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ON THE CHOQUET AND BISHOP-DE LEEUW THEOREMS

by Silviu. Teleman

In the theory of integral representation of points
in compact convex sets ( Choquet theory ), there are two fund-
damental theorems, which assert that the maximal Radon proba-
bility measures on such (sub) sets (of Hausdorff locally convex
topological real vector spaceé ) are pseudoconuentratéd on their
sets of extreme points., Maximality is meant here either in the
sense of the Bishop-de Leeuw preorder relation, to which the
Bishop-de Leeuw theorem belongs ( see {3} , theorem 5.3 ),
or in the sense of the Choquet order relation, to which the
Choquet theorem belongs ( see {51 ; (7] ,.theorem 732 ;
fak:- on.4 ). An immediate consequence of these twc theorems
is the Chowuet - Bishop - de Leeuw-theorem, which yields the
representability of any point in the given compact convex set
by a boundary integral ( see [8} y Ch.4 ).

Chronologically, Choquet first proved a theorem of
ithis kiad, for metrizable compact convex sets, in 1956 ( see
[4] ). In 1959 Bishop and de Leeuw, by using a certain preor-
der relation (which will be recalled in what follows) in the set
of all Radon probability measures, on arbitrary compact convex
subsets of Hausdorff locally convex topological real vector spa-
ces, proved that any such measure, which is maximal for the con-
sidered preorder relation, is pseudoconéentrated on the set of

8ll extreme points of the ziven compact convex set.
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By establishing the existence of such maximal measu-
res, they thus obtained an extension of Choquet's theorem
( see (3] , theorem 5.6 ).

In 1960, Choquet, by using another order relation,
showed that any maximal measure ( with respect to his eorder
re%ation )is pseudoconcentrated on the set of all extreme points
tf the given cempact convex set. Again, by proving the existen-
ce of such maximal measvres, Choquet obtained another proof of
Bishop's and de Leeuw's extensicn-of Choquet's theorem, to the

effect that any point of the given compact convex set K is repre-
gsented by & Radon probability measure, which is pseudoconcentra-
ted on the set of all extreme pointe of X. 'This fesult is kno-
Win as the Choquet - Bishop - de Lesuw theorem ( see (8] ,Chod)

of course,‘both the Bishop-de Leeuw theorem and the

Choquet theorem are stronger than the Choguet - Bishop - de
Leevu theorem, in that they assert that &ny maximal measure,
either with respect to the Bishop - de Leeuw preorder relation,
or with respect to the Choquet order\relation, is pseudoconcen-
‘trated on the set of extreme points.

Since the two ( pre ) order relations are, in general,
different ( see (9] , p.289), thuse two theorems are different.

The Bishop - de Leeuww preorder relation is very useful
in connection with the central and irreducible disintegration of
the representations of C¢* - algebras ( see f9] : [10] . Ell} s
E:l?] ). Howeover, for the orthcgonal Radon probability measu-
res; defined on:the state space of a C* - algebra, the two order
relations coinclde ( see [9) y theorem 13 ),

The aim of this Note is to give a generalization of

the theorems of Choquet and Bishop - de Leeww: In this mawner

we shell obtain a new and unitary proof for both the theorems
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of Bishop - de Leeuw and Choquet. This will be achieved by
means of a slight extension of H.Bauver's Minimum Principle.

l. Let E be a Hausdorff locally convex topological
real vector space gnd KGE a compact convex subset of E.

By C(K ; R) we shall denote the algebra of all conti-
nucus real functions, defined on K; by A (K ; R ) we shall de-
note the real vector space of &all continuous affine real func-
tions, defined on K ; by S (K ; IR) we dencte the convex sup-co-
ne of all convex continuous real functions, which are defined
on K. It is well knovon that S(K ; R ) - S(K ;'Bj is a vector
sublattice of C (K ; R ), uniform&#« dense in virtue of the
Stone approxiﬁation theorem ( see f8],0h.4). It is obvious

that h€ A (K ; IR ) = h°

&8l KB )
A
Let uﬁﬁéﬁ)/be the convex set of all Radon probability
A o
measures on K ; for any ﬁae JWQSK) there exists a uniquely de-

termined b(ﬂf) € K, such that

h(b(w)) = {h(x)d/,;,(x), Y etk R

K
bifk) is called the barycenter of/* (see CS) Ch.l).

