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LTen t rio.d uie i o.ni: Thé'interest of a functional
labelling of all intertwining dilations (') of a given contraction
A, intert@ining two. contractions T! and T (i.e. T'A = AT) was
stressed in [1@. , Where such a labelllng, 1nvolv1ng analytic ano

nen= analytlc operator -valued functions, was used lntthe study.of

some pure operator theory questions. More r@cently, in flﬂ a

' funct:onal labellin by means of contractive analytic operator-
’ f

Valued functions, was shown to play a.central' role in an eloﬂtrﬂcal

engineering problem, in the case when T’ = T are contractions of

~class C_(N) ( in the sense of ﬁ6] s Che Ix, Sec 3. ). Howewver; in

*
the eases B’ = S5, 00 =S where Sids a Jordan ooerator (oh ai finite

‘dimensional space ) or a unilateral shiift thisukind-of labelllng

was already obtained by Schur (lmpllletlj, for the numerical caao,
in his ClaSSlcal research .on @xtrapolatlon [}AD and bv Adamjan -
Arov = Ireln (expllc1telj, for the operatorial cabe, inetheir basiecs
research on Hankel operators [, Al 3] [4] .
The general case (considered for instance in [@7]:, i6] ”DIH

fel 5] etc),onaﬁely arbi trary contractions A, T', T and arbitra-
ry coﬁtractive { hue not nécessariiy strrctly contractive } intert;
wining diiations seems to have not been considered. The first aim

of thls paper is to f%?l thls gap by showing that in this nost

: ccneral case there exists also a labelang by contractive analytic

operator valued functions. This labelling was suggested,by the,"
preyieus papers-.f6].., @ o[ .

. In'estaolishing this labelling (-rn‘SecL4 below )} we shall esta-
blish another new one. Namely we shall show that the contractive

[ev]

intertwining dilations. can be labelled by sequences {Pn}nzl of



contractions such that T', acts between two suitable spaces while,
5 A .

I 5
il ;n_l and

= sy

“for niz= 2 I  acts between the closed ranges 6 =T

s

*

- I
Lo

( see Sec:2, below ). This labelling was Inposed to
¥z r :

us by a problem in ¢eophysics (where the Fn'3 haver a concrete
- physical meaning ) ana by its numerical treatnment . These connec-
ﬂﬂ.tions will be discussed elsewhere. However in Sec. 5 we give an
dpplication of our results to the cla§sification of all Ando’s
isometric diiations of a pair of commuting éont‘actions B .

Fiﬁally, let’ us remark that: at this stage of 5ur Tesearch Lhe

explicite connection of this paper to (8l ds still anieopen ( andl

. seemingly, basic ) question.

Q
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Also, we take this opportunity to thénk our colleague
for the usefﬁl-discussions-on'the subject of this Note.

1. We shall start by giving the main notations and by recalling
some basic:-facts concerning contractive intertwibing-dilations,

5

B 8 :
Let Hiand Hibe some Hilbert spaces.(?) and: let Lo, ) denote

. .

11

the algebra of .all operators from H to Hl; S case =R T H)
will be denoteé simply by L(#f). For two contractions H?éIJH),T’éL(H}
we denofe by I (T’,  T) the set of the AEL(H ~H') intertwining Tf -
amids e di el sgch'that TLA = AT. Eet UE LK) ; Ufé];(f).bé the mini-
mal isometric dilations of T, T’ respectively ; for n = 0,1,2,,;;,
let Pn’ Pé denote fhe orthqgonal projections of K, K!'onto

/

. H (n=0) “
.Hn = ¢ -1
bt Lol % s ooAeR L Bl
respectively
3 : Vi e o i
i3 H ' - n=0)

o=

o
|
-

4 R 4 Y
n b UL e L (p=1),



" where

Also we set P = Eew blas Pé and

Mehi e an”n_" B e aR) pelide =B e e

obviously T5 =g I S d U, U’ are also minimal isometric di-

r
O

N

lations of TN;,TC, Iespectively (N '="0,1,2, (., In the sequel &

will be a contraction ¢ ST -,

: : o P ey : A h S
By a contractive intertwining dilation, respectively N~ '-partial.

intertwining dilation ( shortly denoted in the segquel by CID, resp.

r'f )
N

‘\

14 :
N - PCID') of A'we mean an operator A_€ L(k, k), resp. ANGL@

such that

LBV S Bl sl A €T (U 0) s BYAL = 2B,

respectively
2 PIGE 7 Gp \ (P :
(1.1)N [ {aN t.l s 1, Ay GI(TI., T @, = Al it
- Thus,: the operatof
(La2¥ b =apth g I : :
n n MR Ry n . ‘ . :

whexre

e R s VR e

n=0, l, 2, -.e'N ifU"—:NJ

o)



is an n - PCID of A, and

= a il )

’ /
(1'3)n PnAn n+l

+1

for 0= < U ; moreover in:the first case we have

3 : % N

(1.4) A+ =sstrong l;m AP .
ian—w®
It is also.easy ito:verify that, conversely, if a sSequence Of

)

n

(88

n - PCID's An(n=0,l,2,...,) satisfies the conditions (1.

= fsd 2.

d

+,) ,othen the streng limit dn (1.4) exists and defines

a CID of A. Therefore we can state the following :

Remark 1.l. There exists an one-to-one correspondance
(given by (l.2)n.,n =0451,2,. ., and (1.4) ) ‘betwesn: the CIh's GFf

“Yof in=PCID's ofiA, An satisfjing‘

[+2]
A an 1 S
~and the sequences { A} _,

(T30 = 0.2, ),

In order to facilitate the exposition, we shall give now seve-
ral. useful fiacts, which actually resune. the eriginal construction
of a CID (e [l [l ; el , W ). Tg this adn leti, T4

and A be as above. We:set'(a)

) '{FA = {D,Th + (U-T)h : h €H}”
: B =0+ L)@ F,

and
_' ' , -
(G PA = {DAh ® (U'=-T")Ah : h €}
o ; : ’ '
A ‘(Dd@ L YoF

A .

Lie momaal 1.l bhiet 7,7 and Acbe jas abeve . Then:



A

(1.6) C(D,Th + (U-T}h) =(u’r - T')Ah  (heil )

?

- defines a contraction C = C, €L (FA’ L ). Moreover the formula

(L7} st = RE (oDAﬁs I @i,

L] « ¢ 6
where RA denotes the orthogonal projection.of DA @ L onto RA ;

'
.defines a unitary operator from D.* onto' R,
193 N ¢
A

Porioco b dliet iL’ and w be the operators defined by

Sy 3 ' . 4 4
iL’(l')=ODA@1,eDA@L [ =

uilD Bk (UsRih) =B b @ fur=pr)Bh (G ) .

g G /4 e
Obviously il’is unitary from L{to {0}€>L(:DA.@)L s calgso,. Bods

? 2 3
unitary from FA to FA since, by virtue of [16] , Sec.II.I, we have

11D, Th + (U=T)hl1® =1ID,Thi 1% + || (U-T)hII? =
=IIThI 12 = |IAThIIZ + [IDGhl12=][hil2=1|ATh}|2=
i 2 2:h a2 2 it 2=
=D hl 1241 1Ah] 2= 11T AR 1D bl 241 By, AR <=

=I1Dyhl 12+ |1 (U7=T")AhI12=] D@ (U’ ~T") AR} |2

j 5 ) ¥V £
gfor all. heEdl. Weishall consider iL’_as operator from L to DA @ L

f

‘and we shall extend w on the whole of D, + L, by setting wz=0,-
A " Dg@L
* 3 0 -
for all reERA. Then:C. = iEwIFA' henée C, is a contraction and
% * : *-_*' * 2 *

= i cae oS =i.fpw.1i,"’ V&= g A
C wai“‘, C 6 ijfwo i/ DCA lL'IAlL

It follows that

* 2 %
K [ 2ept F g Ty =i e el Y =
T ) LA 2 el N J

IIDC



v'- 6 o5

= W|RA;L/1fi:2%irRé(ov£:)101!2 et )

: 1 v s : . A T ; ’
and consequently that W, i° an isometric operator from Dc*té Ru. If
&7 Z\ &

-3

. e e it
w%)()lé € R, is orthogonal to the range of W, then

7. = r_ ‘ r_ ol ﬂ‘ 1_ ’ ]
(157 LS e @el,, 0@ L=(d @, Rl al)

: e :
whence lo = O oBut by (1,.58) .,
(dO;DAh)=(d331é, D hOUL=T YAR) =0 - hiedi),

: 7 I
whence'do=0, since doiEDA. Thus da@ lo = 0 and consequently we con-

clude that Wy issunitary.

