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1. Introduction

The celebrated Fatou and Szego theorems play an important role in thevst._udy of
non-normal operators on Hilbert spaces. _Fafou theorem was the principal tool from the
analytic function theory used by B. Sz.-Nagy and C. Foias [12:] in construction on theirs
functional calculus with functions in H®. In theirs functional model for contraciions they
used also, in decisive way, fhe variants of this théorem for vector or operator valued ana-
lytic functions. Szego theorem and their implications in factorizations are also very intima-
tely related with basic problems in operator theory,- like structure of invariant subspaces,
Jordan models, cyclicity, etc. The applications of the operat_ori_al methods in predicfion,
cross also through ideas contained in this very important theorem.

Therefore it is not surprising that several efforts were made in order to obtain
clear varianté Qf these theorems for the operétor valued functions (see for instance {'_12} 5
(3], [3]).

In this paper, following the treatement given in [12] for the bounded (operater va-
"lued) analytic functions, we intend to point out and some how toovercame in a new way fhe
difficulties which apbear in the non bounded case. . .

After some necessary preliminaries given in Section 2, we prove in section 3 an
‘analogous, for the non bounded case, of B. Sz. -Nagy and C. Foiag Lemma con Fourier repre;
-sentation of opefators which intertwine unilateral shifts (Lemma Q). Section 4 éontains the
‘results from [9] about factorization of semi— spectral measures by means of Lz—bounded
analytic functions. We prove also that any L2—contractive analytic function can be factorized
into a contractive analytic function and an evaluation function [10] . These theorems are used
‘in section 5 to obtain variants for Fatou and Szego theorems for operator valued functions.

During the preparation of this paper we benefited by helpfull discutions with Ghe.

Bucur, A.Cornea and C. Foias.



- 2. Preliminaries

Let us recall the classical Fatou and Szegc')' theorems, in a particular case which will
be convenient in understanding the variants which we proposé for such type of theorems in
operator valued case.

‘ Denote by T the oneQdimensional tofhs {1z €C;1z]l=1} in the complex plane and by
D the open unit disc {-ze(ﬂ; Jlzifi< 1} <« By Lz we denote the usual Hilbert Space of measurable
complex valued functions v on T which are sqdare integrable in modulus, with the norm

A
| 2.1) 111’1122 - = [v(e

L = 0

: : : ks 2
when dt is the one-dimensional Lebequ measure. By I.  we denote the closed subspace
of L cons1stmsr from dil function in L whose negative Fourier coefficients are zero. De-

2
- note by I the Hilbert space of all complex valued functions f on I which are analytic in I

and verify o
3 : 2 12 f | G2
(2.2) Hfﬂ 5 = Sup o 3 ;f(re‘)[' df at o2 5l
% QRdpndlyur e E
The map s ey
N A LN &
f(z) Z anzn — f (e )= Z wa emt
n=0 S0t

s i, : 2 Z :
is an isometric 1somorphlsm between H™ and L+ and we have

@.3) | j,qﬁz = Zia! =~ e

H
2 +

For a functi.on fe Hz let E(A) = S f(z) dz be its primitive. Then f isan Lipschitzian
function on D, thus it can be extended tg an absolutely continucus function on . The res-
tricticn of this function to T'gives fise to a complex valued finite Borel measure on T’ de-
noted by Le which is absolutely continuous with respect to Lebesque measure.

The variant of Fatou‘ theorem to keep in mind is the following :

be its primitive

THEOREM F. Letfe H2, f+ be its correspondent in L2+ and/(f

measure. Then

T

(1) d/lf=f+dt
! W
a P(t f d
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where P'r(t) is the Poisson kernell

P

1 -r

P (k)=
e 1«21"cosi:+r2

: it : '
(3) f£(z) tends to f+(elt)_a§ z tends to el non-tangentially with respect to the

unit circle at every point t such that

t+s t+s

1 1

2s g dh(e) = 5o S f(pds — f()
t-s / t-s

thus a.e. _

If we consider instead of the spaces of the scalar valued functions L2 and H:2 the
similar spaces L2<g;) and Hz(g_) of &-valued functions, where & is a locally convex vec-
tor space (with suitable definition for the measurability, analyticity and square integrabi-

, lity), then we can look for the existence of measure /,(,f and eventually for its derivative f+
-as in the Fatou theorem. In case 815 a separable Hilbert space, we can transpose Theo-
rem F with fe same proof as in the scalar case, the isometric isomorphism between the

| Hilbert space Hz(g) and L2+(8) being also preserved. We are not interested in the genera-
lisation of Fatou theorem along this }‘ine, for a larger class of locally convex vector spa-
ces, .because of two reasons : firstly.',‘ ﬁifhe, conditions we must impose to § in order fo obtain
consistent Fatou theorems are o? su‘chu'ty‘pe that permit the éame proof as in the scalar case;
secondly, the space (of the maximal interest for us) o)( lingar bounded operators, both in
the norm or strong topology, do not satisfies such a type of conditions.

