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LINEAR PREDICTOR FOR STATIONARY PROCESSES

IN COMPLETE CORRELATED ACTIONS

by

ION SUCIU and ILIE VALUSESCU

1, Intreoduction

A

In this paéer we shall continue the study of prediction
theory of a statioﬁary process, considered as time evolution in
a chrelated action which was began in [4] . As in the precedent
© paper, wé shall follow the line of Wiener and Masani prediction -
schema for (firite) multivariate stationary process {71 , [81 .
The notion of completion of a  correlated action, which ve
.shall-intreduce ;n section 2, will permite us:-to give a precise
meaniég to the predictible part of tﬁe process and consequently
to formulate mofe pfecisely the prediction problems ([section 3)-.
Since some results from [4 ] aretused here in a slightly different
context, we prefere to outl*ne theilr proof In . section 4. under ’
the suplimentary condltlon of boundedncss on the spectra1 distri-
but;on of the process, 51mllar to Wiener-Masani boundedness con-
ditiqn [8] ; we shallndetermine the predictible part of .the process
by means of a linear (infinite) Wiener filter.: The solutien .cf pre-
dlCtlon problems are Ulven in tClmS of Tay1or coefficients of ma11~
mal outer functicn which factorwzes the spectral dlStrlbUtlon of: the

process (seef3] ) ._



The reader will notice that we permanently us=d the ideas
from the Sz.-Nagy and C.Foias model for contraction 161 to give an
operator ‘or functional model for prediction based on an operator

valued positive definite map (on the integers) which corresponds to

~an infinite variate (discrete) stationary process.

2. Complete correlated actions

0

" The notion of correlated action was introduced in [4] a

the triplet {62 %ﬁ,/’} ; where & is a Hilbert space (the space of
o - : s b n } ~‘ % il Y - <]
the parameters), }&a.rlghb ag(&) - module (the: state: spacel, and

map
e }CX%—*Z&'E) is an Z,(E)—valued\‘v/(the correlation) with the pro-

perties:

it blze DIbAl-e > hog
(i) Eil L 1o CTA AT
(111)  F[Zah: 2 59] = A gD
Y : hY LTS
- Let— now 8, ¥ be two Hilbert spaces and 3’&=>CC8, KD
Putting fof ACX(EDY and V€ X(E,5) : .

""”f”“"""""‘ T e b e s RV = VA

a

where VA is the usual composition of operators, then ¥ becanes

right Z(&)-nodule. If we consider [ defined by

o P T

then obvious [' satisfies the properties (i) and (ii). For (¥ii) we

have

: 2 I\ A :
: ,*1[ ’2{'_‘-,:;;'.\/{) :Z_ 65\2/3-?]: (Z \/1 //1.) (E“__\)(/J Bj) =

. : X‘ % 5 = -
STV S R T,
Ll) 7 l.”' 5

18 the following

F
o]

Ience {éf'BC,f’g is a correlated action.'In fact,

Proposition shows, any correlated acticn can be embesedded into one



ofthis Bype.

PROPOSITION 1. Let $&,% , " § - be a correlated action. There

; 7 Ao ¥ . s v 2
exist a Hilbert Space-’j< and an algebraic vmb-edding h —+ V. of the

right L (€)-module M, into the right X(E,}nmdxﬂe L CE, Wywithi the

propexties

‘ .
(2.2) PERALT= V. hihoe B

~ ~ -
{2.3): The elements of the form X = Vha s when a.e § and
(ahy :

hed span .a dense subspace in K. . :

dding is uniaue up to g umitary eguivalence.

N

Proof. The proof follows the. construction of the Aronszajn re-

producing kernel Hilkert space [1], [27].. Let A =ExH, ana de
. (o, h)

~ the complex valued function defined on Naby

.

a,hy

(2.4 ) . Y/ €6 9= ('r*zg,ﬂja',b‘)g :

On the linear span of these functions we define the form

> A : o o L |
<JZY(%,&,;B ,;.X}qk)39> %(ﬁgk,ﬁ“a,, k}f. _

For a;,...,a €C chcose a € & and AJ.EZ(E) such that A.a=a..