Lieamomia 1 2. Tek T, 1 and A-be as in Lemma 1.1. Then the

- formula
(18 C(Al) (DAP + I - P)"Hl. = (I*-P)Al

establishes an one-to-one coxrespondence betyeen the 1-PCID A. gi

A and all contractions

(L oaE

’ :
ot L*—91A, b= €

A NG

Moreovér the. formula

A

(1.10). X (A )Dg 5 ) (PP + T = P) | Hy=
' : i

defines a unitary operator from_Dé teul. .

l) 1

(A

IR o)) L Il =he Al be a 1=PETD of 2.

>



Then, since by (1.1)1,

(1,210 II(I—P')Alhl!lz=!IAlhlli2_llP’Aihl||2 =

il

- il

!lAlhlliz—llAPhillzsllhlilz_l!APhl

: 2 2 2_... 7, oy 2_|
Iihy 1 = {Ph || +II?APhl!i =hE L TR =

-+

2‘. . : - 2 W
K{DAPhlll II(DAP + I P)hlll (n1 Efﬁ),

we infer that irdéed the formula (1.8) defines a conttaction

] 5
C=C(A1) from DA +oli o L= (I—P)Hl. Moreover, since

s ’ i .= . Tae A L1y
(DAP 4»I P)Tlh DATh + (U-T)h (héfy,

we have also

C(D,Th + (U-T)h)= (I-Pf)AlTlh=(I‘P')TiA1h=

=(I~P’)T!PA h=(I-P')T]Ah=(ULT')Ah=C, (D,Th+(U-TJh) (heH),

1@ CIFA = C,. Also, from

= i " i ; e % ._ ’
Al =P Al i (n-p )Al APldl . (T=P )Al

"~ we obtain

L2 A1=(AP + C(DAP + I - P).)IHl.

This formula shows that Al‘is uniquely determined by C=C(Al);
Let now C be any contraction enjoying the properties (1.9) and let

A € LifHy) be defined by (1.12). Then, the relatioen P’A1=AﬁH] is

plain. sand therefore



_>8 =
; —mIplt - i LM D=
T{A,h=T{P'Ah, = TlAPh1~T'APhl+(U -T') 2Ph,

._l.‘ ',‘ 25 Yo o -..
=T'Aph, +C, (D, T + U ~T)Phy= ATPh,+C, (DT + U

A

= T)Phl=ATPh +C(DAT+U-T)Phl=APT Ph +C;u7PT1Ph'+

1 = \ 1
+ (1-P)T,)h,=(AP+C(D,P+I-P) )T h;=A;T)h, Gt .

e e R T

0 ) . ‘Moreover, from {(1.12) we infer

L]
a4

l‘ 20 . 2. P12 1 2
(1439 llh1|l< IIAlhlll dlhy i 4IAPu1Ii
- Hoyre) ol 2 R 2 \-
IIC(DAP + I P,nlll IIDC(DAP+I A)nlli £ h] éHl;
2 i This shows that Al is .a contraction. We have thus

verified that 2, enjoys the properties (1.1),. The last statement -

of the lenma‘follows new: readily freom (1,13).

R e msabrik 172;'The basic existence theoreﬁ-[}i} ,[j@ for a
(©AL]D) Am'of a contfaction A.éI(T’; T), where T/, T are as ébove,
follows from the preéeding lemmas by the following: simple recurrent
construction.

_Set’AO = A and set Cl-= CAQl where‘Q1 denoﬁe the brthogonal
projectiqnof;DAo+L'onto FA " Défihe Ay as thesl = PEID 'such thaﬁ
C(Al) =-Cl.-Repeat_thé somz precedure with Al,UL and U'L’in the rqle
of Ab, L and L,andﬁobtain By, and so on.'Finally one obtains a
sequence (A} ;¥O
(1.3)n (n=0,1,2,;...) and consequently a CID A  of A, py virtue of

" of n - PCID's A of A satisfying the conditions.
Remapk gincs

2. Let T, T' and A, |lAll£ 1, be as in Sec.l. Let moreover

Ao ke an N-PCID of A and A  be the operator defined by (l.2)n'

o

(n=1,2,...;N-1). From Lemma 1,2 it follows readily that AN‘is uni-

' i ‘ A B T , S
quely determined, and also uniquely determines, & 531:1"3.1191Cn}W_TL
D= Sl : : ; ]
@hE Ul L - valued contrdctions Cn(n=1,2,..ikl),namely the strinc

1



SR

{c(a )}N However, the defini*ion'of the string {c(a )}N
: ol Ly ’ i = 3 2 n’“n=1

explicitely involves, besides the cperators U, U’ (i.e. the mi~
nimal isometric dilations of T, T, respectively) and A, also
the operators A;,...,A  ;+ In order to get rid of the explicite
reference to Al’""’AW~1 in the characterization of AN by a string

1 ;i . ; :

of U’ ™ 1L - valued contraction Cn (=12 5w we s ) pawes fipstl v intro-

duce the following :

Due Flisn il todieiin - 2.1 A stking or.a sequelice {Cn}1£n<u

(where v =12l . o ebciiin this'last casewe shall set v - 1 = »} of
operatoﬁs
(210, C s o el { 1sn<v)

is called A-cascade if each Ch (1sn <v) is a contraction,
£

‘2.2) UO=DA, Dn=DCn » ) (i isndu=1]),

(2.3)l Cl’FA:CA :

(2.3), c2(Dcl(DATh+(U-T)h)+Ull)=U'c1(DAhfll) (heéf, lléL)

(in case w>2), and
." .

(D Can'dD. (D= Th +
n-1 Cn—2 ] C1 s

+ (U—T)h)+Ull),‘.)+Un"21n72) Bt o

(2.3), -, (0

=Wee . (D o suilD
n ; Cn_‘_2 C1

l 4 U12)...)+.Un”21 ) sele s

(DAh+1l) +

: )
nel n-1 €L}

for all 3sn<v (in case v>3).
In the next two lgmmas,{cn}l£n<U will be any fixed‘A~c§scade
string or seguence; alse the spaces Dn(05n<u) will have the same

meaning as in the preceding definition.

o



=l

L emma:. 2.1. There.exists a unigue string (or seguence,

'respectively)'{Yn} ISniqu isometric cperators

(Dol vl gl S U engy )
such that

(D, Th+ (U-T) h) ( heH),

(2.5)l ngAh=Dcl

el O (T e

n-1

A

Ckeor alidiln, . 25n<u..
P .r o 0if. We have, by (2.3)1,

2 2 é 2.
IIDAhII = i Thil llgThll +IIDThII_ :
4 2_ r i 2 __

IIDT,AhII IIDArh+(U T}hll

-~ 11U’=T*)3h112=]|D,Th + (U-T)hI|3-

] —r 2 -
o (D Th+(U=T)h1 1% (hel),

i s S : 2.0
JICA(DATh+(U T)hl! 1D :

thus, indeed, (.2.5)l defines an isometric operator from'DozﬂA to:

DI=DC . We assume now that (2.5)n (for n=m-1, 2sm<v) defines an
£ 5 ' .
isometric operator-Ym_i, obviously in a uniqué manner. Then the

definitiqn-(2.3)m can be_written under the form

m-2. ..

Mol e oo .
1)=0'C _,(d+0" “1) (devm

@Y a+u

me = el g

-2

consequently we have

o}



i
BIDL (aseBEemy 2=t a2 2

m—-1
i, (@ o™ 211 12=] (a1 24110 2111 2-

ime . i 20 e E Al e

y m-—i »
7 \ 2
= l}c (Y _,4+U l,llr My _,4+0

M= 2
5 i

: (Yp~1d+Um‘llllz
1 e,

(deD
m

l!Cm(Ym_ld+Um—;l)l|2=|lD

mzlle!—)o

These relations show that,'indeed, (2.5)m defines the searched

isometric operator Ym' Thus the lemma is proved by recurrence.