Two measures fk,\? ¢ Lﬂl(Y) are said to be equivalent
1o b(f&) = b(Y ). One denotes this relation bY’fxaaQ . A point

x. & K is said to be represented by /bké M (Bt x b(/u.). It
is obvious that any x¢ K is represented by the Dirac measure

£ ot X,

x

The fundamental theorems of Choquet and Bishop - de
‘Leeuww give existential solutions to the following problem
\

given x € K, represent it by a measure f&& ubg}K), whose sup-

port be as close to ex K, as possible ( here ex K denotes the

set of all extreme points of K }.
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We consider the following relations on ﬂuw:(K) :
a)F.-h) ife fﬁ.(f)"é\)(f), for any f & SR )
b)/L<<\) ife lw(hg)s\}(h2), for any h € A(K ;R ).

The first is due to Choquet ( see = 171, ey )
and the second to Bishop and de Leeuw ( see [3] ).

Obviously,/.L<0 implies/u(,<<\7, for any#,i)é u{f(_:_(Ki,
Both relations are reflexive and transitive ; the first is alsc
antisﬁﬁ%%ric, hence an order relation ; this follows from the
fact that "ﬁ*<‘° and 94¢L * implies f&(f) = VY(f), for any
f € S(K ; R ). Consequently, the same equality holds for am§
f€ S(K ;R ) - S(K ;j R ). Stone's approximation theorem now
implies that M= N e

| Since A(K ;R ) =-=-A (KiB)C SCKiR ), it is
easy to see that /,L—<\)=>/u.~\) . Since *1 € A(XK ;R ), &an ele-
mentary argument shows that }L<§\)~>/¢«:Q ‘

An elementf;eLA{(K) is maeximal for the Chesuet order
relation if v€~k{(K) ande<Q implies ﬁL V . Similarly, an ele-
ment}AeLA{(Y) is maxlmal for the Bishop - de Leeww preorder re-
lation if V€ M(K) and /u«,\) implies P,(h \)(h ), V he A(X; W,

In order to get the generalization of the theorems
of Choqguet and Bishop - de Leeuw; we have in view, we shall

consider an arbitrary subset ScS (K ; R ), such that
{65 s he stz s} © 5

4
We shall define a preorder relation in UNQSK) by
defining

pay &> ) < N, Vies, V’/«u,\)eﬂ::m,
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Of course, the relation is reflexive and transitive,
and /~L-<\)—>/u.@\),/:Lé\)%/u«\)\!wéM(K)‘ It follows that /.&.ﬁ\)"'i)
/u.NQ Y /b()\)é M(h) A measure ,l.&é JV{(K) is maximal for the

preorder relation < 11“f \)EM (K) and = \)-—> HE) = W (£},
v '}e S. In this case we snall say that w is (@) - maximal.

2. Tet BUE) bcvthe U~ algebra of all Borel mea-
surable subsets of K and ﬁng) the o - glgebra of all Baire
measurable subsets of K. We recall that J3(K) is the U~ algebra
generated by all open ( or, equivalently, closed ) subsets of K,
whereas SéfK) is the smallest G- algebrec@ subsets of X, such
that all functions f € C(K ; R ) be measursble. Obviously, one
has the inclusion J%jK)c: JAK). If K is metrizaﬁle, then the
"equelity holds.