These are the reasons why we shall stﬁdy variants of Fatou theorem for operator
valued functions with pure operator methods.

It is not surprising that these methods work better in the case of another famous
theorem of classical function theory, namely the Szego theorem. Let us recall Szeg o theo-
rem ‘in a variant which contains Kolmogorov-Krein gen_eralisations (ct. [5]).

THEOREM Sz. Let j be a positive measure on T such that (T)=1 and let

1 - :
dik = T hdt + d/"‘s be the Lebesque decomposition of/_‘ with respect to Lebesque mea-
- sure. Then : _ :
cl iw . AT
1) A = inf ll—plzd L L gl-p;zhdt=e><p - S log hdt
| /‘ % 2% S
p (<] p 0 a

where the infimum is taken over all analytic polynomial p which wanish in origin.

: : 2 ; 2
(2) In order to exists a function fe H such that\fAz = h it is necessary and suf-
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ficient that log h € L or equivalently A>0 In this case, there exist an outer function f
in Hz such that h_that [f } =h and A= [f(O)l

We shall recognise parts of Theorem TF and Theorem Sz. in the resuits we shall
give in operator valued case. But the Fatou - Szego problematic in general case is far to

be elucidafe, the nature of the obstructions being variate and mysterious.

3. Operator valued analvtic functions

Let gand Fhe two separable Hilbert spaces. A function defined on D where values

are bounded operators ®MWfrom £ to ¥ will be called analytic provided it has a power se-
ries expansion

AT A
GO, e O FAeD

n=o

where @n are bounded operators from & to I The series is supposed to be convergent
weakly, strongly or in norm which amounts to the same for the power series. As in {12] we
shall denote such a function by the triplet {8} ?1 @¢ A 3 ;

. We shall introduce the following three types of boundedness for operator valued ana-
lytic functions. ‘

The analytic function { e 9: @(;{‘)g will be called bounded provided
(3.2) @y < m ' lem.

{E ? ))_Zg verifies

2

(é.3) i sup _Z—TS O(le ) ” dt € M

0<r<«1

e :
then it will be called L -norm bounded analytic function.

If {8 C:F @(A)}' Vefifies

(3.4) o S [@we)a | aen® el

2 0<r<1

. 9
for any qe 8, then it will be called L -strongly bounded or shortly Lz-bounded analytic

function.

It is easy to verlfv that (34 ‘3) and (3.4) are respectively unnalent to
(3.3) ‘ Z 1@, I’
van’d

(3.4) Z |G sm"llaliz doie (E6
9

“q &
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‘Let us remark that (3.4) and (3.4) may be stated with M = M (2) depending of g_'
(which corresponds to the term ”strohgly bounded'"). Indeed if we consider the convergent

series

S(a) = (Zo | NORCS ”z) (a€&)

N 1/2 .'
then S (a) =(§ 1® a[ 2) , is'a continuous function ong and consequently S’a)zoup SN(a)

is:a lower seml—\,ontlnuous semi-norm on &'. 1t is known then that S(a) is bounded i.e.
S@@a) <M ua;; : : ‘ (eeE)
with M indepéndent of a,

Clearly (3.2) ==> (3.3) =—> (3.4). If we consider the function {6,6, @./A)jzdefined

as
@(A)a-gm)a, ; : e (Ae Dy aeg)

2
where é (A) is a scalar valued function from H™ which isnot bounded, then clearly

{E £,0(a) % verifies (‘3 3) but not (3.2). e
Let now g o , F=¢ and{&, 7, @}\) the analytic function defined as :
@(2) h =h @) v g | (16D, he ),

2
For a fixed ] in P and any he€ H of the form h(z) = ZC Z we have :

1@ 4 -Mmkzm 16l < (z_m Zl('\> llé’l

ila

Thus ® () is a bounded operator from € into Fand

1@l ¢ == -

=
If we pu., @ h =C then clearly @k is a bounded operator from 81nto %nd

k
Bcay = Z g

: 2
For any hin H we have :

Z 1©a1 = Z)cx - a1’

- thus {& ,5: @(2)3 verifies (3.4) . By the other way if f we take h(z) = z——- z , then clearly

( Z _le/z we h;ve

2
h&H and for n sufficiently large such that
!@ 'g\ //*n = _J__

e, > i (z«/q”k Todm
It results that Z];@ n is divergent i. e. SLE Ez@mjdoes not vierifies (3. 3).