>

<2,

f > PEd fda a Y-
b X‘(a‘-“&,) > z‘ yrak,gk> > %,(- ( o F) J]a_uagég_

A e 0 B e e |
. ' CRSea et - i

Jk

(T %”K%K,élﬁsf‘s]@,f);o |

Thus = 0o a iidlengul idpear seni=pogitive. definiiter fomris: 1



Hilbert space X is obtained in the usual way from this form.

For any .n e?ﬁ we define

(2:5) Vo = X’ e £
@, h) '

Using (2.5) and (2.4) ve have

1o =

= [/z = Cﬁ[ﬁ,ﬁ]a—,a) < ,7,'7[£)ﬂ]//,//a//3
X;L&) ¢ _

therefore Vo L CE Ky

For any h,", h, e 3 we have

1

0

(R Ty =< Sl

- <_’v£c§,\/f‘*ia> = (%{*%La, ~é )@ _ ~

%
Hence

Fid43-%"Y

25

and the property (2.2) is verified. The property (253)=dt results
from the construction of the Hilbhert space X.

: L : ’ = : 7 5
T f-h ~-—->V}'1 is an other embe.dding of ¢ into XCE,'&()WhJ_Ch

verifies (2.2) and (2.3), then setting

/

X! ==X
X\/ha \ha

we obtain an unitary operator X:X’— X such that

e o
T

The proof of the Proposition-~is finished.
_ The Hilbert space &, uniquely attached ‘to the correlated
tion PEH 1]

: : = * 2
of the correlated action {(S A /"7,
) D

o}
v}

n Proposition 1, is called the measuring space

e pEpe S e < S e FEOBE e Al
We say that the correlated action i E)é{,))“a is a complete
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X
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t
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'corr@] ed pelkien, 1 the map h M’H ©f %Uuo X(b )

RIS el oL
Recall that a I —stationary (discre

pen
. 1
action {6 ffc F} is a seqguence ‘{}? ?} f element s qn aé such that

F[f {') I depends onlv of the difference m—n and not en m ard n

t) prcuess in the correlated

- separately.
: e

For a ['-statinnary process {f ZJ -, ‘Weslisesthe following
e S

otation

WP (et |4 Ak 5 Aue KCeD)

%
g it "
W . Y e
oo —O ,‘fK
Remark that we also have . :

s : ; \ -
We say that the I' ~stationary processes {fmg and

— c0

e
O

Rl

are staticnary cross-correlated if [l f«.%,m] depends only of
s )

the difference m-n.

PROPOSITION 2. For any ["-stationery process [f §™" there

M

exists an unitary operator Uf on fj(i such, t

(2.6) Voo =RV -

is stationarv cross-correlated

The.  [=stationary pJ”O(‘eN‘ ;C} ﬁ

‘fm A s k)
t H)IX gff  there existés an unitary or‘rxr Tione 0] > T
X & ,

Hh

with

Ayﬁ 'J(*JZ \/N/?



~Such- that
- P = £
up = Uy wf, a0 y-Uglud

. : . £
Proof. Setting on the generators.of 5

U,\p o = Ve @ 7
clearly we cbtain an unitary operator on 5<“, as. in Proposition.

e 3 + 2 i :
et f ‘ and {j be “statienary . crosc—correlated .pro-
M J _eo MY _ o < § =

cesses, and U,. , U _ be as above. Then if we put
[ T -~

A (o

(2.7) Ueilv, a+ Vi) =V_ a¥iv (b

then we have

-

= | X{a . ;— i jm)

ok e

nH

<X}a:f - 0(e§ ) X;ai’) X.Cég )>

A‘= (F[fm f,,m}a; a)*—(i"fﬁm 3'“]6 b>+2QQ(FIf“,3MHJb oV

--(rifm,f“] ;_,a_)f([*zjmgm] e +z'P\L(.F[¥M3m1 L)

: : = Z
e R :://-\é‘nﬂ.‘/“\/j-méﬂ.