A measure fke @kéﬂK) is said to be pseudoconcentrated

on ex K if

(x) /U—(U) = 0, for any U € BO(K)‘, such that
UV Alex k) =

Let~Ao(ex K) be the g - algebra .of &ll subsets of
ex K, which are traces on ex K o the Baire measurable subsets

of K
A (ex K) ‘-:{U/\(ex K); Ué—:Bo(K)} ,

If the measure f‘é ub{(K) is pseudov@entrated on ex K,
then one cen define a probablllty meagarefx on\ﬁ (ex K) by the

formula

v :
TN (ex K))x/J‘-(U), Y UeBx.
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Property (x) ensures the covvectness of the defini-
tion.

It is easy to prove now that if f { K—R is a Baire
measurable function ( T T J%SK) - measurable ), then
£\ enk is.%b(ex K) - measurable. The importance of mesasures

which are pseudoconcentrated on ex K is shown by the following.

A
Lemma 1., Let/Aé M(K) be pseudoconcentrated on ex K
wge N

and f : K—» 1R a bounded Baire measurable function. Then

v
: g i d/u, = { T d/u. :
K ex K
Proof. For any £ > O one can find a partition {Ul i

Ug,...,Un‘ﬂOf K, consist‘ing of Baire measurable subsets of K,

and real numbers e R, i = 1, 2,...,n, such that
v

w.
bt - 2 a. Xml<e , ¥V oxe x.
L= U ‘

19

We then have

L=\

\ gfa/u..&aa/u‘ui) ety

K
and
\ v \\' v x
_ fd};.-ma_#(%/\(exm)\<€.
e X LT

By teking into account the de:'initiow.. of /X. we now

easily get that

\ gfdfk~§fdp \-;2.5)
K an K
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for any £ 0, The lemma is proved.

A simple compactness argument shows that the (4 ) -
ordered set uA{&K is inductive. Hence Zorn's lemma implies
that for any fké ¢N[(K) there exists a (<@ ) - maximal measure
VE W'l (K), such that j&@\P . In particular, this is true for
the order relation < (see {8] s Bl ) as well as for the pre-
order relation <« ( see [3] » P307 ).

3. The foliowing lemma i a slight extension of

proposition 4.2. qaym tﬁ] ( which is identical witk part b ) of

the lemma ). The proof is adapted from that of proposition

42 fﬁdm (s} .
. We first recall that for any § € C( ; R) one

definesits upper semicontinuous concave hull T

by

@

£z =anf h (x) .
hLEA(K s )
h>f

It is easy to prove that ( see {81 y Ch.3 )
a) ?.is concave, bounded and upper semicontinuous, for any
-l (S D G R O B
b) f<F and T = £f<> is concave, ¥f ¢  C(&X ;R ) ;
c) if £, g € C(X ; R), then (f+g) < Ft+g end |f - g\ <
SWE - ghl; (f+g)” =T+g, for g€ A(K { R ) 5 (¥ £ )~
=¢f, for eny T €R_and f € QUE il ) 3
d) it f <!, where £° is concave and upper semicontipuqus,
then f < £'.

Lemma 2. a) Iffkeuhng) is any (4 ) - maximal men-
sure thenf&(?) = fh(f), for any f E g im particular,/k((hz)"):
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= IW(hZ)gVK\.eA(K ;R ).

A ~
b) Iffxe‘A&(K) is any (< ) - meximal measure, then ﬁh(f) =
= f&(f), for any £ € C (& ;R ).

Proof. Let f € S. We define a real linear functional
o]

I,:“mfo—%]R by the formula
I .(og:f‘t~) = a/u‘_(f:o) ;e R,

We also define a positively homogeneons sublinear

functional p : C ( K ;R ) —> R by the formule
BUSHE E. £e O [ Kopm ).