Let now{g, G @(;l)} be an L -bounded analytic function. We can define the ope-

rator V@ from § into Hz(g') by



(3.5 . (@galm=Baa . @ef)
We have : . i o o
Vol 5 = swo | | ayee))® dat =sup — gﬂ@@e“)au?‘dts
- HZ(}-) 0<grel = ; @ {? 0er<«l =

: 2 2
<M faf
5 :
Thus V®is bounded. Conversely, if V is a bounded operator from &into H (%), then setting

@(2)a = (Va) @

we cobtain an Lz—bounded analytic function{e,?; ( ) % such that Vg= V.

Thus (3.5) establish on one-to-one correspondence between L2~bounded analytic
functions {5 7, @) }and the bounded operators from ginto HZ(EL).

Let us remark that we can consider V® as the multiplication by the operator valued
funciion @(3) on the constant functlons a from Hz(g) Our next infention is to analyse the
maximal multiplication operator on H (&) generated by {8 ; @(z)}and to give an intrinsec
characterization of such operators. We shall obtain in Lemma Q the corresponding result
for non bounded case of the B.Sz.-Nagy and C. F01a§ lemma of Fourier representation of

the operators whlch intertwine unilateral sh1ftq (cf {12])pp. 195 -198).

Let us call evaluation operator e, on H (§) the operator defined for a fixed acsbh
eAh = §(a).

; . gaz0
We have already seen that ezis a bounded operator from H (€) into £and

el < :j:f——i_lTZ (LY o
If no confusion will arises we shall denote with the same symbol e the corresponding eva-
luation operator for different spaces H (E).
Let Q be a linear operator defined on the subspace D(Q) of H (&) with values in

H (?) We say that Q intertwines {' cvaluations on H (&) andH (%) if the following conditions
hold :

() £cDQ) and Q |¢ is a bounded operator. from £ into Hz(?).

(i) D(Q) contains any function hg H2 (E) for which the function hQ defined as

h&}l):-erelh v ; ‘ : (;lé]D)

Lo 2
belongs to H ().
(iii) For axiy A€ Dand h € DQ) we have

AGRQlﬁe Qe h,



ity
Any operator Q which 1ntertwmes the evaluations on H (5) and H (%) is closed. Indeed, if

_hne D(Q) such thath —h lnH (€) and Qh —>g mrI (%) then e Qe h == Qe h for
any A €D, because of (1) it results that e_ Qe, is bounded. By the other way from (iii) it
results that e, Qe h = eAth—-—w- eng in Hz(j’—'). Thus for any A€ D we have e)Qezh =
=€, g, i.e. hQ(}L) = AQG h=e g=g(;{).

From (ii) it results th D(@) and Qh = g.

2
If Q intertwines the eva‘uatlonu on H (¢) and rl (F) Lhen . D(Q) contains any analytic

(g—valued) poelynomial p(z) = S_' z a. Indeed, for such a p we have
< = I
Q(A) =e,Qe, p=e,Q ZA a =e 29\ Qa, ?ﬂ e, Qa) )= (Zz Qak)(l)

Since clearly ? ZEaue H (5) from (ii) it results p € D(Q).

k
Thus any operator Q which intertwines evaluations on H (&) and IT (2),1is a closed
v operator with dense domain. It resulis that Q is bounded on its domain D(Q) if and only if
2 ' : i o
D@Q) = H (§). In this case (iii) is equivalent to thg fact that @ intertwines the shift opera-
: 2 2
tors on H™(6) and H (¥) i.e. with :
: 2
(3.6) zQh =Qzh - heH (&)

oD

Indeed if h= 7 _ zkak,
kso

= =k S
e 2Qh = (Qh)(2) =<'Z:_ Q2 ) () = (Za'az )= Zae, @ay -

o

then using (3.6) we have :