Riemiar.k 2.1.:By virtuwe of Lemma 2.1, it isieasy . to lnfer
that the definitions (2e3)n (for 2<n<v) can be written under the

compact form

.
] 1) e

el U n-
(2.6)n ?n(¥n— d+U l)—U’Cn_l(d+U lel).

s Alse et us notice that

o el
RS e

DnCHn
(1=n<u~-1) and D_CH.
Now let us. consider ény isometric_operator X:Df+Hi.

By (2.7)n (2€n<v), we can attach to X the string (or sequence)
: ‘ _ ; |

X} <q<, OF unitary operators

e SR : ' ' 2
A (289 -Xn40n+U Lh+_Rn = Range (Xn) (1=n<v)
by folléwing recurrent manner :

(299 R1= Range (X) +4UL

)

n';, 4
(2.10)n anu H«— IUnL



(1Sn<b),

(2.11)1 Xl|01=X

and, in case v>2,

1D

(2 ) ot D D

(2<n<v) . This sequence will be improperly called the {Cn}lsn<u~

extension of X.

Let moreover A, be the 1-PCID of A such that C(A;)=Cy (see

; . ’-‘ Ve - i o .5 » de 1 o X «
Lemma~l.2) and l?t{“n}l$n<u be the {Cn}lsn<v extension of X(A;);

. I ; 5 - ‘ B 3 n 'S \ 5
then by VlFtue of (2.2 and (2°..8) Cﬂ_cn+l XnéjL(kn,Ur 1 )§1$n<bml).
For convenience, the string (or sequence) {C'} will besealled

n’ 1sn<v=-1

the reduced string (or sequence) of {Cﬁ}l<n<v {here plainly one

assumes that v>2).

L.e:m ma 2.2, The reduced string (or seduence)iiils Al-ggscaQQL

" Paro ol £. Itiisiplain that: G (1sn<v) are contractions from

, n-1 B o I & \
P U (UL) to U’ T (U’LY), whe?e 0;=D, and Dn“l_XnDn(l$n<u,.

+
D=l

. g ) o
Moreover, since Cnxn_cn+1

- 1
(1sn<v-1), we have

* PR * C'*C’X “X C* ; C 5
XL iC X =C n.onn B ntEl nEl

gl gt n+1C

n+l’

whence

(2.12)n DC' ‘
: n JTR AL

alel

(lgnso=0). Shnee, by (Rl (241), (2.2), 42000, (2,110

(1.10), we have



=l -

D= e x](vl+UL>-:X(Al)vCl+UL=

= D +UL =-DO‘+ UF

and, since (if u>3 and 2<n<v~1) we have, by ’2{11)n+1,(2.2),

(2.12)n and (2.8}

Dr=x_, D =X.D _.=xXD, ~=xp, 0 +0PL) ) =
nie ntlontl ine ndl n Cn+l‘ n Cn+1‘ n :
”(DC'R_) =D :
: n
the, relations (2.1) and (2.2) are satisfied by {C wd 1en<y (O course
with v, D, L and L replaced by u - l,_yh, Ul and Wik, xlse; by

virtue of (2.10)l and (1.10), we have

=1

1 (D

(2.13)1 Ci(DAl(h+ll)+U12)=C2X Al(h+1l)+U12)~~i

-1
= = . $ \
C, (X4 Dzl(h+ll)+U12) C2(DC1(DAh+11)TU12,

(e, 1 1,€L)

1’

42313 er ( (<22Dgy, (D (B41, 3401, )4U%1,) . >+U g )=

n+1l

T" ] '\7_1
X (Per (e )#07L ) =Chy ) (X 7D,
R & n Bl 9 i n~1l
) ¢);Cn+l .(Xn : .An_l DC anl("')+U ln+1).~

(s

(D. (h+l,)+U1l,) LU

] AI e 2

] 1 g :

(D (...(I%.2 Aldcqxl (UEv(h+;l)TLL2)+

1’1 A l—-}

S 0o S e (B 0

el Ln 2 1
(

% i oy } ! o
Cn+l(Dcv(b..(D Xy Dy (htl;)+01,) +
n 2 i

Cn+l<DC (oD \DAh+li) +

ol e

40 c

n+l 1Rt

s s d L

Al 2 (h+11)+U12)+

3 n+l): C
24 sk el L
2 1n+1)

Il

u? )

I

1o Vil # UL
2

n+l

+ Ul2)+U 1

L Unln+]) el s el o,



- 14~

i % 2 Lo Ly
(DCI(DAh+ll)+U12)+U 1)..0+071 1) (hedH,1y...0  €l),

where we used in order the relations (2'10)n’(1“}2) (Z.ll}q,

n-1°

(2.10) _jr-.e,(2.20) 5, (2.12),, (2;11)2, (2.10),, (2.11), and

(12120).. Now,: Exem: (2 13) (2.3)2‘aﬁd (1.8), we infer

l’

Ci(DAlTl(h+l)+(U—Tl)(h+l) }wCi(DAl(Th+(U~T)hﬂul)=
q‘ = CZ(DCl(DATh+(U—T)h%Ul)=U’Cl(DAh+l):Uf(Pi~P')Al(h+1)‘
= (U'~Ti)Al(h+l) : (el duesl g -

(of course with F. and C replaced by

v. € 2 , .u 0 N 7
thus C! satisfies (2.3) A A

1

F and- €. ). Blse;, {in case vw>3)frem (2,13}, (2.3)ﬁaﬁd'(2.13)
Al l{l ; 2 2 e

we infer

1

3

°

2 2 . o 2 . 7 -
CZ(Dci(DAlTl(h+l)+(U—Tl)(h+1»+U )=
Al : i Borod

= cz'(Dc,(DA (\Ph+ (U-T )i -tE1) +U 11)~

Qs il ;
(DATh+(U-T)h)+U3)+U21

=C3(D 1’

(D
€ e

=U’C2(DC1(DAh+1)+Ull>=U'ci(DAl(h+1)fU1l) (héil, 2, 1,610,

thus Ci,'Cé satisfy (2.3)2 (of course with A and L,L? replaced by

A, and g, uie respectively). Finally,in a similar way, one veri-

fies that (in case v>4), by virtue of (2._13)n,(2.3)n+‘l and (2j3)ﬁml,

-~

the string {Cﬂ}

l<n<y-] Satisfies the relations (2=3)nfor all n,

34n -1 (of course, again with A,L ,L’replaced by Ay, UL, L)

This finishes the proof of the lemma.

Lemma 2.3. Let Ay be an 1-PCID of A. Any A,-cascade string

o}

is the reduced string of a uniquely deter-

. Q, ; 3
(or sequence){cn}lSn<UMl

mined A-cascadé string (or sequence) of contractions {Cn}l<n<u'




_15..

is the re-

g e stri S\ [
Pl rione i, ;f tbe string: (or sequence,(CnI bl

duced string (orisequence) of {Cﬁ} then this last one must

12n<~;’

be defined in the following manner : Firstly

(2.14)1 cl=jc(Al),xllD =X(Al),XliUL$I

Cl UL.

