) is surjective,
(3) Coker(b‘ ——a-Li+1) is free in y.
Pa:éicul&rly, if these conditions are fulfiled, then
Rg, () /mlRds, (v), = H(E,B/E) |
Proof. (1).—>(2) is clear since the sheaf il concentrated

«

in y and of fiber ;y }jq/my is Frtchet and pseudocoherent.
o

(2) = (3) Let C be Coker(i? — 1%*1) and r = ain(c /0 e

I

Using convenient basis for vector spaces obtained mog(my)
: - . r c O+ :
can construct surjective morpnisms Ey -a>cv, mg 1 ..g,E§ 5

which czn be inserted in the exact commutative diagram:

g 13t > C > 0
¥ v W :
0 > K ——-—q»Ey —‘z—¢>Cy B .
where K is the kernel of BL —> C_. The first vertical arrow is -

y y

- D= MN Wa «~hnw +had
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K = myK, hencs K = 0 and C_ is free. Let « be an element of K. 4s

the induced morphism BX/m EX —>C_/m C_ is bijective, « m BT,
P /mEy y/PyCy 18 Pliective, <€ Sy,

e 1ift x to pemyLQ”. There exists ¥ eIl such thas ad(s) = 8.

'~4

The image of ¥ in nq/m,L;
exist Séiu° and n’euj =i such that dg(g) = 0 and the element
(¥=8) - a® 1) e n 3 . The inage of this element by the map

L? —> K lies in myﬁ and is just «< .,

is a cocycle. By hypothesis, there

(3) =(1) The sheaves In d%, Ker 4% are also free in y. By

the theorem we have R3f_(F) =~ 84(1*), RUf (F®, M) = AL ®, 1)

and we conclude in the standard way: writing suitable short
exact seguences, tensoring by ®©_ it etCesses

Using the language from the algebraic case (11 ,'we;say
that F is g-cohomologically flat in y if the conditions of the
corollary 2 are fulfiled for g-1 and q, shen this occurs in a
point y, the condition (3) shows that this holds in the neighe
bouring points.

—

Corollary 3. ¥

is g-cohomologically flat in y iff Rz (F)
= G 7~ % -G 7~ - .
is free in y 2nd ﬁ‘(Ly,F; _.e>nx(xy,sy) is surjective.
Proof. One use the exact sequence:

0 — R%_(F) —> Coker %Y 5 19" 5 coxer a2 —>0 .

) - - 5 [
2. Let y be a point of Y. Let us denote by =y %%g( y/my)

the completion of dy in the m -zdic topology. & _ is a ring of

v

—-953y is sur-

jective (the Theorem of &. Dorel [21] ,Ch.IV, Remarque %.5) . The

2] &g
e

formal power series and the canonical morphism

L - . n o . 00
kernel of this morpnism 1S C?iﬁy and coincides with the ideal my
of the germs of the flat fuanctiouns in y. For any Eynmodule W owe
remark that H/mo ~ T/mPn for all a. Here X = M®, & = B/ M

o o ; “y ¥ v

and the image of my in dy is denoted also by my . farticularly,
it follows that if G is an Z-modsle of finite type, then the

functiocr n -—9-din(Gy/m§Gy) is polynomiel, the associated poly-



K = myK hence XK = 0 and Cy is free. Let « be an element of K. 4s
3T,

T, T
the induced morphism B /m B> ~——>C_/m C_ is bijective, L em B
7'y y v/ 'y . ’ 7y

e 1ift < to B¢ mJLO+1. There exists Yéqu such that dq(f) = B

St
C\

The image of ¥ in L; myL§ is a cocycle. By hypothesis, there
S e ra=1 _ . acs PR -
exist Elg and q’euy sueh that d*(0) = 0 and the element
n . - Ry - -
(¥~0) - a% Oq) € myL; . The image of this element by the map

q . . ] o
; —> K lies in mvé and is just o<,
(3) = (1) The sheaves In a4, zer d% are also free in y. By

the theorenm we have R3f L(F) =~ E91), “f (F® “) ~ 7L ®@ 1)

and we conclude in the standard way: writing suitable shortd
exact seguences, tensoring by Qéoyi g o'+ PN

Using the language from the algebraic case [11], we say
that F is g-cohomologically flat in y if the conditions of the
corollary 2 are fulfiled for q-1.and a. shen this occurs in a
point y, the condition (3) shows that this holds in the ueigh-
bouring voints.