< .k
=eAQ(Z,\ a)=e,Qeh
Thus (3.6) z} (iii). Conversely, from (iii) it results
(2Qb) (2) = A(Qh) () = ’16,1 Qh = ezQ(}l b)=e Qe, h= e?\Qe/1 (zh) =

= e,Q(zb) = [QEn) ] (2)

: 2
. LEMMA Q. There exists an one-to-one correspondence between L -bounded ana-

Lytlc functlons {5 Zown } and the operators Q which intertwines the evaluations on

H (&) andH (,‘47) given by
6.1 @) (2)= ) b,  aeD, he D@),

s ;
- The L -bounded analytic function {8, ?, @(2)3 is bounded if and only if the corresponding

operator @ is bounded.

Proof. Let{€, 5, @(,2)} bl e analytic function, Denote by D(@) the

2 2
subspace of H (€) consisting from all function h in H (§) for which the function A-—> @(f\)gm

et ‘ )
- 1s In H (g), and Q be the operator defined onD(@) by (3. 7). Since @(A) o= (Vga) (), we



g

have £cD(®) and Qa = Vsa. Thus Q verifies (i ). For any he H2 (E) we have :

hQ(R) =e,Qe b= e (Ve ) = @) h (a).

v 2
Thus, if h € H (¥), we have he D(®@) = D(Q) i.e. Q verifies (ii). For any he D(®) we

Q

have :

e;Qh = @(,1)11(2) = @(A)e) h =):Q(ezh)] )= eZQeAh.

2
Thus @ verifies (iii). Hence Q intertwines the evaluations on H™ (€) and H2 (#).
Conversely, if Q verifies- (i)-(iii), then if we put V@ JF we obtain a2 bounded
2
operator from C into H (F) and we already seen that @{3)a = (V a)(x) defines an' L -

bounded analytic function {E’ @(2)} Since for any hEH (&) we have
hQ(R) = e)Q Sl eg(V@h) =(Vpt) (1) = @(2) b (),
it is clear that D(@)< D(Q). From (iil) it results that for anyhe& D(Q) we have
b o P — 7 =
e,Qh e,zQC;zh ell(\@h) @(2)h (A).
s D(Q)=D(®) and for any h € D(Q)
@Qn) (1) = @@)b () mea o | (AeD).

Suppose now that {8 ., @(,‘l)i is botnded. Then for " any he D(Q) we have
1 2T 1 -,Jﬂ‘ .t ’
= K!I@(re ) (r‘e Y12 g dt < sup *2-,;) M nh_(re‘)!f dt=
g O<sr<1 o £

fon)*, = sup
R el

B

- M UhUH< )

Thus Q is a bounded operator.

Suppose now that Q is bounded. Then for all analytic scalar valued polynomial p

and a e £ we have

g

21-5 o) v are >uL =1pV, a;{ H(?) = pQaj” =/Qpaifx

Ul g2y =N ] (0 P

5
It results that for any trigonometric polynomial b we l;ave
J}T;p<e“)/2u(v@axe“)uzdts ,Sfrme')} EYNETRR
which implies ; i 2
[ gae )l < Iarlag ' i

Using known properties of Poisson kernel we obfain

o7 LT
1
N ®(2)a ”; H;TS Pt~ s)(V a)(s)ds| < £57 SP (t- s) v a)(s)” ds g
¢ 2]

©
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i.e. SLE j— @(A)} is bounded

The proof of the Lemma @ is complete.

<

=

l\')

We shall denote by@ the operator which intertwines the evaluation on Hz(g ) and

: H (f;) uniquely associated to the Lz—bounded analvtlc functlon,é’,?-" @)} as in Lemma @,
Usmcr the natural isomorphism between H (g) and L2 (E‘) we consider @ as an ope-

rator from L (5) into L (53) The operator @ is closed and its domain D(@) contains any

analytic polynomial in L“(g)
Let now p be a trigonomefric polynomial mL (8). There ex1sts an integer n =0

such that e 11:p is an analytic polynomial. Let us define

-int int
(3.8) @p=e"""@E™ p)

: : 9
If elnt p and elmt p, (n,m >0), belong to L+(£) then if n > m we have

@+(ei11t e @(ei(n—lll)teimt e ei(nem)t@(eln

because @_ is an multiplication operator on HZ (). Then clearly (3.8) defines a linear ope-
rator @ from the subspace of trigonometric polynomialsin i (€) into Lz(ﬁ}