For a ¢ R, a > 0 , we obviously have that L(a Lol =

= p(a fy)e For a<0, from

0 = (a £o=8 fo)°5 (a f05-+ §~a fo)" =(a fo)'.» a E;,
‘we infer that

L(af,) = a/,u%“oj: pe(af ) Sa((ar )7)=p(a 1),

The Hahn -~ Benach theorem now implies that there exists

a linear functional L': ¢ (K ; R) >R, such-.that
LtV R £.=Land L' (£)< pl£), Y £ & € (K ;R ).
Ifge C(K ;R ), g< 0, we have g < O and, therefore,

L'{g) £ plg) = pu(8) < 0.
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This shows that L' > 0 as & linear functional on
C (K ; R ) and, therefore, there exists a positive Radon mea-

sure V on K, such that
Liiee) = Vi) ¥ f-e olEia ).

If £€ C (K ; R is convex, then - £ is concave and,

therefore, ( =~ f )7 = - £ ; it follows that

it
i

- /u((#f)') = -~ p(-f) £ -L'(~f) =
Lid(e), o= W),

f&('—f’) = /‘k("-'f')

]

and, consequently, we have that /u.<\); hence we also have that
pay i, wf)g Vi), ¥ £ e S
- a) If/uuis (<@ )-maximal, we infer that /u.(f) VRSB A8 STRS

In particular, we have
L) = ViAE) = LUE,) = Li£,) = ML),
b) If/* is (£ )- maximal, then/u.= V . It follows that
PeEg) = N (£g) = LU (£g) = Lify) = fa(F,).
The lemmsa is proved.

For any £ € C(K ; R ) let us denote Se ={xe K
E(x.) = f(X)}e Cbviously, Sg is a G(Y - subset of K.

Proposition l. (H.Bauer) For any x € K we have

\
x € ex K& there is a unique Jré M+(K)

such that b(/u._) T X,
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Proof. ( see E&B] yWiCHe1 )o If X € ex K and - Ax €
1
€ M+(K) is such that la(/u.) = x, we have supp m = {x} ‘
Indeed it is sufficient to prove that /L(D) = Q for any compact
set DcC K\J\x} . If this is not true, then there exists a com-
pact set DC.K\{X)‘ and a point y¢D, such that /u.(D/\U)> 0 for
any neighbourhood U of y. Let us choose a compact convex aell UJ
such that « § U and define X, = & ( DA17). Then x&K_ and
: 2 sl e i, s
/A(KO)> 0. Let us define My = (/u, (Ko)) (’XK“/.&. ks We obvious-
- { = =
1y have \3(/44,‘) €4 K If /A\Ko) il then/u,‘ M hence
X = b(/LL ) = b(/u_‘) €K .8 contradiction . Consequently, we
-1

h ® = T o ®
ave - (Ko)< 1. Let pu= (1 - pk(K)) (XCKO/.L) Then b Jek
and /uz /(A(Kl)/u‘\*ﬁ (1 = /A(Kl))/uz; this implies that

R N AT P A R
/LL /A 1 /'L'\ /A' 1 _/U?L

Where b(ﬂ‘t) 7‘ X, a contradiction. Consequen‘tly,/u, = 8% "
Conversely, if x € K \ ex K, then there exist
X1y ¥, € K, such that x = ~%—- (xy + x5) and Xy1%Xy 7%= X. We then

have

Ex_N % (‘Exl i £X25= and £x¢_%'—(£xl + &x, ). The proposi-

tion is proved.

Proposition 2. ( see (:8]. . propogitieon 3.1 ). For

any £ €C(K ;R ) and any x € K we have

;’-(x) = sup { Sdf(x)d/u(x) ; fAé Ex%'
K

In particular, if xe€ex K, then £(x) = £(x).
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Proof. Let us define f'(x) = sup % ff(x) d/u, ()
#
= gx-‘Y' Then we obviously have f(x)< f*(x) ", x ¢ K, and f' is

easily shown to be concave. In order to prove that it is upper

semicontinuous, let Y& R and (on. L s be a convergent net in
€
K, xi=dimx o, such that £'(x )2y ,Ye I, Eop eany £€>0
oeT ¢ X