It results that (2.7) defines an unitary operator Ufg on ﬁ(j? which
extends ‘both U. and Ug . b

* The unitary operator Ue isvcalled: the shift operatqr attached

. s X
to the ['-stationary process{fﬁﬁ and l&j the extenced shift of

: ; g Sy i » i) 2> =
the stationary cross-correlated processes {; i and { 3 %
g % an



"Let us remark that from

X

(256) it results:
A

g -

Y gTye
where V., = V

In What followe . we use the following notation

, i : o 0y ;
(2.8) K =g e g Ko

ol

: : ~ 49 ; J San .
The I'-stationary process {SM : s white noise

progess, proyided f1LjM’j;A=O for n#¥m.

a A : : ‘9
: We say that the process {ﬁnﬁ containes the white.ncise
TR e e '
process {jmg-OQ if:

(1) {jg{“ is statidnary cross—~correla!
oy 4

: Fffa\,gm} b N s
(1) VE< et

:.(iii_) o Re [’[fﬂ—jﬂ, 9 o

£ = e
The iﬂ =S atlonary orocoss {f’% is called deterministic
(44 5

if it contains no

non-zero wnlte noise proce

(62}

9.
A , 3
We say that the F—stationary process {f’%* iz called a
[gl .
oo .
a whit noise i + comtaims
e noise {§ 377 E N
- fi
{j andc t}<4 :
473 ——D

moving average of a

THEOREI

o

1. (Wold decomposition in time domain)
; + 0
tionary srocess {-Dﬁ

g ] ke her  Boshas

I ac Klt an unique decomposition of the form
n 4 — e : e x :

(s}

.(/“'10) ; :l?%: v‘“_* \J‘“

. «0
uhche {u,l*w is a moving average of a white noise %% 5
) oo : i LS

- &0

s




; s ' +e0 % reel : i 3
contained in {f % i _ﬂ;% -ois a determinigtic process; and
- - Mmoo —

Fia. ]=o0 for any n, m. The white noise ij %4“° is the maximal
My Yar ~n o

: . S R e :
white noise process contained in {f %
n

—ed

=

Proof. Using the émb&adding He-eVg of #oe inltoii@e b ) and

(2.6) we can consider

e s )
-0
By the Wold decomposition of the isometric operator 1& on J{+ we
have
(2.:11) ' 3<+= MFreR
where : A .
! . o "
= P e R El U e
£ Moy, M= @uls and R-01UM,
Let P be the orthogonal projection of 5<+ onto .P1+(§7)
and P.  be the orthogonal projection of X, on the wandering sub-
- M % n m
o ) oty — = s 3 =T
spagce £ . It e put fu = UF P\/;g . lf,’“-l{tCI P)'\/’ﬁ and j»« e ?f\/;}: ;

then (2.10) is obvious' and we have

N

s e e

Ue P(AP)‘\;; — 0

<

Because

| i _ ik
-V RLE R e

i . +-e : B o ;
i1t results that {j 5 is a white noise process. The fﬂ—statlonary
", = .

o0

whife moise process ‘}jsz ' (s Comtaimed in {M“r_ Jndeed we have :
-0 -

(1) §3 ﬁ*m is stationary cross-correlated with s e s ona
M e - &

RN T

forim = o

(14) VGE - LVEc PViEe ey

(sid) . BIRC 9 9 g BEw, g g SIS

(o]



sileeam a0
,\/%f P?}_/:t s

Since we clearly have

S

(2:128 e e el

: ; ' $o0 L
it follows that the process {HM is a moving average of the
% —_—e 5 - 3
o : +ao
white noise process {j
: Gn ot St

: : : . : Feoi =
Let. us see that the white nolse ﬂ_j H is also contained
—
E 2 2 +AO
in the I’ -staticnary process 1f %

(i) For any-a€¢ and m'> n -wWe-have

(F[:}?m,ﬁ ]a a) ( * ‘PW\/FGL a,> (@ '{’ia
.We have also:

' e
(25 T RV,E < X,

TRy S R 1] f"fﬁm, M] P 2t

-+
tuu
l}
Q

; i : f-o0
ence the white noise {j %

4- @0
is contained-in %ﬁ :
20
: [opkeRss, 1 1o e . A U j I )
Let Ji % he an other white noise process containec in \f;
" ) & x B :
13 - ; it 2R 5 e o 13
‘We ‘shall see that {j % is. contained 1in {j % too. Firstly we
= M0 e a J . o0 ?
see that : '
(2-14)

\g,icf.