In case @2_15 bounded then clearly @iis a bounded operator from. L ) mto L &)
and @ O[L (€). If @1s non bounded then & is not ingeneral closable. We shall see later
that this problem is related to the existence of the boundary limit for the Lz—bounded‘ analytic
function{{j vor @(R)} :

A simple example which shows tﬁat ® is not in general, clogable is the following:

let S—H %=C and {E g, @(,’{)} defined by
@A) h=n(a) ey ' h e B,

2
Consider in L (8) the sequence of polynomials

3 n @
1 -ifgt
Pn “logn Z So A !

k=1
n
s 2 i let 2 2 1 1
were a, is the fu n‘ctlon 0 e_ over €= H.. Thenﬂpnﬂ :(1ogn)2 Ek;i 0 ===i)

Thus pn—->0 in LZ(E,) o But

-int 1 n s 1
e - 5—7 i(n-k)t 2 LETs
@ "n logn “K=T (e ?’k) logn k=1 k

Thus @p —--sc( Lulen s Swid) £ 0 “i.e. @is not clogable.
The —boundeki nalytic function {8 f @ ;l)§ is called inner if the attached



=0 !
tor @ is an isometry.. Such a function is thus necessary bounded. The L —bounded analyblc

. functmn{g f @(A)}ls called L -bounded outer function provided.
(3.9) \/ VE 1(%).

If {8 @()) 15 an L -bounded outer functlon then for any A € ID we have @(;{)8 5: If

{8_, (;’7, 2)3 is simultaneously inner and outer, then itis a unitary constant function.,

4, Attached semi-spectral measures and factorizations

Recall that anyzg(é‘)'-valued semi-spectral measure is a map W-—>F¢) from the

family B(T) of all Borel subsets of T into L (&) such that for any ae & the map W—(F (), a)
is a positive Borel measure on. If for any two Borel sets Q,J;, bf)zl, we have F (u)(n v\'),\’) =

= F(»{)") F(L\')L) then we say that the semi-spectral measure is spectral. We shall denote
usualy by F 2 semi-spectral measure and by E a spectral measure.

K is a Hilbert space, E an J(&)-valued spectral measure on '} and V a hounded
operatdr from & intod, then if we put for any WDeB(T), F(w) = V'EW)V, then clearly we
obtain /arip\((é‘)«valued semi-spectral measure on T. Conversely, using the celebrated
Naimark dilation theorem [7], if F is an Z( €) -valued spectral ﬁleasure on T then tiere
exist a Hilbert space,fK; a bounded operator V from & intoK anﬁ(K)—valued spectral mea-

sure on K such that
@) i S = VRN et )

Let us remark that any semi'—spectral measure is completely-positive in the

following sense : for any finite system ‘P, ... ,7" in C(T) and any &, ..., & in & we
- b m : "

have ‘
(4.'2) ' Zfﬁf’ (-f)a a)

Indeed we have :.

ggfé(]p Gl(F(f) a) ZSLF o((EL”ﬂVCﬁ,VCL)\k

_I(E(\po(E(*>a i _
il trlplet [, v, E ] is called spectral dilation of F. In the sﬁpplementary condition

of minimality K = \/ EW VE , the spéctral dilation of F is unique up to a unitarity which
We e ;
~ conserves the operator V.

Let now fg ? @ ( j be an L2 -bounded analytic function and V@ the bounded ope-
rator from (C into H f;), associated to{g ?@ ,?)} as in section 3. We shall consuier V@
ikl 2
as an operator from Emto L (¥) (via the geometric isomorphism between H™ (F) and L (33

Let Eg‘be the spectiral measure attached to the shiftoperator (multlphcatlon by e in L(?.



Sl ;
We shall denote by F the ,Z (8- valued semi-spectral measurc on Tdefined as

@3  B@=VIELN . - (WeB(m).