Coxrollary 3. F is q-cohomologically flat in y iff quy(F)

9]

is free in y and Hf(xb B} == HBAX , is surjective.

y’ J
Proof. One use the exact segquence:

0 —s R9z_(F) —> Coker a1 5 137 5 coxer 4% —>0 ,

= = = e ye!
2. Let y be a point of Y. Let us denote by By, = %%E(“y/my)

is a ring of

)

the completion of Ly in the my-adic topology.

formal power series and the canonical morphism Ey -9fﬁy 18 sure

jective (the Theorem of . Borel [24] ,Cn.IV, Remaroue %.5) . The

. s - LR s o e an T 0o

kernel of this morpanism 1s [ my and coincides with the ideal my
ES

of the germs of the flat functions in y. For any Ey«module i we

remarx that u m?; c:x/mﬁi for all n. Here i = ﬁ§@> o= /e un
J 7 ; J, ¥ g
and the image of m, in ﬁy is denoted 2lso by . Particularly,

ol

it follows that if G is an i-module of finite tvpe, then the

3

function n —> 2in(G /ny ) is polynomizl, the associated poly-
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coordinates Tasveosl¥pe XyseeesXo The natural bijection "NY’X{Q}
where {O} is the origin of the space of coordinates X1,.a¢;xo y
Pyes

and the correspondence

(v,0))

1%

fEI;( }x.) “""?( (.190)9 “'.:;1(3"90)F"°9

induce an isomorphism of ringed spaces

(Y,8,027) = (Y x{0},E(y x)/(h-a )1 x {o}) '
( (x % ) is the ideal sheaf of E(y,x) generated by the products

Xixj)' ﬁach ¢; can be written ¢; = (Y (y))1<_ ¢ o 2nd we put

S
\Pi(y,x) = 2; \oij(y)'xj . One verifies without difficuliy the
a:

isomorphisn:
(Y,B'=5,08) = (Ix{0},E(y,x)/ (x;x, 7. sl rx{oh) .
We identify ¥ with Y x{0} and £' with E{y,x)/(xi:{j, 9, (7.%)) .
Consider new coordinates z1,..,,zm, t1”°"%s and the
ringed space (the "product" (Y,2') X (L,Z') )
(YxY,E(y,x,2, 4}/ (x; %, 50 P (y,3), b5 t » 94 (z,%))
(with common conventions and misuses of notation o G
If ve denote by A its structural sheaf and by I tr= ideal

generat:zd by the class of the differecnces z5= b, YT£1AH

;.l’ 3 ‘—; Aty

1m+1

1<j<s, (I is the "diagonal ideal"), then the sheaf A/ TeS=

tricted to Y by the diagonal morphism ¥ —> Y XY and considered

as E'-module by means of the coordinates ¥y,... ¥V, X;p0ee3X

i S

is the desired s'-module P(n),
(ii) %e need only the fact that G is of finite tyve. Je

show that di:(G"im"GV) does uot depend on ¥ and G will follow
. i '

locally free [13], [13]. There exist points ¥, such that G is
o
free (for example, we take a point Yo where dim(“ /u. G ) is
Yo Yo
minimzl). Therefore P(Gy) P(q ) equals the Hilberi-Samuel poly=-

et

7

nonial of a free moaule of finite type o

<
[0}

r the regular ring =
for any ye¥. 2y [2], Gy will e free over EV' The rank of G

<

is independent of y since P(G_) is independent of v , hi.-ce

£
[
=)
~~
a3
S
=
Ga
S
1l
[
=]
Ll
™
&
53
R
]

euk(G,) is constant.
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Since we lack a full semicontinuity property, we can not
obtzin the next proposition as a consequence of the theorem (like

in algebraic and analytic case).

Provosition. Let £ : X —» Y be a differentiable family
of compact complex manifolds, F a locally free sheaf of finite
ronk on %X, v @ point of Y and q >0 an integer, Suppose
Eq(.x‘.b(rn),%(rn)) = 0 for a > 0. Then Hq(xy,;y) = 0,