(thus D . C.fl. jand X . dsitayunitary eperator frem 0 UL te R =0 =0l
; Cl L 1 : Cl i Al
secondly : | ‘ :

; G o B :
X, (d +071)=x _,d +U"1 . > (dnevcn, 1€l)

(2sn<v), where X is viewed as operator from DC +UhL o 7~2n==(27§,1 ]
S Dot
n :

Di iy Thése.definitions are consistent if they imply recur-

% D el . vty To<meyly
n-1 Cn Cn—l :

However, we shall prove, by induction, even more, namely that

y °

n-1 DC & DC’

(25 e
n
: : n n-1

(2'16)h Dcc:Hn-
n
and that X is unitary_(for 25n<v) (for -n=2, the last two state~
ments. are, by virtue of (2.16)1, obviously true). We. start by noti-
cing that if for some n,2sn<v , the first relation (2.14_)n nakes

sense and if Xn is unitary then, by the same argument as in the

-1

proof of Lemma 2:2, we infer the validity of'(Z.lZ)n_], whence that

of (ZJS)n. Thus, by virtue of (2.14)l; (2.15)2 is also valid, so

that we have completed the first induction step. In case v>3, we



S

can therefore assume that the statements are always valid for n-1,

1 and the ‘faect

’ : e i : T SR : ; IS0 D) el
- that {Cn}lSn<u~1 is A1 cascade, the first relation (“'14)n makes

sense ; thus, by virtue of the above discussion on 2 15)

n. being fixed, 2sn<v . ‘Then, be wirtue of (2.15)q_

n-’ we infer

that this relation is walid. Therefore, using once again the fact

n- 1<n<v-~-1

n

that e {ec ) is A,- cascade,.from the second relations (2.14)
we obtain that Xn is unitary, while from the second relation (2.14)qv:

th

and (2‘16)n—1 we obtain (2.16)n. Thus the n~ inductive step is

completed and consequently the string (or sequence) {Cn}1<n<u ig

consistently defined. By this very:  definition, it diseiplain thet

atisfies the conditions (2.1 4 1.(2.3) . Now we
{Cn}lSn<U satisfies the conditien (?f ) 220 and (2 3)l oW we

can establish, as in the proof of Lemma 2.2, the relations (2;13)n.
(1<n<v~-1j and subsequently infer the relationsv(2.3)D (2<n<u): “for

' e = ’ ~ 4 A b o 3 T
{cn}ISn<u from the fact that {Cn}lsn<u , being Al cascade, sat}sLleb

(2.3)  (1sn<v-1; of course with A, L and L replaced by B

respectively). In this manner we conclude that Shon is A~cascadé.

nal=n<u
Actually, the proof of the lenma is now completed.
‘We can, and shall, now define a mapping from A-cascade strings - -

toi PID spof A, for.any contractions'T, T and AE T (o | oy Namely,

}N
n - n=1

=]

“feon gdspen i mE N=1p2, . o oy and A-cascade string IC (of
.length N) Wwe shall define an N-—PCID'AN(A;C1 ""'CN) by the following-
recufrent férmula

(2.17)l : Al(A;Cl) SRy

li
(@]

[

where Ay is the 1-PCID (yielded by Lemma 1.2) such that C(Al)‘
and

C’ .'.lof C’ )

(2.17)N A-N(A; Cl I'°’ICN);=AN—.]_(A1; ! N=1

N

n_,_:l(N=2,3,Q..). (Actually,

s N-1 ., -
) r o s - ORI = ~
where.{cn}n=l 1s the reduced string of {pn}

1
A’I\]<A; c] J o o o C ) - i i

N

one.should write AN(A; 20 S RN T CN) instead of



=l

since this operator depends also on T, T' and the concrete construc—
tions of the isometric dilations U, U" of T, T’ respectively; thus

(2.17)N be should written under the form

’ll’C

ofTUE. MG TT 8 T1. : - %l ST 7 3y
AN(A,T, T'U.’U'cl""’CN) AN l(Al,T r,;U/U;C Nl

17 1

: However, when no confuclon Seems posolble we shall not rompl1cate

the notdtlons with these precisenesses) .
The.con51stence cf the definitions (2.17)N (N=28, 8. o ey )i dism
dlrect ‘consequence of Lemma 2.2 and the fact that any (N~1)~PCID of

an 1-PCID of A is an N- PCLED-of 4 Also by an obvious inductive argu-

ment it followc that

A

2 ¥ o = . g
(&_.18)N PN_IAN(A,cl,...,CN{ AN_I(A,Cl,.‘.,CN_l)(PN_lIHN)

]
A

W=2,3, a4 Ag(AiCy,...,Cy) is an 1-PCID of Ay-y (AiC N-17

1,0.

Brrionpue seiltt e nel o1 e Neli2iics . oabe 0 T:0 SR e T (U I

- fixed, the map ing

—_—

\ .h»
(2.19)) e 3, )= BAg(a; C1'°"'C )

establishes an one-to-one correspondence between the A-cascade . 1a:.

strings (of length N) and the N=PCID's of i,

B.x oo f. Hor N=l; the statement in the proposition reduces to
the' first statement in Lemma 1.2. Therefore we assume fhat the sta-

tement is also true for N=m~I>1, Let moreoveyx Am be an m-PCID of A

- and let A; be the 1-PCID of A defined by (1.2), (with v=m). Then,

A, is an (m-1)-PCID of A,, thus by the inductive assumption, there

exists a uniquely ‘determined ﬁlwcanadc Sttring it ]'1 i such ‘that.
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. Y - i . [' . 14
(@200 D men ol et )

By wirtue of Lemma:2+3, there exists a unique A-cascade string
iy s st s Gelimel e 3 R
{c ) ., such that{C/} _; is the (A ,-cascade) reduced string of

{Cn}izl; nwreov¢r (see (2.14)1) C1=C(A1). Therefor;tfrom (2.20)m

and (2.17)m we infer that A is of the form

Am = Am(A;Cl, C2,...,Cm),

e E ; . : ' : T
where {Cn} n=1 i8S the above (uniquely determined) A-cascade string.

This finishes the proof of the proposition.

Lemma 2.4. Within the frame of Proposition 2.1, we have

(221 PlDShikl=lD.. D sl bl S e
N Ay e G c;, A

1 e <3 N . gty iyl g
where-AN AN(A, Cl’ C2’°"’CN) and {Cn}n=l 1s_an A-cascade string.

Poxrieiio £ The réliation (2.21)l follows directly from Lemma

Lo
Let the relation (2.21) be true for N=m~120. Then from (2T
we infer
(2.22) - I!DA‘hl|=llDA, lh|l=HD,,, s aDo, - By B (i)
. %

“m-1 ab i)

g A = | Sle Y : . L i -PC 2 < i ol
where ?m~1_Am~l(Al'Cl"'“fcm—l)’ A, 1is the 1 ID of A defined by

(1.2) | (with v=nm) .ana (c/}™"]

i , = m e
nin=7 18 the.reduced string of {Cn}ng‘B“t’

by virtue of Lemma 1.2 we have

v
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extension of X(Al), we obtain

| Soge N il
so that, if {Xn}nzl fig)ithe {Cn}nzlf

ssia il X s D)

D sl DUEDE - h = D i )
Sl e

’ ’
CN—l Cl Al
D

7 ° e D‘iXD‘
i oty

Dl DAhz'ﬂsz X

alki
Cx=1

D. D,h=D.,
S e

Sl
Sike o
© 5

@]
@)
lw)
or
i

N ey
where we used, in order, the relation (2011), (2.12)1; (2.18) 5, ...,
(2.11)N_1, (2‘12)N~1‘ Since X, ; is unitary, from (2.22) it follows

- Hhait (2.21)m_is also valid. This completes the proof.

Bl i@ pio s tiiiosn 2.2, The mapping

(228 e ) = BB C o iCoii o e N=sitsang Lot B R CT e e e

establishes an one-to-one correspondence between all the A-cascade

sequences and all the CID’s of A. Moreover Am=Aw(A;C1,C?,..,) ig ans

; isdmetry'if and only-if

(2ol D D A e O (EhiaH
e Gy R e

B r 9w, The first statement of proposition follows at once
from'RemarR 1 AN Prdposition Zel and‘(Z.IS)N (N=2,3,...,). Concerning

the second, we remark that (2.24), holds if and only if
(2280 lERis bl a0 - o h &Y,
e N N+ 4 :

where

AN:.:AN (A; Cl,‘e.o\,CN) 3 (Nr-l',zrn.-i),-



o

From the first statement it follows that

11D, hil2=(1hl L2~} 1A _hI12=]Ih112<1im |{A _h|l2="
s o N

= dlamieline: el 2

Moo AN

and consequently (2.25) ‘(or equivalently’ (2.24) ) holds if and.cnly

AED, =0, that dsi if, A |H is isometrie. Thus it remaims only:te

prove that. the last preperty dimpliesthat A s isemetric.: Or, since
: mn
A B=aUta s atifeollews ationece ;that A B H is dsometuic foriall

n=000 2000 vy iindt s o tuen, -this implies that

A

w

ekl =0 . Erhlm 0 e )

" Since the spaces UnH(n=O,1,2,...,) span K, we conclude that

D, =0, i.e. A ‘'is isometric.
A 0 ]

o]

3. Probosition Jle cnid 22 réduée the study of all PCID’s
and CID’s of an Ae I(T’,D) (where T, T'and A are some giveh contrac-
tions) to that of the A-cascade sﬁrings andvéequences. However an"
A—céscadé string or sequence is a rather involved cOncep£. Thetefo=
- re Qe shall show that éhe study can be actually confined to more

transparent concepts, one of which is defined in the following.

g . . . ("' . ~ - % ) W . ':' T
Dy e, il n i |l °© n 3.1 A strings {or sequence){ln}15n<U of

operators will be called an A-choice string .(or sequence)if each
i 3 & . , N
Fn(13n<u) isia contractien acting from RA toe RA (if n=1) and from

,Dr - = to DT* (4 By m=2)i. o (Phas: i f {I‘n}ll\;_l is an A~choice string, then
e oL g

vfor.anz contraction PN+leL(DFNy UF;)r{Fn}nzl is also an A~-choice
- String; Ehis is thegustification «of the terminoleogy) .