We shall call F the semi-spectral measure attached to f&' ? @ﬂ)}
If Fis ani(e‘) - valued semi- spectral measure which admits as a spectral dxlahon
a tr1plet [L %), V., EF].such that VSCL (f then if we construct as in section 3 the Lz—
bounded analytic function {6 9‘ @(2 ?J which verifies V V then clearly P = :
THEOREM 1. I:_e_t{g, F, @ l)} ,{ ? @(2)5 bc two L ~bounded dnalyuc functions,

the second one being outer, FQ,Q F@ be theirs semi-spectral measures. Suppose
4

4.4 DA R
es) ® <o

Then there exists a contractive analytic function {3‘: ?: Q%(A)JZ such that

4. 5) ® @)= @w @@ (4e D)

If in (4.4) the equality holds, then{? %@ézﬁ is inner. If moreover \g‘ g G 2)?|

is outer then.f Sl @(,})} is unitary constant

lkt

Proof. I‘or any function h& H (57) of the form h = }_\ let us put

a
zk

4.6) Qh = e \/ a
9 k

we have . ie Vak”L 2& :(kj)t (F‘ﬂi g)

a7
S ZS ‘(k-j)tol(P%k)ﬂ) H‘ﬁtl{ W)

We have used here (4.4) in the completely positivity form (4.2). Since {8, s @(A)s s
outer 1t results that (4. 6) glves rise to a contraction @ from H (‘5?} into H (%). Clearly

)
Qe = e Q From Lemma Q it results that there exists acontractive analytic function

; {?{, g, @2‘(;{ 5 such that ' ‘
@) = B()h @) ‘ - (b e ().
If we take h(a) = @ (2)a we obtain
Bwa= (Va) @=Qa)M =G Q) a.
If in (4 4) equahty holds then clearly Q= @+ is anisometry, thuQ{ 5—\,'@.(1)} is inner.
If moreover {E, i @(,1)5 is outer, then clearly {f, vE @éz)} is outer, thus it is uni-
tary constant.

THEOREM 2. Let F be an Z(g\ valued semi- spe'ctral measure on Tand LJ{, V, E]

1ts minimal spectral dilation. There exists apunique L -bounded outer functlon{é‘ 7 @(l}%

with the properties :

1) F@ < F

‘



SO
(2) For any L2—bounded analytic function {5 Cf @(}l)ﬁ such that F . £ F, we have
V) e—— e

also ¥_ <« F_.
The equality holds in (1) if and only if
; ; m
@.7) i SRR Sorato]
my0
where U is the unitary operator which corresponds to the speciral measure E and Q{ =
£ Proof. Aplying Wold decomposition (cf [12] ) to the 1sometry U U}.fK we obtain

QU co

where % :efl{+«’:3 U&K+ and R =[] Ui K,

M0

Clearly | 5

- @ u'EeR .

Let P be the orthooonal projection ofaK onte the subspace G‘BU,@i Then we have

4.8) PU=UP,
: Vi |
Denote by )g the canonical isomorphism between & U ? and L (;;Q;) (Fourier repre-

— O
nt’w tion), and deune E——> L C?jby

. Vo = XiP\/a’ (ac€).
Clearly then\/g <L, (%) and
' \/ mfvg y S PVE - =X Vuneve -
-x PSK =X, @U”‘ =2 (5.

We obtaln Lhat the L —bounded analvuc function attached to {[,, s @(A)} corresponding to

M:P v URE -
(@)

V. as in section 3, 1s outer. For any analylic polynumlal p we have

L
: jlm"vl(/:a a—) h;o\f o« sy HfX PVa l :U;a(U)P’V'a Iy s
_;H;,,cwva Hf(UJ\fO» ) »E;F;"%{ Fa,a)
Thus )
Fg<T.

We have equality iff X?PV X;V 1, e llfE-BY =V, e iR =0k, e, 1f{ﬂ U‘fh ~{O}

Let now{f‘ T @ %be another L —bounded anwlytlc function such that Fé B, Tet

us put for an element k é:K of the form k = Z U Va

[e]
“4.9) XK= Zelkt\éak.
We have : :
g V(8- 55 (,:@(f)g{)aj\) =

Q

um .



et

2 D2 el D e inyay ay 2, Utva, = 144"

3
b
Thus (4.9) gives rise fo a contraction X fr'orn,II&+ into L+(57 such that
= it
M=

We have

Xﬂ—){ﬂff X, cm{v . ﬂe"'“)(ﬁ( ﬂe‘“tL (F)=3oy .

Thus XP = X. We have then for any analytic polynomial p

2 | 2 g £z 5 2
X{Pl d (F a»a) :”pv@a” =l\X.p(U)VaH =[XPp(v)Val < \Pp@) Va| =
i 2
}X Pp(f)ﬂval) “ﬂp(e )X;_PVa ~”pv@iaﬂ g!p(el )| d(F@za,a)
i.e. F < F,.«1 3

2 Lo e 5 -
Clearly any L -bounded outer functions{{ ?' @( ;{)} whichverifies (1) and 2),

verifies also F@,— F® and from Theorem 1 it results that they differ by a unitary constant

&

(3N

factor.