Proof. By shrinking Y to a neighbourhood of y, there exis
a complex L® as in theorem 4. From the hypothesis we deduce that

the sequences

-1 q
a%™ " (n) d*(n)
el /m?L?-1 —_— L,c;/m?L?- e et /r;‘fi}]]q'H
b § I ¥ AR y ¥
= Lo A s n s T n-r-o
are exact for n>>0. As L:/m L° =~ L /Lt , it follows that the

seguences
=g=-1 =0
a= d_z.
~q-1, n=q-1 7 (n) =q ;.. 050 y(n) =q+1, 07 q+1
JJ’ /m' B 5 PRS- "J'V‘ 1k TL‘ e e P _L] / L
¥ B 4 y¥ ¥ ¥ AN

are exact for n >0, hence the equality of Hilbert-Samuel

polynomials
- <g-1 Is: =C — Dl AT =c=1 =4 Q- 1
r\voxkxer G B Coker (}.‘;) = (qu{eI_" Q‘; ) 4 (‘,O}rew (,_:;;) = ( § }
* . —q=~1 5 =q ~ = - P
By [2], CorLer C_ ® Uoker ¢ 1s iree uy dule herefore
—C- P =Q .
Coker d: 1 and Coker cg sre free. Clearly, the sequence
- 4 —r% e - - — ;=
10-1/p 3871 5 T T8 s T/ T
4 . il § ¥y I3y N 7
follows exact, hence the seguence '
Q- S 5 q a4+
5= 1/:n  Fis t ——>.J?/m"h~ —-e»L;+I/g LG+1
7 o y ¥ ¥ 5 y ¥
is exzct and one concludes.
As in the part I, one obtains:
qr--\1 -
Corollary 1. B H (-‘*3(, )QQ{(I})) = 0 for n>>09 Then
- P .9 .
¥
Mq(.&v,ﬂ.{ ) =9 .
 §
Corollary 2., Let F, G be invertible sheaves on X such that
F(n) ~ (1’1)

= 6" for n>>0, If I 1,("’1) ) = or n>» 0, then
8, § %, ) --§n)
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4 2 k G ] b by o "'1 % -
there exists a neizhbourhood V of y such that f‘f f) Glf 1(%‘

Remark, Under the conditions of the teeorem 4 one can ever
f£ind, locally on Y, a bounded complex L* such that

29(r'®1) =~ Rir (F®HL) for any integer q .

-z

I

Using this we deduce that the Hilbert-Samuel polynomial

associzted to the function n -“9-2: (.-1)% @in HQ(K,“/%nF)
g
coincides with %(k,,E y+P(Z_), hence it is loeally constant om @

N Ng
2, This section is devoted Yo the analogue of the Grauert
and Grothendieck's comparison theorems for the differentiable
families of compact complex manifolds. We preserve the previiua
tations. qu¥(f) ve the cohomology objects of a pseudocoheresn
complex of E-modules: this is the analogue of the Grauert's
coherence theorem in this case [8], 112], [13]. Locally, using

.

suitable resolutions with free sheaves of finite renk and takins

=0 1 w0 1 4
on the space C the usual fré&chet topology, we get on eacn

W

O

.1f F) a structure of topological E-module, From the open mappi:
theoren, it resulis that this topology does not de :pend on the eb

with the ¢

£

sen resolutions, particularly it can be calculate

plexes L

logy of [(V,2% () = HE(™1(¥),¥

given by the theorem 4. For every cpen set V the topo-

l..h
4]
Lo
o]
et

generally, separatel

o
o
‘_J

Theoren 6, Let £ ¢+ X —> 1Y De i fferentiable family of

T

compact complex manifolds, I a locally free sheaf of finite rank
on X, v a point of Y and ¢ 20 an integer, Then the natural morph

d
Bs (F), /n7 BOL, (F) ) —> Lin(RAf, () /ulnie, (F) )
e J - Il

..‘

is bijective and the natursal norpnism

1im(RY ( 2 3 /m 1*f (“) ) —> lin H* (A,*/ﬁnF)
‘0 “a ¥

(1
el
]
{rd
«Q
o5
44
o
“

is injective. If the topologica Ey—moﬁule RQ+1f¥(F) i
then the last morphisn is also bijective,

Broof. Let 6 : RIf L)y, —> Lin Hq(x,’f/f:;?zﬂ) be the canoni
=== i
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by o 5 B ook mw ) co . : A
morphism. We show thot its kernel eguals m quw(ﬁ)v' An inclusion

is obvious. Let « be, with the above notetions, an element of
Ker d% such that, if « is the image in R*f (F)J = Ker a%/In d§“i,