{
and any < ¢ I we can choose a A @_.M(K), such that o~ &
ol e "d y
and ¥-g< ' (x ) -€ <M (£), YateI. Since .the set M(K) is
! >4 4
compact for the vague topology, we can choose a convergent su-
bnet ( ) lim = . W obviously have h{(w.)
/u'o((/g) RET ’ﬁéj /u;(((m gt _ i
x and ‘f‘-&éfg.(f) < {'(x), for any €£€>0 ; hence, ¥< f'(x), and
this shows that f' is upper semicontinuous. Consequently, the

inequality f< f' implies that :—f‘—g £f* = f£',0n the other hand,

1
we have ( for any/ué M+(K) X /“'VCX),

g f(x)a [ (x) £ (}:(x)d/u. (x) < —f‘—'(‘x),
K K
and this implies that f'(x) < f(x), X €& K.

Corollary 1. a) For any f ¢ C(X ; R ) we have
S Dex K.
£
b) If HC A(K ; R) is a total set, then

Sh2 = ex K.
¢) If K is metrizable, then there exists a sequence

(h,)

n’nyo0r M€ ARG R )y Wb W€ 1, Vw20, such that

0 Sh = ex K.

Consequently, if K is metrizable, then ex K is a & =

Q

=
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subset of K.

Proof. a) is an immediate consequence of proposition 2

b) Let us remark that if H is a total subset of A(K ; R ), then
H separates the points of K. Let now x & h{g q Sp2e I£
x&exK, then there exist xq,X5¢ K, Xq, Xy # X , such that

X = ~%-(xl + x2). Since the set H separates the points of K,
there exists a h, €& H, such that ho(xl):% hjo(x)o Then, for any.

h & A(K ; IR ) we have

2 2 2
hyhy =>h (x) > | hy(xy) - B fd\ T # by

Consequently, we havemﬁ(x)a \ho(xl) ~'ho(x)§ 2 +
hg(x) > hg(x), and this implies that u & Sp2 -
¢) If K is.metrizable, then C(K ; R ) is sgparablea Consequen-~
tly, A(K ; R ) is separable and, therefore, inﬂ{}lé A(K .5-R. );
hhit £ 1% there exists a cobmgtable , dense subset H, which,
obviously, is total in A(K ; R ). Since any %: is a Gf - subset

in X, in this case ex K is also a G, -~ subset.

J

Corollary 2. a) For any (<« ) - maximal measure /&é

€ JW:U{), and any £ € S we have f&(Sf) = 1; in particular,
prisy2) =1, ¥heaw ; RO,
b) If K is metrizable, and fae M@lﬂﬂ is any (@ ) — meximal
measure, then fk(ex e Nl (O

Proof. Assertion a) is an immediate consequence of
lemma 2 snd of the definition of the set S;, f € C(X ; R).
Assertion b) is an i‘muediate consequence of assertion a) and

of corollary 1.

4, An important result in Convex Analysis is the

follewing " Minimum Principle " of H.Bauer ( see E?] ), lemma 1).
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Theorem 1 (H.Bauer). Let f,f, ¢ K—=R be semiconti-

nuous functions, with f, convex and f2 concave.,

Then
fl(x)éf2(x), V xeex K==>fl(x) < fz(x), Y xe K-

(Here any xind of semicontinuity is al’owed for the two func-
tions ; moreover, one does not assume that these have the same
kind of semicontinuity, i.e., any combination is ailbwed).

We refer to (27} for the proof of this theorem. We
shall need a slight, but partial, extension of this theorem,
which will play the main role in our generalization of Choquet's

and Bishop's de Leeuw's theorems.

Theorem 2. Let £ : K—-R be a concave semicontinuous

function. Then
£(x)> 0,¥ xe ex XK = f(x)> 0,V xe K.