. 2 ,
COROLLARY. Any L -bounded analytic function ¢, ¥, @(,‘l)} has a unique factori-

zation of the form

AN =& @ | it (A€ D)

in the inner and the outer parts.

‘An L -bounded outer functlon{g F, A(A)} will be cailed evaluation function of &

=
in 7 if V@ is an isometry from gmto H &.

PROPOSITION 1. An P ~bounded analytic function {£, f A(,z)} is an evaluation

function if and onlv if & can be isometricaly embedpd in H? (%) as a_cyclic subs pabe for the

shift operator in H (& such that

@(_z)a = a @ - (AeD) ,

In this case we have necessary dim ?Fé dim & .

_Pﬁgf_ If £ is a cyclis subspace of H2 (#) then clearly (4.8) defines an evaluation
functlon{bu ; @(;1)3 Conversely, 1f{5 5, @(A)} is an evaluation function thenVla an iso-
metricaly embeding of § in HZ (#). Since {E I @(;e)i is by definition cuter, tnen Vé‘ is a
cyclic subspace for the shift operator on H2 .

Let & be a cyclic subspace in H (¥) and denote by P the orthogonal projecfion of

H (") on §.1f feF and for any ac& we have
(f, Pa) = 0

then clearly (f A%2) = 0 for anyn 30 and ae€. From the cyclicity of § it results f=0.
It results that PE = &, i.e. dimFe dim &,
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THEOREM 3. Any L -contractive analytic function can be factorized in the form

“.10) @) =M AD AEAD o

where{é‘, E, A(x)_', is an evaluation function and {5’ % M(A)} is a contractive analytic function.

Proof. Denote by D = [I V@;jl/ and put

2
dF*=dF .+ D dt
®
Since F ('K‘) V*V we have F(T) = I. Moreover F = I‘ whore &, SZ_(xﬂ( is the L—

bounded analyhc functlon_deuned as

= @@ Dy
G‘“‘- I )
and 9 = Fa D®€ : Let{éf,éi, A(2)] be the outer part of 6 T 52(2)} . Then clearly B B
and consequently V;LVA: B =~ 1 and F® oL szs . Applying Theorem 1, we obtain the desired

factorization.

- 5. Boundary 11m1ts

In °ect1on 4, we attached to any L ~bounded analytic function the boun-ded opnxﬂtor

-

V from & into L (27 and the semi-spectral measure F_. If Fis an Z(§)-valued semi-spec-

®
tr°1 measure, we attached to F its maximal ouler fu"lCLIO}l {{{',? @)(,1)} such that 1'@ £F. In
this way we obtained elements for both theorems Fatou and Szego. We need "only' a desin-

tegration for the operator V@ of the following type : there exists a strongly (or in norm)

measurable function ¢t ——>@(e ) defined onT'with values in X(€,5) such that for any a &€ &

we have : .
(5,1 (Va)(e )-@(p (G P s : - a.e,
o ‘t
In this case, clearly we have ® a) ———=>@ strongly'a.e. when A —> e’ nontan-
gentlah}’,
it it
(5.2) e Qe ) DeHa
and
: AT
N 5 ig
(5.3) - Ge™) = e P (t-s) @e”) ds
“in strong sense. o
. If in Theorem 2 we have F@ F then

it t
dF = @ *@e :
which corresponds to Szego factorization theorem.

In casel{_g 5 5, @ (A)} is a bounded function, we have a such desintegration for V@ in

strong sens (cf.[lZ]). Indeed, 1et{an" be a dense set in £ and Wa total set in T, such that
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@) a —-—>(V a )(e )for any tew and a as A tends to elt non-tangentially. Since
| &( A€M then @ 2) tends sfrongly to a bounded operator @(e )when A tends nontangentlally
to-e t. Then the function ¢ ~—s@(e ) is clearly strongly measurable and (\@a) (t) @(e }a
a.e. Evenin this case t —»@(e )1s not necessary norin-measurable, thus @(e )1s not
a. boundary function in norm sense. |
) For a general Lz—bounded analytic function @ (7:) does not exist a desintegration

for the operator V@ sl G for example {g ? @(A)} is the evaluatlon function, g H ? ¢
and @ () =a(n), and t —> @(e" ) is the boundary function (in strong sense for{g @,
then it resuits that there exists a total set «0 in T such that any function a in H2 has a ra-
dial limit when A — eit, tewd, which is clearly impossible.