Indeed, remarking that the extended shift L§j.==ﬁ¥ . for seny
' - we hawe -
aza'“'e 8 RS 1AV

(o G ) -

= ( F[f.,) 3;”] (0% am)'; o

"because’ §~j/ Q HeSLT 1g contalined in if §+o° . Therefore
L QA R o) ¥ S acy
Ve vl e



From (2.14) it results that for m > n we have
— . * ,m'_% e
Flg.. 9.1 =% Bl sG=0.

Because

gl said- Clan sh 1P igh g/ PN ai v ~ gl gl ]

- ,\/1;*\64,— /"[j:,j;] - mf,,g;]— [1glgl T 9 gl

itiresults: (by the fact that {jﬂj"m

Rerpﬂjm" j%)§%12@ . TTence {54\7}_"‘, is contained in {j '73*‘“ bl.en

M J _ o

is:contained in {f 377 )i that

-—

{3 )\+‘° is the paximal white noise contained in {.fha =

+ 0 o 3 ; Qe 5 -
let {{ % be a white noise contained in {J' i saThen
— &0 Mo

wWe have

It follows thét SIQMl)i: anﬂ i‘fm?f: are cross—correlated and
[fM,Q [=o.
The fact that VS = ':K‘e is obvious, and
Re[’[f L fyor Pl filere PLUO P 750
———Therefore the white noise' {B,,,;’“’" is contained in .H-) 257"” ,-and by
. the maximal J.+y oF{j% in {fl‘ it resu lts that {e ZJ'“Q is contained

. in {3,\423_*: . ‘We have then
fEg L1-V"Py v a0

Hence

ML 1= Re 19, 0 T-Re M50, 0.7 <o

“ . > o
which irmplies ln =00,

jﬁ we comsider

(2:.13) e : o



: ' o ' b9 4o : -
an other decomposition of the form (2.10) and {1*M% : is a moving
—_— T

ot

: o ] 2 ; gl a9
average of the white noise { l% contained in {f 3t ~then, by
m? —o0 - e

: : e ' : 7 : : S
the maximality of %j 4 it follows that {8’ 177 is contained in

%~j % tete D Horice \§,€<:23<?==f11653 . Moreover Vg,€<:”§7. Indeed,
m - o e T i

"
b
Ay
oy

LV/Q’) I{Fﬂ Vf.a’“> = (V*UMHV;Q”)CL“)=(—F[fo)3iﬁ—ja>a%)=o
.~ = - &

~and VQEE: is orthogonal on I&_b{f ek \g,ﬁ < £,

" ¥From (2.13) we have

(25 159 » ‘ 'Vf = Vu! 2 Vv’
and
(2,16) %i—: G e
Let us denote by \%?z j?cjéng “and Z C& ?Xf' : ghen-it'
4 / at 7 Iy

is ebyious. that .{Z g*“’ is a white noise process contained in
J M J_ 0 :

S0
'; f and because:
"M

Mq.&‘, ‘7!1—'\1,

(i_) (F[vz ]aa> ( U AN aq> (P CLUF Ve

=

G 5(_:" ‘-.( by the f;cf that GE 1 K[ amd @46))

isy Rel'[v-g .7 1= Re F'[vj,zmj - le o

e TN —x.)'w = ‘k'-. 3 —,*\/_-x- V_-—_
MR R B S

4
; S +o .
it xesulberthat: tho wnltc noise:process {i’ % jswicontained. in
. = - O o

LA o
i

: e : :
the deterministic process %\ﬁhz. : i.e. a4,%0. Therefore 5%;?105

/ 7,
: c e 2 12 e
and consequently N/ & = £ . Hence we obktain that . 4 = Sed o L)
S & - gtb o on »

S
j(v e - end by (.15, (2.16)-it fellows that -V 5 = PV .00 We



The proof of the theorem is finished.