Proof. a) Let us assume that f is lower semiconti-
nuous. Then m = inf f(x) is attained on K, i.e., there ¢xists
an x € K, such.that f(xo) = m. Let Kj :{146 K ; f(x) = m} .

Since f is lower semicontinuous, K_is a (novi-empty) compact

0
subset of X. Let Ky = Co(K,). Milmen's theorem implies that
exK; C K . Let %y € ex K; ; then f(xq) =m. If x', x"€ K, are
such that x', x" 3 x;, xq = ~%—(x' + x" j, then, since f is

concave, we have
mo= £lx) 2 5(F0x') + £(x") > m,

end, therefore, f(x') = £{x") = m. Hence x', x"€ K, € " K;.
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Consequently, since X € ex Ky, we have x' = x" = Xq o This shows
that x, € ex X, and m = f‘(xl) > 0; therefore, we have f(x)> m>» 0,
for any xe¢ K. .

b') Let us now assume that f is upper semicontinuous, and let

X, € K. Then we have f = £ and, therefore, we have

£{xz) = inf hix )
hz f
he AR 5 R)

For eny n & N* we can choose a h ¢ A(X ; R ), such that hn;», £
9 :

on X and

1

f(xo) Sie=iat e ), B 1,

Let j(‘z inf h_ . Then f_ : K- R is s Baire measura-
ol e i 0

ble? concave, upper semicontinuous function, such that
fo(x) > f(x) > 0, for any x€ ex K
anq
fo(xo) = f(xo).
b" ) For any ve R let us define
K(*‘)={x€K; fo(x)<‘f} ‘
For any Y& R, the set ¥(v ) is Baire measurable and therefore,

there exists a cotMatable subset H ¢ A(K ; R ), such that K(v)
X

belongs to the smallest O - algebra g; of subsets of I, such
: , .
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that all functions in H_ are o - megsurable.
) <
Let H =UMW . Then H is a comutable subset of
e®
AK ; R ). Let 3. be the smallest o- algebra of subsets of K,
such that all functions in H be S - measurable. Then we have

Z;CZ; ,\Vl‘-’“E@ , and, therefore, K (\!‘)QQZ; ! \v'wé@ E
¥

For any v& R and any sequence (Y ) , such that
Q " w20
TWE , L.A< | we have

vl PR B o G S|

w20 L

eand this implies that K(< )& 2; ; for.any & R .

) 2
Consequently, the function ;G is é& - measurable.

Let (gn)n> 0 be an ennumerstion of the functions in H.
b"*'). Let us now define a continuous affine mapping g : K-—»R'm

by the formula
g(x) = (gn(X))naO’ . x €.k,

Then g;(K)C;.LR(N is a metrizable compact convex subset

of RN

. Let us now prove that if x, y€X and g(x) = g(y), then
Sl =t () .

Indeed, let us define
L@)X{EQK;fbw)ﬂfJM}.
Then L(x) € 2, .-Sinceﬁﬁ;is the smallest o - algebra

of subset of K, such that all the functions g,y B2 0, be

measurable, we have

Z €K, B € L(x), g,(&)=e,Z,), ¥nz0=>Z € L(x).
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Consequently, since % € L(x), we have y € L(x),i.e.,
fc(y) = fo(x).

b*Y) From b"*Y) we conclude that by the formula
k (g(x)) =1, (x), %€ K,
we covectly define a funttion k : g(K)-%» R,
It is obvious that this function is cencave on g(K).
Let now y, € ex g(K). Then there exists.an Xy & ex K,
such that g(xl) iy ard, therefore, we have '
k(yy) = k(g(x))) = £,(x;)> 0,V y; € ex g(X).