Theorem 3 permits us to reduce the difficulties in censtruction of boundary limit
to such a type of obstructions.

D)
THEOREM 4. Let{g Z @(R)} be an L -contractive analytic function. Then there

exist a Hilbert space G and a bounded analytic functicn {E oM (A)} uuch that 8 can be

isometrically embcddnd in H 5)

Adrya = Mayaas ae&cH (-.)
and e ’

(\padce™ L itetya ce™y e,

where t —> M(elt) is the boundary function of {Ei 5 5"3 P’l(;t)} g

We can inierpret t —> M(eit) as a boundary function of § &, ¥, (MY (modulo
the evaluation of £ into H2 @). 1 é;cﬁ‘, then M(2) =@ lg‘, thus @(R) has strong boundary
limit on the subspace of constant functions in & . In general we obtained a desintegration
for V_ by composing the simultan desintegr_atioﬁ of the elements of 8 as analytic functions

@

on 5‘ and of V__as a multiplication by X(Q,g)—valued strongly measurable and bounded

4 it 2
function t——>M(e ) on L ( I
“If an L ~bounded analytlc functlon{g 3 @(A)ﬁ has boundary limit in the Fatou
(strong) sense,then clearly the operator @: D@ L(E) *—-?L (%) constructed as in the

last part of section 3 is clogable. The converse assertion seems to be an interesting pro-

bleme whose solution we don’t know up to now.

l As we already remarked, Szego Theorem for an ()~ valued semi-spectral mea-
sure F consists- modulo the above discussions-actually characterises in terms of F the
fact that in the factorization theorem (Theorem 2) one has I‘O = F (or at least @ #0).

Let F be an X (£) - valued semi-spectral measure on Tand[ﬁx V, Ulits unitary d1~

-

lation. Let us put
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(5.4) (A{F]a,‘a} ,,'n_fz S \ (F(f)a »a4)

'!1 = O o
where the infimum is taken over all finite system ao, al, ,an ing such that aO:a.
We ‘have aw
<ALI‘]a a}— inf Té:\ j elaiﬂ)td(F(t)ak,a.):
8,8 A €€ o Ve

= inf ZS 1(k~J)f (E )_ it > U Na Vaz/

8 e g
ao_ a, al)...,ancg | aoa al .,aﬁg
v L. 2 ¢ 2
= . -inf fl-va - ZU’Vakgg =,fl(1~131)Vas$ = (V*(I-Pl)Va,a)
kc
al“ﬂ . .,amgg 4 i

where :P1 is the orthogenal projection of K on \1/ UkV@ :

It results that A[Fiis a pesitive operator on §, and wecall it the Szego (or pre-
diction ~ error) operator of F. The name is justified because if ¥ -—/“ is scalar valued,
then‘ ' i

; ok 2
S SRR
where the infimum is taken over all analytic polynomial P, which vanish in origin. _
Now we can state the following generalization of Szego-Komogorov-Krein theorem:

THEOREM 5. Let F be an (@) - valued ‘semi-spectral measure enTand ALF] its

prediction-error operator. Then we have :

(1)ALF"( =0 if and only if et bl o8 ~bounded analytlc function {&, 3 7 @wyj

@(X)#: 0 such that I‘O<F

(ii) If A= 0 there exists an unique maximal (in the sense of Theorem 2) outer

2 s s
L -bounded analytic function -}_S, .%, @i()\)ﬁ such that I‘@ I, dim%dz dim (4g), and
= 5 L v e

i S @<0>*‘”@<0>~
Proof If{g 3, @11)5 is an L -bounded analytic functlon and {8 @(f‘Jﬁts outer part

then ¥ =F . and
® @, 2 V .
(AL ea) = (Bl 1a,a) -aj;a’-f U o

| :W\fil\/’ a-h|*= f\’ a)ro>l = @coya ™

e, bt
Hence if F_< I we have

&
@(@*@(0) = ALF] < OLF] .

. Let now{& § & ()(,\)7) be the maximal outer function of F given by Theorem 2. Then if

P is the orthogonal projection of X onto @UJ' we have

0-3) - 2(I-%) = 1-3,
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Thérefore
(AtFia,a) = [(I-BYVa * = 1-2)PVa, 1 -

- |@- RP)PVa J*= (ac YIS

-

ALET= A.LF@H = @ oy @ o),
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