4 poo i . : ,
The process iﬁ 1 the innovation ‘part:of the process
Foo ' g7
{f?Y and it is called the innovation-process associated with{}mﬁ
WM I o = s

3. Prediction problems

Ict lf E o bea f‘~stationary process in the complete
» Mgl :
correlated action {ﬁi Bﬁ f’% . Denote by

o

?3.1)' LK = hhe 1(_’4= At ,A.eX(EDY

K

0

~ where Ak are finitely non-zero operators. Following Wiener and

, : =9
Masani [7} we call %ﬂa the presentsandivast of the process{iaﬁ
- w0
_aﬂd interpret it as tne total 1nfor1atlon obtained acting on the
process up to the preéent.moment (o —=19).
To predict the process at'the next moment (t ='1) means to
obtain the best information about f] in terms of the elements in ct..

The following proposition will precisize thls

_ 3 : 4 » .
PROPOSITION 3. Let {f €4 be a ['-stationarv process and
n — =

‘ k*“ be the maximal white noise contained in it. Setting
M

= . A g
(3.2) fo=af e,

- we have

T
=~
e
v,
"

e e A - ‘ = -
» ) o —-f = “'f i - d e = e
(3.3) Rl e e s e ehos e
) 63&0 .
where the infimum is taken in the set of the positive operators in%ﬁ;

-

" For em’ a € E vie have &



- . “wry 3
: A A (& :
D P N (
(Bl ( P['% .‘M;?q TqJO“DO"/I”'LM'P 2o \F££-7£K]0\3',CT.K>
L T j‘)Ksa {
"where the infimum is taken over.all finite sisters IRy in

6 and a5 = a.
Proof: (See:[4]). For any eec £ we have

A A

gt b e =, 5 50 .0) = (% Tveas o) -1 af®

, il ,0 = . i i v}(“ff ] 2
= w\ﬁ {\‘\/ia- R = ind )i\y%a + 20 D'f Vo fl =
R 38 Ay renes O § - .

i 2 :r K i
o #,4=0
E - ;
= ffV\’P Z \ P{.?.E :ia-s‘}afk\
gEgine i &
ah..-)qme E
Qo A

thius = (3.4) =is oroveJ

et now h = E Z\1 ;? 4 he an arbitrary elumnt 111% e EOT

any a 6{: setting Ka: Aya we obtaln \ :
(F’HD ﬁ,n . ]a a} (I");f Z /’1,4 95&;_2.’4514—5']0‘16‘“)’
gl &
M4

R
N
]

7 (P ,,ﬁ_jil a) }:(F[ j Jaa) = 2o (B daa
OF 6

. j>k=_17
From (3:.4) it ‘res uth that

= i o : :
= £ - £. =h o rasl)
s I_'{l g fl} < FlEis . § o

-

5 e ;o o s !
Let A be a positive operator inA (€) such that Ffor any hedf,

aaale n fl——h]

"Eer.ony a & g and Ay seees A (& 8} we choose by epZ (_@B



‘such that Aka = A o Then, e obtain

(he0d < (P12, AL, 6 gaf Ja,a)= ZCPLHJ@J,Q)

)3"

. : : A A
Using again (3.4) it resulto that & £ F'L i fl—fl].

By this proposition we see that if in some way we can deter-

s : : e
mine fl » then it contains the ltest information we can extract acting

. on the process up to the moment t=0 ° ahout fl . ‘This Jjustifics s

A

¢ o ) 3 LI ‘-. - 9 il _(:__/..\ '.:__f:
to call f, the predictible part of £, and AlED = PiLl B it 11]

the prediction-error operator.

Now we can formulate more precisely the prediction problemns
in the following manner:
(1) To determine a sequence of finite Operators (Al ,...,Am)(m)

-
a|

A
s strongly in;i(E:ﬂC) tolfy.

=
quf that A, tend
(© s e
K
(2) To compute the prediction-error operator A[f ] .