From

g({x s xek, fo(x)<v\=37 Yee R,

3]

and from the fact that the mapping g is open, we infer that the
function X is upper semicontinuous on g(X).

bY) Let nowfxoe‘AQBg(K)) be.2ny (<) - maximal or (<< ) - maxi-
mal measure, which represents the point g(xo). We then have

(by taking into account corollary 2 to proposition 2, and also

lemma 1 )

gl ) = ke ) )i> gk(y)df&o(y) = gek(y)d.yw(y)‘> 0.
4(x) e 20K)

The theorem is proved.

5. In this sectirn we shall give our generalization

of the Bishop- de Leeww and Clioquet theorems,

s A B ST |
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Let DcWbe & Baire measurable subset j it is easy

prove that there exists a sequence (hn)ném" hn(—: &K 2B 3y

1

n € W, such that {h \ € 1, Ywel , and xeDd,we K, h (x)
; w
=h (y), Ynell = ye D.

20 %
Let us define D, = DN( N 8 ;2 ).
- WG n. .

Proposition %. For any X, € Do\ (ex K) there exist

, ‘ L
x),%5 € D such that x) # X, # %, and x = 5 (x7 + %,).
Proof. Since x & ex K, there exist X1»¥%, € K , such

3 ;
that x; # x_ # x, and x_ = ~5-(%x,+x,). Let us prove that x;,%,€&

o
= DO.
Indeed, we have
o B )
helec) = belx ), ¥ onew
and

he(Mxy +(1 = A%y ) 2 hE 00 %+ (1-2)xy),

for any né N, and any nel0, 17 .

@ 2 L] ] e °
Since hn 1s concave and hg is convex, we infer that

amstomams

() B2 (Ovxy+(1-2)xy) = 2 (A xy+ (1= N )xy)

for any ne N , and any Ze(o, 1_) « We then infer that the

mapping
“ ‘ _
N brOhxy +(1 -d)xy), Ke (o, 1

is affine, for any weMN . Since it is the square of ~u affine
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function, we deduce that the function
hi=ah Eng + G2 =X 9, - Hele, 17
Y )
is constant on [b, 13 , for any we W . Consequently, we have
= = ¢ v
ho(x;) = h (x)) = h (x,), wem,
and this implies that
Xy X & D.
On the other hand, ‘from (%) we infer that

(v o)
X1y X5 €& (\ShZ
w=o I

The proposition is proved.

Theorem 3.a)Any(«d) - maximal measure /ué M-:_(K) is
pseudoconcentrated on ex K. In particular, we have
b, (Chocuet) Any (<) - maximal measure f* ¢ ubng) is pseudocon~
centrated on ex K.
¢) (Bishop-de leeww) Any (<) - maximal measure /Aé j{;(K) is

pseudoconcentrated on ex K.

Proof. a) It will be sufficient to prove that for any

compact, Baire measurable set Dc:stuch that

DN(exk) =@,

we havefk(ﬁ) = 0. Indeed, let us consider the setI{,fvom the
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preceding proposition. We shall prove that Do = ﬁ, 1.8,

Corollary 2 to proposition 2 will then imply that

/w (D)

Let us mssume that Do-#}ﬁ; From the equality

) Co (DO’))

co (U
and from the Milman theorem we then infer that

ex(co (Dy)) <€ By D,

because D is compact. Let us consider the function

@M

mml

L
2“

where hn)wwEWJ , are the functions already used in proposition 3.
It is obvious that @ is concave, finite and upper semicontinuous
on K, hence on Co (Do) .

If @(x)> 0, for any X € ex(EE(DO)), then , with
theorem 2, we would infer that (e(x) > 0, for any x € D_, a
contradiction. Consequently, there exists an X, € ex(Co CDO)),

such that (e(xo) = 0; hence, we have
x,eD,C D

From DN (ex K) = @, we infer that

xo Q; 8x K 3



gl

probosition 3 now implies that there exist X1y Xy € D0<:

C.55(DG), such that

x1_¢ xo=#:x2 and X, = %?(Xl + xg))

thus contradicting the extremality of x, in co (D).

7he theorem is proved.
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