In this section we shall establish a natural connection between



o e

the A-cascade strings {or sequences) and the A-choice strings
(or sequences). To this aim we need some simple facts, rather
known, which, for the sake of completeness, will be collected

in the following

iy 2 o) Tq ‘
L esmemidas 4380 k. Lete G, -G and GO be some Hilbert spaces, Go

being a subspace of G, and let Co ¢ Gsr G be a contraction. Then

the formula

{3;1> chr(co,c); ci6e G
Gl B i=ie 0 chr(zmg)

(Where Q denotes the orthogonal projection ofG ontoG ), establishes
: o}

)
an _one-to-one correspondence between all the contractions C:G-—(

such that

(3.2) clG, = ¢, ,

and all the contractions T:6 é>G6w ch.

" Moreover the formula

(3.3) (2D = RDIG © G

r
£, DpiiDpt =B
- o

’ — )
2'Dy = DIG

(where R denotes the orthogonal projection of DC onto D, @1DhGO)”

define unitary operators = Z(CO,C} from DP,EE @C C>(DCG ) o B =T

o) * *

Z
T x i
(€ wC) Bremny Dexibol % aﬂ@vgi(c C) fxom D to (B G ): also

o s L o} m«-m—'co = @%a —

AN 2D - i
(3:4)2Vp .Dq (S DCO



. Proo f. Let C : 6+6G' be a contraction enjoying the property,
(3.2). Then, :

(3.5) IlQC*g'II2+Il(IQQ)C*g’r!2=IIC*g'!lzslIg’112 (g’eG")
‘and

’ * * ¢ *
Hoe gl g )= (C g’rgo)=ﬁgicgp>=(g’rcogo)=(cog’rgo)
(g' €67, g €6,)

whence

* *
A6 P0C = CO

and" Eherefore, by (3.5),
(3.7 |}<I—Q)c*g'=1s11DC*g'kl llgetn)
- :

I followv that there exists a unique contraction

*D * C G such that
P.C-f @O ,1.

-Conséquently setting r(CO,C) =-P€Zu@965, DC*) we obtain the
"'firét relatiopl(3.l). Conversely, if we are giVZn a contraction
r:GWC)GOL»DC*pand if we define C = C(CO, I) by the second relation
'(3;1),”thén plainly (3.2) and (3:8) are satisfied ; consequently’

we obtain (3.6) with the same argument as above. It follows

(3.9) 11c*y 12=110c* SN+ [ m=0yie gt k) 2=ine grHiz

HEp gllz\lIC gil2+IID *gll7—llg!l2 (g'eG’)
C
(o s

. ‘hence C is a contraction; finally, (3.8) shows that P(CO,C) =T,

This completes the proof‘of the first statement in the lemma.

The statements on 7 .and. 7% follow readily from (3.9) ‘and (3.2),
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v

respectively. Concerning the statement on 2, we note that

llDCgl|2=IIg!§2*i!Cg{{2=II(I“Q)gllz-ri!lelzﬂ'HCOQg+

! : ; 7 Lot 2 : 2 % ¢
*-DC*E(I;Q)QII2=II(I—Q)gl}2+lngll.*IICQlel 2Re (C_Qg,

O
D.*T (I-Q)g)~ID *F(I~Q)g!12=ll(I~Q>9i|2+l|DC el o
e 2 C o
O Q
= 2Re(DC;C§%$(I—Q)g)«I!Dc;?(1“9)9|12=|1(I"Q)g!'2+
e R - - *T (I-Q | 2=
+IIDCOQgII ZPe(CODCOQg,F(I Q) g) "Dcd (I-Q)gl

2 i3 i . 20 .
=llDr(I—Q)gll +|iCOF(I~Q)91|z+|lDCOlel ZRe(DCOQg,

It i : s T ot o = ; - - - vl 12 7€ G :
C TAI-0)a)= 1D (I-0) gl | +1JDCOQG CoL(I-Q)gll® , (geb)

|

whence
* s =
40 .l!ch+DCgOlI2=llDrgilz+i{DCgO~C Fg|l~_(geG@GO, Gt g

Buk sinece;

* *
C r(GeGO)C:C DC*‘:DC '

from the relation (3.10) it follows

: éz-' N 2 2
IIRDCglI inf IlDCg+choll ljDFgII (g €6 e@o).
gJEGO g
This shows that the definition of 7 is meaningful and that 7 is
unitéryx Since (3.4) is now obvious, the proof is completed.
We now return to the aim of this section, stated before Lemma

}N

e (where T, T’ and A

3.1., by considering an A-cascade string {C

are as.in Sec.2). We set o



4 r
(3 ANNB,. =i EyaD L, (Gl .
Fs sl 0 o o n?l ’_"n~l ? =
Ghp =0T 0 e e Ll
and we define the contractions
: : ; i
Con ¢ Goﬁ*Gn : (h=1,2 ... N}
by
(3.12) [Cq =Cy
= iy Ml n=1
Gonlit i, RUECL. (0o G IR Gemte R o

By virtue of (2.3)l and (2.6)n (for n>1) we have

(3:.13) Cn!Gon='COn , (=, 2, s N

Therefore, Lemma 3.1 yields the operators

3 . 7 2 4 i
: 4 = = : S
(3‘1‘)n I‘n P(COn'Cn)’Zn Zchn'Cn)’Z*n Z*( Cn)‘and

cOn’
7

> 7
Zh$ 4 (COn’cn?

~ for n=1,2,...,0. (In the sequel, wheh a more precise notation will .

A :
alf oo al = 1 - 0 =T s =7 p
seem necessary, we sbdll write E_ ‘n(cl""’cn)’zn un(Cl,.a.,Cn),...

L3 ’.
Insteadi@fdRel iz o0
: n n

: : r
L esmimean 2025 Box 2<n< N, the range of ZI

UV D and
1-1 =~ "n-~1"n-2 ===
; : : .
I ds a contsaetion from 7 . 0.° Lo UL
H G Tn—l' n-1

P riolens. Howiprowing



(3'15)nA Z

for n=2i, v Noiwesnete flrstly that_(3.15)2 feollews: trom (3. 3)

and (2'5)1’ by the relations

e >
Z- D (D= =D
H l.. LA A s Cl

T N __:/ }___r 1 — Dl (1 £
(JAih.(( T)h) ¥ b,h “1§IH

FEor- ha2, e have, by wirtue of 43.3), -(3.12) and (2250 -

G G e e
) ; D Fal Sk o Sl e s
s ca R Rl Cooq B3l
=Y D ]
2 hes 1] A A 1 ik I
n 1 anz(dTL m) (~~€ =37 & )r

from which (3.15)n follows at once. Concerning the second statement

"in the lemma, we notice first that Lemma 3.1 yields

‘r ..