As in the] iiener-XKolmogorov theory of prediction what is

supposed to be known is the correlation function

Tan- rl[fm+n s 11] - | : 4 -W;;_uf SR

It is clear that F(n) is an)((&) -valuead positive definite function
on; the .group of lntOGGrs. Using Naimark dllatlon thoorpm, ve can

represent ['(n) on the form

: LT _
T = g e i

Goran & o
Whiere™ P 15" an XJ8)~vq]ue‘ semi-spectral ne easure on the unidimensiona!

didibdies

torus, so called spectral
o et r3’£ o wieretn i bhe = ral measure of
& verify thote T \aa,\@’ Elr: wheweiE i e spectral measure of

the unitary operator

iy A&
-~
3
(g
i
.
Ty
-~
vl
i
=2
v}
2
i
)
Yy
o
'
s
1
Q
L
O
pust
=)
)
=4y
=
.
-
~4
=
=)
o
v
=
=
~
=]
~

= = Ty : S . N - Sone = -
confusion arrise we denote it by {&, v, £]. In [3] we attached e



to any ;:(E)—valued semi-spectral measure I an onter D »boundédcma%ﬁc

function {8,32 ()(R)} which is maximal with the property that

its semi-spectral measure Fo verifies ﬁgé F. (See for details 13]).
[3]) and [4] we alse proved that
. LT,
: » b tCHi-g DT
(Aif1a,o)= il 2. fe e
s a°=a,>a‘,--.lq1$ C) K:i-.-. o O
= EATH
o
: 10 K- 1_) T
- Wi{) S blE Fa, o) =
"95*“’ < :

= ( @y @le> e, a )

he spectral distribution of the moving average

o Y ) ° g
part {MM?J":” of fn’lﬁ,ca' e al;o have . 0<NIFl< 0y, Alf

oo : Sl i S Sy @S, s
HIEST {f S is deterministic [k[r]-«[‘(?; Jo5f gf 05 is white
i = > ) :
-— -
noise pTOCPbS ALEl Al: for any wiiite noise process-iwlz
- - i 3
dined i i £ e o o- £1 = . G %. o ; 1
c_ontalncc in 4 *Tl?],.oa and AIf] = Als]) if v(jn]}__o.a is the maximal
i g e : 4 o0
white noise process contained in & “%

Concerning the first part of prediction problems, to ceter-
mine the predictible part £ of f. , it.is rather difficult one.

= 1 o

= : A = o : .
From the formulas e raayii=0 o gy = 0 fomgamy b

m

1

anc

r‘ [91‘ ' gﬂ, - inf ril ' fl'h}

we can interpret fl = fl+g1 like on.orthogonal ~“i") ﬂecomposition

of f, with respect £o %@0 . From this it results @ Lanc of closness

f_ﬂ
vy

N
of f] to %ﬁo, but the problem to describe this closness by .an

aproximation procedure seeis to be very complicate. However, unee

c\,\s,ﬁ);v.ﬁyz

some supplementary boundedness condition on the spectral ders1tty T,

similar to that imposed by Wiener and Masani in the matrix valued
: o dhae) : A
case L ] we. shall determine, in the next section, I, as & VI
> ol ¢

g D35 5 Rk Gl . . - &
(in strong sense) cf an infinite serles oL elements from ggé,



4. Linear predicter

The supplementary boundedness ‘condition on F is the following:

Zthere ‘existeia copstant ¢ >0 :such that

(4.1) 1 1 -1
,ﬁ‘cdtéF$2ﬂT c dt‘

We shall begin with the following

PROPOEITICN 4. Let F be an X(E)----valuex’:‘ semi-spectral mreasure

nT, {£,# ®] be its maximal outer function, and G= @y &0y,

Then E verifies the concition (4.1) if and only if {€ & K&CA3}

—J
{\

is a bounded analyt c function whizh hes a bounded analvtic inverse,
Y Y

F@ =F i, dimgz dim F and there exists anicentifieation of {E F @LA)}

(EGY 2 ] ) ARy i A\ > ~ . S (= 2 - N e
with an invertible bounded analytic function {_(,)E,C{’)(A‘)i sucnthat

(4.2) &D(O) = gl/2

Proot. Tet {8 & CP(»,)} be an identification for -\6 ?@(MS

"as in Proposition and {E’EJ}Z'CA)ZL be: itsinverse. Then ‘there exis+t

the Fatou limits @(elt) and gf(elt)' and

4.3 ar-an =g %(eitf&qmeitm; -
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