= 2 - Y s/ I‘l; 0 I’l~ o Ner ]
then O(«) = 0, As HY(X,F/60F) > 1 (L /o nn) = HNT /elnt), vy [11]

y ] y ¥
. T b 17 -~

(Proposition 7.4.7) 1im H(Y, “/ﬁ ) 1a“nt1fles with the completion
n

of the & _-module Ker E?/Im c§"1 in the topology given by the

v

maximal ideal., Since & is complete, one obtains finally +the

8
Q
v
=
e
[}

3 "TG ¥ B n—.~\ - 30 = -
lim HS(X,F/f_F) = Ker d?/Im d% .
such that the element ¥ =
o 1C"1 . . fole] e s =% —
=X~ d- '(2) lies in n L?. We consider the natural Fréchet topo-
logy on the sections of 19 over an open set; her a% is a closed
submodule of LY, 3y lifting o, 3,¥ in a neighbous hOOu and since

. " . "
¥ e Xer 4 , it follows by [21] (Ch.V, Prop. 2.%) that yen™Xep ad
: ¥

In this way, the canonicsal morphisr

"ql (") / T”E(F)y ——s-lim 1(x, /ﬁa?)
is injective. i ="R% fa( ) /m %f_(¥), follows an
-—— - J X
gv = ;"/:io-nadule of £i ﬁ1+e type, hence coincides with its
o J J .

n

completion. As ¥/m_ i identifies with RAr, (?)V/mﬁﬁqf (F)_ , the

<

ﬂ
L
e,
i
)

first two statements of the theorem follow easily .

- - pQ+1, .
ow assume R*"'f_(F) is Fréchet; then, for every open set
v : il o oy ho aD 7.9 q T ‘LF‘I & : - €
¥ of ¥ the imagze of the map L3(V) A1 (V) is closed. Let § be
o . ','q §ta ’.I‘A_.nn L =a - —-G-1 .
an element of lim H(X,7/8& F) ~ ¥Yer 4:/In 33 Let 1 be, in a
o v v y * 7 ?
4
neighbourhood V of y, an element of L*(V) such thet its image in
& - =qg-1 . el -
Ker d*/Im 41" is €. One has d*(1) e 0,“"ﬂ4(”)‘[\(1m al(v)) .
~ .," J
(8]
= (

again, by [21], a%(1) is in =°In a¥(V). et FT¢;1; be in oY)
)

,A

o
j

»)

i
u
2

~~
-
N
*

The element 1 - z:%ﬁli lies in

Gl

= Q- e s o 20 /7m a4 a - .
Ker d%(V) and its image in Ker c;/l& dy Hac R*f¥(ﬁ)y gives an ele-

-— <+ x 3 - 3 < : - 3 =
ment . One has 6() =%, thus 6 is surjective and the proof over.
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Corollary 1. Asgume that lim H 9(x,1 /ﬁn“‘ = 0, Then

quu(F)y = m“’Rqu(F)yo liorsover, if we know tnat RAr_(F), is an
by_module of finite type, then we get aqu(F)y =0 ,

, a4 .
Corollcry 2. Assume R% f%(F) = 0 , Then the canonical

morpnism

1in (R%s_(2) /mi%g (I ) ) —> lin HU(X, "/*‘a“‘b)
n

is bijective.

a+1 "
Corollary 3. Assume that R%"'f L (F) is Fréchet (for example,

eguzls *to zero). Inen theore exists an 1ﬂtc”or no auch that

T At -] = it Tc =731 £ 7 4
i.'_‘.(:‘\.‘lg(ﬂ)y e A )) lﬂ(h‘(np/ °F) —> ﬂq(ﬁxyﬁ'y)) .
Proof. Since H*(X ) is finite dimensional there exists

an ‘nteger n such that
- kb f ¥ w2 .
Im(HA(X, F /ﬁqL) —a—nq(av.F )) = Im(EH(X,F/& OF) —s q( LE))
« - 4 y h J
for n 20 . A;ain, thers exists an integer ny=1g such that

n
In(il(X, F/A)F) — 20X, #/8°F)) = Im(H? (:-,L/ﬁ 'r) — 14, w "?‘;‘e‘

for nZn1 and so on .

Letm=§ be en elenent from In(H%(X, B/h, Oﬂ) > ud (K P, ))

r
19 (X, F/8 2)_of €, and let %4 ve the image-

ie take a preimagelQTG
G »nO e

th HY(X »/F% g 7 3 m Bf E . 1 - & s

of 4 in H (}.,L/Ly F). The image of §, in H y’ry) 1 g,. et

qlzeaﬁq X,F/f_“F) be a preimage of g€, and let %2 be the image of

F). The image of §, in F/ E) is §y. Ve go
(

K,F/ﬁnE) . By tAC theorem i%
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