1 e

Fné-L(Jn@GOn’pC(‘; ).
n

Bt ebyeavi ptmedio £l 3011, (3.15)n and'(3.45 we have firstly

= ¥ , &
BT =yl =T X =1 LRSSy oy 1 ’
ﬁOﬁQCOn Un*lezn—l@n~2 UC Gzn“lv Z'n--l-DI‘ t

(3316 c
: N1l G n=l n=l

)4

while, by viptue of 1 (3.12) , we have secoﬁdly

* —T B \* : T'* ,nml !
VCOnCOn ] Cn_lﬁn_lL U L
whencé
DZC* zU’DZC* g e D * B e
On n-1 On n-1
(o] o}
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. We can thus conclude that

el : : :
Lojes il Zo 1 D ke )
n el fnd) “n-1 .

completing the proof of the lemma.
; i

We shall associate to our A-cascade string {Cn n=1 on A-choice
string{Fh}izl in the following manner. We set

2 el ; : :

(J.lb[l 11 = NATI,
and

3 S s

( .19)l hl“ D 7h*l—WA pE e

Fl 1

g :
) is unitary ( see Lemma 1.1), we have

S o RpLERS e
Since, hAé L‘DC N

A
obviously

hence the operators
(3200 WDl R DL W o D G

defined by the formula (3.19) are unitary ; moreover we have:also

Tl

1 )

(3.21) . Iy€ L(R,,R

thus {Pl} is an A-choice string (of length 1); this will be associa-
ted torour A-cascade stringsdf N=1, If N>l, we appeal to.the fol-
lowing

0
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Liesm m ai3an el ol Then the formulas (3.18),, (3.19),,

amcly sFor t2ariaN -

B ; : ’
(3‘18)n. o : Z; ‘U’*FD‘Z - INn

= x : = 117 N *
(6355 1-9)1] Wn Zn_‘an__llDFnr W*n U 7,*:n""1h*fn”llpr,n
. e . L on S
define an A-choice SiterEing {rq}n=l and unitary operators
; Tk ’ . 5 ; ‘ 3
(3.20)n hn.DF = UF ' W*n.Dr*a+ DF* :

n n : n )

(1sn<N),

P r oo f. Proceeding by recurrence, we notice that the state-

ments concerning Fi; wl and w*l were already established above.

Assuming that those concerning Wm__1 and W, m_l(where m=l2l, mall) - aie
1

also established we infer by virtue of Lemma 3.2 and (3.20)m“,rthat

A

the relation
(3.21)n S DD s D)
is valid for n=m. From this we obtain

* *

al d

Zm~lwm~lrmrm:1m Imzm~1wmw1"

: ~ poarl g v
U’Zk ,nrlw*,m~lrmfm I1m mU Z*,MwlN*, Tis-al =t
whence
0 o
= i A i
m—iwm—lnfm D?mbm—lwm~l’-
Uhgicn 3 Dt DLk g0y W

k£ G
I In ¢ Jeley
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From these relations it follows readily that indeed the formula
(3'19)m define the. unitary operators (3.2U)m. Thus all the operators

wv1 and w*n(lsn§N) are unitary and (3.21)rl is true for all n, 1sngN, -
g ) = 2 .

i Ry » .L"J 4 & ;. At 4 e 5
which means that {Fn}ﬁ~i 15 an A-choice sequence. This finishes the
proof, : ‘ &

It is plain that the operators Pn, Wn andé w*n (1=nsN) yielded

by the preceding argument depend only on Cl’ C?""’Cn (and of
GRUESCe e A, A, L and i, UL ) Therefore we: shall denote +hem by

Fn(cl"“"cn)'-wn(cl""’cn) and W*H(Cl,...,cn). (When a confusion

Seems pPossible we shall explicitate also the dependence on A, T, T*

7 ’
WUl o instance Fn(A; Ty =T S Cl,..o,Cn)-for Pn Shiclelr
Pirsolicis it ioeon 31. For Xob o and s, e 3EI(T’,T),

P»{Fn(cl""’cn)}15n<u

.

establishes an one-to-one correspondence between all the A-cascade

.

strings (if v < =), reppectively sequences (if v=«) . and alj} the

V=1, £f :
A-choice strings (of lenéEBYUzi),respectively sequences (1f w=w),

P r o f£.. The case v=e follows immediately from the case u<w.
Since the case u=2, is a direct conseguence of Lemma 3.1, we
shall ‘assume now that the proposition is wvalid if v=mS2.

e R A = o ol 3 . Pee] i Sk -~ o ,Y,A)_.;C
Let {rn}l<n<m+l be any A-choice string. Then by our assumption

sueh “that

here .exists a unique A-casead strdneg:. {c
tug ; 4 2 GRtc st ning n} 1<n<n

(3‘23)n Fn=Fn(C1, C2""’Cm)

o e o

(Tencn) Therefore, by wirtue of lemmas: 3. and 3.2, the operators

g

Ha=Te o

2 bt pE
M= A s ¢

peg ot e
m-1" }m-leu gl



and

- 2 ; G& see (3.16)J)
Z Zm~l ‘(Cl""’ph»l)° DT g ( L
=1

*
="x = i (O ! Ll s
&5 “x,m-1 24 (Cprest Sl il il
: m-1 ST~ 1
Helll c=oimile a0 g g
: n—-1 l». m-1 mel : Fm~1
Wisll o e (e r LR s
Ed L m~l' m—1

are also uniquelly determined, and I'is a contraction vhile 2 78

W, W, are unitary. Set ting

sk
f3:2¢) F - pigwor Wiz
we obtain a contraction from Q49G0m (o) D *  (see Eell) . (3:92) and
: - “om :

(3.0 X By virtue of Lemma 3.1, there exists a uniquely

detorm:nod contractlon Cm Cﬂ~>G’ Stchs that Cm = C(COW, I'’). Compa-~
Ting (Sodille, A 3alion e (313 ) (in the case n=n) with'(2,6)m'we see

that {C }1<n<r+l disivan A"cgsca(e string,

Comparing (3524 ) »with (3°18)m we finallyvsee‘that (3@21)P is

is surjec-

also valid. Thus we verified that the mapping (3.22)m+l

ive. Sir e las erm s Voo I
tive nce th la t term ln{C }l<n<m+ll necess arily “of. the forn
CI&:.\' (c O1a

injective.

. r’), where: B 'is. given by (3.24), the mapping is also
‘Now the proposition is concluded by induction..

4080 sthidls. saction wel shall associate the CID’s of an &
A éI(T’,T)‘with T, Triand A dsin the'preceding sections, to a more
usual.concept, namely to céntractive analytic functions ( [16] >
Ch.V). As preparation, we shall now .discuss the preceding sections

: ot :
inda vely particular cage, namnely tha?VJ arbltrary eontraction T

fromR to R’(whereR andR’ ar two Hilbert spaces), conalaoLbﬁ as

o]
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intertwining the corresponding null operators OR' ORf, i.e.
e (@ L@ )

€I(0p', Op)
On. ghis purpose;, for the operator OR we shall choose as minimal

isometric dilation VR’ he canonical multiplication shift
VRf(z) =o2if (7] : (lzlza<d)

on ‘ H%R), where R is identified to the space of constant func-
tions in H%R) (*); the minimal isometric dilation VR,of OR’ will
be chosen in the obvious similar way. Since any CID of.F is a con~
.traction intertwining VR and_VR,‘it is-theimultiplication operator
by a contractive analytic function {R,?,,F(z)}<see [1@ AG N
>Sec.3), which obviously must satisfy the condition‘F(O)ﬁF. Since

the. converse fact is also obvicus, we can state the following con~

sequence of our previous reults.

‘L'emm a 4.1. Let T:R=R' be an arbitrary fixed contraction. -

Ihen Propositions 2.2 .and 3.1 with T .= Gy T Op,and A=T €T (T ;T
b T - NS i e %

yield an one-to-one correspondence between all the contractive

By ;
analytic functions {R, R ,F(zj}_suc&vthat r(0)=r and all the T~

choice sequences:

Riesm & r'k 4,1. We recall that within the frame of the prece-

ding discussion, (1.5) and (1.5)’ take the form.

(Lol ifi Frer o

R
RF=(Df+‘V\ R)@Fr=@

R I

and



¢
(4o 1) FF &'{Drr @)VR,T Eiiike R
i 2 / )
RF ={9ﬁ9vn¢.Rf)EZFF:{r@WR’r’: DFr +

* v -
de =0 enl s niheD ey

Liesmem a4 .2 i The formula
““‘“———“

. A ;
(a2 wlE) el 1@ v S aEpdt (i
REAI TpEa
; c g r- bl
defines a unitary operator from DT* to,RF
i Py ool of o ik b obvious, by virtue of (4.1)’ and of the
Ry kS ; p X
relation DFF =T Dr* yEhat (4.2) defines an isometric operator

w(l') frdm Dr* LR

0 7
Moreover, if we are given r’C)Vr’fERr,thnn setting

we obtain rlé Dr*_and~

2

! ’ " “ : } ;
el ke T il ~ =
w(I‘)rl (,F DF r’ + F.r rnyR’(DF*l DF*Fl)
i 4 * . : % *
_—— o " 7 e 7 (O Y=r@®V. " v”
(z DR AT % Drr))@VR,(l Pl D i) @“R e
This finishes_the'proof'of the lemma.
Let now TP m Ac I(T!,T) be some arbitrary contFactions (of

course, together with some fixed minimal isometric dilations

. - 00 .
U 0o S T’).For>an'A~ch01ce sequence {Pn}n_lwe set

S
.'PZ""’Fn) (“Yn’"u(rl)Pn+l
o et oF
(1sn<=)

Since (see Definition )

-~



©

the definition (4.,3)n (l<n<») makes sensc.

L emmea 4.3. The mapping

(4.4) {fn}zzlk"?{rl’{Yn(rl S I111)}n=1}

establishes an one-to-one correspondence Leotween all Awph@lcq

/
0 : i mi g . ; D )
sequences and all pairs formed by a contraction I : Rp"->5A (con <

sidered as belonging to I(0,', Op) ) and a T - ¢h@ice sequence.

@

Bl Fadme i {n " be an A-choice sequen and let {¥}
o et { n}n=l an hoice seq ce i S

be the sequence yielded by (4;3)n (I=n<e=) it daiebvicus thet, by
virtue of Lemma 4.2, we have il e -
(4.5) D =D
n ; r
‘Yn Wizl

(1sn<=) and,lusing aliso (4 51,

(BB o o R 2P s Ty kR
; i : 1 Fl Fl i Fl Pl’

where, as already indicated above, Fl is regarded as beloncing to’

ol (OR" OR); moreover, we have also

_(4.7)n DY =0 (T, ) Dp* w(Fl)’DYaw(ll)=w(Fl) ol

*
n : n+1 n n+1

(lSn<é).

[

From (

)n and (4°7)n’ we infer réadily that

e

N



(4.8) DS =00 D = AR D
a Yn n+l Yn L In+.l

iea conthraction from D ko Wik
3 n Tn

= & E 3 B & e :
{1<n<«). Together with (4.6)],\thls shows that {Yn}nml is a P1"

{1<n<e) . Cbnsequently Vi oy

: o
.choice sequence. 1f we are given now a pair {Fl, {yn}nzl} formed

7

by a cqntraction Tl s RA+RA.(regarded as belongirng to I (ORf,OR) )
and a fl ~ choice séquence{yn};:], then there may exists only one

: E T % 1 o : ' : - 3 .
A-choice sequencetrp}n~l which is mapped by (4.4) onto our given

paik, namely that given by the formula

: e
(4.9)n rn+l = w(Fl)Yn.

It is now easy to infer that if. T (lerKX» ) are actually defi-

% n4l
' , (4.7,
- ned by (4'9)n’ then (4,5)§YﬁﬁaJconsequently (4‘8)n are also satis-

s anr

fiediforsablon=12 - .. ; ebvicusly, it  follocws that{I‘n}nzJ

. A-choice sequence. This concludes the proof.
1

Ve are mnow in .state to-formulate the main result of this sec— .
- tien.To thiesedm Tet D vy o T A e TN 0 (as welll fas U and ) bo

as above. Let A, be a CID of A aﬁd let

y o

bei the dmversesmapping of that given:in - Propesitien 2.2, lekt
(e ) co

'AB ;icn} nzléfrn} n=ild

be the mapping given by Proposition- 3.1, let

o
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that giVen by Lemma 4.3 and finally let

B @ Y i
: 2 o 1 R
AS 2 {rlﬁwn}n:1‘+{LA’RA ,T(z)}

be the inverse mapping of that given by Lemma 4.1.
*Then, the bijectivity property of these mappings yields directly

the following

Plricrpic saiilite: o 4.1, Therpapping " = : :

establishes an one~to-one ‘correspondence between alilvehe CIDIS ©OF

o . g .
aland all the contractive analytic L(RA~,R?) - valued functions.
7 b

Rémark 4.2. The uniqueness theorem for €ID/s given imn [6}
is a direct coxollary of Proposition 4.1 i Indeed sy virtue of sthie

proposition, there exists a unique CID of A, if and only ifithere
3 . . (£
exists only one - contractive analytic function { RA,RA,F(z}}_ Ohvious-
. s o ’

A

ly this happens'if and only if at least one of .the spaces RAor:RP
reéuce ﬁo {O})i.e..(see [16] ,-Ch . VII) tf at least-one of the faoctes
rization A+ T or T.: A is regular.

Let us p;eéént a particular case which might be instructive.
On this purpose, we shall denote by iL,,_the natural isometric‘iﬁen~

fifiqation of L' with the subspace{C} Glfofz)A‘Giﬁ'and,by PL the
: ke

orthogonal projection of K ento

e,

o L) o

-

where the notation is, as usual +hat of Sec.l. Also let us Eimstly
1] . 4 . ‘

give the following
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Lie momia A4, The operators

are injective.

P r Qa@ et i liet PL =100 ERA or;equivdlently r = -Uh

1 for soms
*

hléH and.

B i rap i) = 0

Tt ol Lows

* * : *
L —— — 1’\ e ——
(4 51000T DAThl +(I-T T)hl (55 h =T (T DA)Thl.

Rt = o g i, 2 : 12 m .u i ]
But 0<I DASI implies l[ihlll S!lhlll {r (I.DA)Tul,dll

; 1
= s 2 omy 2 ] 2
=l 1 (I-Dy) " Th,It%s [ ITh 113

whence

1 %‘ -- m "i pab s
(4.1;) (I_DA) _Thl = Ihl and DAThl 0.

From (4.10) it follows

/

I 2 . ) e
Jil (@ T)hlll ( (l.T T)hl,hl)vlo,

whence
(4502 = e = Thl € {{

S Sdmee ¥ 692 ,from (4.11) and (4.12), we infer that r=0.This

proves. thewingectivity of FL !E}, Concerning the injectivity of
: * A 3



-3l o

%*

,l
bioiRa o

with some d€ 70, and secondly that

: : o . :
¢ER we notice firstly that if r’éR, ,i v r’ = 0, then r!/=d@0

, & )
. DPFLGQ (U’-T’)Ah) =0 (h €H)

s * 7
implies DAd =.0, d=0,.thus .i IERA

s also.injeckive s Thus thei demn-
L 3 o

ma is proved.

s Byse Etlne of the preceding lemma and of @6]_, CH I, Secsl we

~ have

dim/R. <6 * = vank D 2= dim[,

S ; ! :
dimR = <6 = rank Depr™ diam ok

Therefore, from Lemma 4.4 and Proposition 4.1, we can now rea-

dily_obtain the following.

Cioir o 1l a r v 4.1, Assumethat, 'within the frame of Propo-.

sition 4.1, we have & *='6.,, =:1. Then eithex the set of all CID'S

of A is a singleton or it is in an one-to-one correspondence (expli=

citely given by A;) with the unit ball of H (i.e. theiset ‘of all

complex-valued.analytic functions u(z) on the unit disk D={z:|zI<£1}
such that lu(z)lsil for all zeD).
.It'is_plaiﬁ that din this corollary, the.first case occurs if
. min (dim RA" dim RA)

(see Remark 4.2), while the second one-if

-

5.1. We shall apply now Proposition 4.1 to the labelling of
~all classes of'isomorphic'Ando dilations. To be more precise, for a

pair {Tl, Tz}df some fixed commuting céntradtions on scme Hilbert

o)
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_exists a unitary operator W from the space K, on which operate U

37
space H;théro always exists (as shown in a celebrate short note by -

Ando.[il )y & palr{U iy } of commutlng 1som9tr1c operatcrs on sore

.Hllbert space K contalnlng H as a (clooed llnear‘ subspace and such

that

L4

1 U 2!H =il ik (nl,n2‘= Ol 2 )

where P denote the orthogonal projection ofK onto f. Obviously we

can and shall also suppose that -

i - i Ny on
(5:2) ko= N gl 2

nl,nzzo 1

Any such pair {Ul, U } W1ll be called an Ando dllatlon of{T

T2 }h
14
Two Ando d ilations {Ul, U2} ,{U1 U }are called isomorphic if there
7 & 3

i
o o 14 X { 7 7 < :
and U2, to tne space K on which operate U1 and 02 such that
5,30 WO o He ' .
(55 ) WUj —ij (3=1,2), WIH= I. . ‘ o
-Let now U on k be' a flxed mlnlmal 1sowetr1c dllatlon of
T = 1. Obv1ously any Ando dilation {U ; U2},1s isomorphic with

some Ando dilation v, U,} operating on .a space K containing ¥

{as-closed linear subspace), andAsuch that

(5:4) . 0o,



N 7 - ; o 2 3 _ 5
Let {U1 ,U;}beanothersuch Ando dilation, isomorphic "by W" to
_ '{Ul,Ui}. Then by‘virtpe,qf (5.3) we have

Wulh = Wl ho= U;Wh =y = u™h

for all héH,n = 0,1,2,..., therefore

(5.5) WH( =»I/c

N

-

By virtue of this discussion, we can and we shall consider from
- now.on only Ando dilations satisfying (5.4). With this convened, we
State the following

3

Lre'm mia 5.1, For T = Tl.and A = T2' the formula

; A i ;
AN 2

(where Py denotes the orthogonal projection of K onto K)establishes:
\ r

an one-to-one correspondence between all classes of isomorphic Ando’

 dilations of;{Ti, T2} and all Eﬁe CID’s of A,

P r.o:0!f. First,we remark that

/
/

*
(5.7) vup KK,
: 3
. o : o i
i.e. that YVreducing U,. This was, for instance, proven in [13] .
For the sake of completeness let us sketch the proof. On this purpo-

se we infer easily from (5.1) and (5.2) that
5 Mo Q‘ ) o %

o

(5.8) eU; = TUBI= TP LB =



Y30 o
from the first relation (5.8) it follows that
T % * :
(5.0 UL HH= my =

1

whence, for h€f,

il
o

* s 5
- (T h 1fin
n
U,U'h =

1 n-—1

U heif n-

1,2,0005

so that, since these U"h’s span K}5.7) is true. We conclude thus

that

L Pi/ °

5:510). Py, ol
SOl B e Dy

Now the fact that for a given{ Ui,Uz} the formula (5.6) defines
a CID A of ‘A" can be easily obtained from (5.10) and the second re-
: i r e :
- lation (5.8) . :Moreover if {Ul ,.Uz} is another Ando dilation of
that '

-. L ik v 17 - 17 . A b
e Pkuzlk— PKWQLJh = PKUZIA.= A, \

Thus we can conclude that. (5 6) defines a mapplng from the clas-
 ses of lsomO”pth Ando dllatlons of {T,, T } to thP set - of the CID’s
of A, Let-now A be a CID of A. Let U2 on K be a minimal dilaticn of
2‘1. Since U 1s an isometric operator comru.tlng to A it has a unlqu;:
CID (as operator shigiil commutlng with Uo,namely consider in Remark
4.2 the case when A is isometric and observe that in this ‘particular
case we have RA={Oﬂ,vwhich we shall denote by Ul. The pair {u,, ﬁz}
'is an Ando dilation of {Tl, Tz}.sétisfying the property (5.6). In=.

deed,»(5.6) is satisfied by the very definition of U2, whiﬁe

o



n n n n =hn n
sl 2 1 i ) : 1 2
e Iy Ui bui . P 00 =
U e i ;
pnhn, AN W o, nen
=PU 1 A ZPV/—T lPA 2P[/— l;& = PP[/zT lA ZP= s
i A
n
ooy

for all nl, n, = Oesa D
Moreover, since U is lsometrlc, it follows dlrect1y that

'UilK = U, whence -

N N S
s 2 ngiie 2= 7 Uy Uk 2= o Py Uk ) o+
n=0 25 n=0 , N2nzn=0 “ 3
-l 2 N oy
S u? Aukﬁ)=x (am mqu, Wl ot
0<n<msN . N2n2m>0 ; 0<n<msN !
Uk, A& N s (A Tk, T iy (i, ;
: . N2n>m20 : . 0<nzm<N i
A A e x : Pl (15 i
g S (s ATk :
N2n>m>0 S O=pemany - ' :
e
2y 2
' = s g
n=0 2

o
i

for all kl; Koreoosky, N=0,1,... 'I_‘hereforeU1 is indeed isometric.

Finally , the fact that the relation (5.2) is also satisfied,_ o

foi;ows from

U

n,, nZZQ 2 n220 2 nlzo 1
T n n

LAV Tl Y In N\ A4 , ;

20002 n 20 Veisk n,20 U, K=K

because U and U, are minimal isometric dilations of T(=Tl) and A,
respectlvely.
It remalns to prove that the mapping ylelaea by (5.6), is one-

to-one. But thlS follows at once from the pPreceding constructlon,

{
Lersdince if

(o]



v A
PKU2IK~=‘PKU2|K'(=A)

’ ’ : - v
for two Ando dilations {Ul, U2},{U1, U2} ,the isometries U2 and U2

- 5 A .
are actually minimal isometric dilations of A, thus isomorphic, say

by the unitary operator W.But then

2 ny - my o
WU1U2 k = WUZ Uk =10 5 WUk = Uzr Uk = L1U2 k —»UIW U2 k
n, : .
for all the elements U2 kiflo el Dot 04,1,2,4..):Since these ele~

ments span the-Space on which operate U, and Uy, we 1nfer that. (5% 3)
is valid (of course in the spe01al case satisfying (5,5) ), thus

Gy, U,} and ,zU

1 yz}are isomorphic.

P rioupiois Hitiiloon 50, Lot {T;, T,} be a pair of commuting

contractioens on H and.let, for:i = 1; J=2s0r i= 2,'j =1,

- ; -

=1 ‘m. : .
(STIO) R_ij ‘DTi@DTj)@{DTi Tjh &) DTj h . helll

There exlsts an one-to-one. (expllc1te) corrbsgondence between all

classes oifi 1somor0h1c Ando dllatlons of{ Tl' T } and all the contrac

ftlve analytlc L(Rzl' Rlé) - valued functions.’

P ropof. We sct' T = 'I'l and A ='T T5. By virtue .of Lemma 5l

and Proposition 4.1. we have an exp11c1te one—-to-one correspondence

from the classes of isomorphic Ando dilations of,{Tl, T2} and all

7

contractlve analytic functlons{R RA,'B(Z)} oY by virtue of [15],

Ch 11, Sec.l, there exists a unitary (canonical) Identification

Aw:DTh+(U-T)h, of_DT=DT with' L. Thus 9 =‘%DT

: ?Jidentifies'
il

3 { ; i L
. D'Tz @ DTl to DTZ @ L and takes R21 onto RA ,W%lle 91 IDTz@ 0
5 3 - 7
identifies 0, @ U to 0T @ L and takes R,, =0 @0.  S{D. h +
<2 24 T2 Tl T2

+;DT1T2h :Iléd} onto R , i . ¢



il

‘Denoting ¢ the unitary operator from”vq, GmT
G 2 i

to 'DTl @DT2 Wthh‘
intertwines the coordinates, .we chtain by

Ble) it BilmlnL IR D L (2] <1),

~ the mapping yielding the one=-to-one correspondence between the set
v 7
of all contractive analytic function{RA, R

A
of the form{Rzl, 212, A(z)} . Plainly this-concludes the proof.

B(z)} and that of thecse
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'FOOTNOTES ~

For the terminology and partly for notations, which are essen-
tially those of [6 igl ., [6] , see the next Seetion 1%

Hilbert spaces will be considered complex and their subspaces,'
if not specified, will be assumed to be linear and closed.

Operators will always be assumed to_be-linear and bounded; also
when confusion might occur the.identity operator I and the null
operator 0 on a Hilbert space G~will be denote by I, and O, >

respectively.

Recall that for any operator C fr¢m a Hilbert space G to another’
one G DC denotes the defect‘operator'( (I—C*C)Z)L‘I and D¢="

= (BEGIF s e Miekst then obviously D

=_(1—c*c)¥

JFor the Hardy spaces.Hz(?), where R is a Hilbert space,see(ﬁé} ,

Ch.V.



