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INTRODUCTION

The.aim of this paper is to e#tend to the case of

‘cocycle representations the main results of the Auslander -
Kostant - Pukanszky theory on unitary representations cf solv;-
ble Lie groups. Essentially, their results provide complete
answers to the following fundamental problems: ({(a) the chafacte~
rization of type I - ness; (b) the parametriiation of the unita-
ry dual of a type I group; (c) the parametrization of the pri-
mitive ideal space of the group C* - algebra (which seems to be
the appropriate "dual object" for a non-type I group)..The an-
swers to all these questioﬁs are given in terms of the coadjoint

action of the group on the dual vector space of its Lie algebra.

We have found that the ideas developed by these authors
can be used also in the treatment of a - representations (a
being a 2 - cccycle) and the above mentioned problems get simi-
lar answers which this time involve; instead of the coadjoint
action, an affine action éf the group on éhe dual space of its
Lie algebra, defined by o, which we call the "o ~ coadjoint ac-
-tion". Specifically, we prove thaﬁ if S is a connected and simply
connected solvable Lie group with Lie algebra 4 and o is an‘
analytic 2 - cocycle on S, then: (1) (S,a) is of type I {i.e.
any facter .a - representation of S is of .type I) if and only if
all the orbits of the o - coadjoint action are locally closed
in 4* and rational (Theorem 3.4.1); (2) if (S,a) is .of type I
then its a --dual (s,a)  (i.e. the set of all equivalence clas-

ses of irreductible o - representations of S) is parametrized



by the orbits of S acting in a natural way on the space i )
of all pairs (s,n) with s € 4™ and n an & - character on the
"reduced stabilizer" of S at s (Theorem 3.4.2 (ii)); (3) the
space Prim C*(S,a) of al primitive ideals in the C* - algebra
associated to (S,a) is parametrized by the orbits of an equiva-

lence relation Pa on Ba(é*) (Theorem 3.4.3.){

‘As one can see, besides the feplacement of the_coadjoint
action by the a - coadjoint action, the only difference between
our results (1), (2), (3) and the original results of Auslander -
Kostant [1, Theorems V.3.2, V.3.3.]and Pukanszky [7, Theorem 1}
consists in the fact that in our characterization of type I -
ness the rationality condition and not the integrality one plays
the essential r8le; the reason is that, the o - co;djoint action
being no more linear buﬁ affine, the rationality of all orbits'
does not automatically imply their integrality (that this pheno-
menon really occurs, is showed in 3.5 by an example). A more sub—
tle difference, having the same source, appears in tﬁe e#plicit
construction of the irreducible a - representations (Theorem
3.4.2 (i)). Namely, the lack of the integrality property prevents
us from applying the Auslander - Kostant procedure for construc-
ting irreducible representations. Fortunately, this point can be
handled by using the extension of the Auslander - Kostant con-

struction which we gave in [5].

Some words about the organization of the material in this
paper are now in order. In §1 we recall briefly the constructioh
of unitary representations of a solvable Lie group, along the
lines of the Auslander - Kostant method, as developed in (5] 90

motivate the content of §2, let us record that if G is the central



extension of S by R associated to o, the a - representations of
S are in a one—to-one'correspandence with the unitary represen-
tations of G whose restriction to the central subgroup R is a
multiple of the character t eZwit. Thus, our investigation of
the cocycle representations appears to be a special case of the’
study of the unitary representations of a connected and simply
connected solvable Lié group G whose restriction to a connected,
closed, centfal subgroup Z is a multiple 05361ven character'k.
This more genéral setting is approached in §2, where we give a
"relativized" version of the Auslander - Kostant - Pukanszky

theory. Using this, we derive in §3 the main results in this pa-

per which were already mentioned above.

- Finally we mention that for an exponential Lie group S,
the parametrization of (S,a)* in terms of the a - coadjoint ac-

tion was previously obtained by T.Sund {9].



§1 .

Throughout this section we shall denote by G a connected
and simply connected sclvable Jiie group with Lie algebra g. We
fix also a closed, connected, central subgrodp Z of G and a uni-
tary character A on Z. Further we denote by 2 the Lie algebra of y
Z and by ¢ thé linear functional on z satisfying di =‘2nb€’ ..
Clearly, N = Z.[G, G] is a closed, connected and nilpotent sub-

group of G with Lie algebra n = z + [g, g].

By g* (resp. n*, .z*). we mean the dual vector space of g
(resp. n, z), while gz (resp. "2) stands for the linear variety
of all g ¢ g* (resp. f € n*) such that glz = £ (resp. £z =4).
The group G'acts_on g (fesp. n) via the adjecint representation,
and henée by duality on g* (resp. n*) via what is called the
coadjoint representation, leaving gz (resp. nz) invariant. We
shall write Ad(a) (resp. Ad*(a)) for the linear tranéforﬁation
on g (resp. g”) corresponding to a € G.

The set of all unitary representations of G will be de-
ﬁoted Rep (G), the subset of the factor representations by Fac
(G) and the subset of the irreducible representations by Irr (G).
The collection of all normal représentations (fbr the definition
see [8, p.81]) is denoted by Facn (G). Further Rep, (G) stands
for the set of those m € Rep (G) such that 7|Z is a multiple of
A, and we put also Fac, (G) = Fac (G) N Rep, (G), Facn, (G) = Facn
(G) N Rep, (G) and-Irrk(G) = Irr (G) N Rep, (G) . Finally, é (resp.
8A) denotes the éet of all quasi-equivalence clases in Fac (G)

[ab

(resp. G ) the subset consisting of
norm

N
(resp. FacA(G)), Gnorm



the quasi-equivalence classes in Facn (G) (resp. Faan(G)), and
G (resp. ék) the set of all equivalence classes in Irr (G) (resp.

Irr, (G)).

1.1. Let g € g%, G(g) be the isotropy svbgroup of G at
g with respect tot the coadjoint action, g (g) be its Lie algebra,
Xg = Ad*(G) .g be the prbit ofvg under G, and vg ge the G-inva-
riant 2 - form on Xg induced by.the‘z - cocycle -dg on g. There
exists a ﬁnique character Xg on the identity component G(g), of
' G(g) such that'dxg = 2mi.g|g(g); its kernel Qg is a normal sub-
group of G(g). The set of all subgroups I' of G(g) containing
G(g)0 is denoted by Sf{g). For T E.S(g), F# is the inverse image
in- Clg)-of the centralizer of F/Qg in G(g)/Qg. Further we define
A(g) as being the subset of all T € S(g) with T C-F#, while
Amax(g) consists of those I' €S(g) satisfying T = rt . By»{S,
Lemma 1.2], T € A(g) if and only if there exists a unitary cha-

racter.y of I such that x}G(g)o = X the set of all such cha-

Ao
racters of I' is denoted by T,

g;

Now let £ = gln, M = G(f) be the isotropy subgroup of G
acting on n*, m = g(f) be the Lie algebra of M, and m = g{n. De- -
noting by X¢ the unique charécter of the connected and simply
connected subgroup N(f) = N (1 G(f) whose differential is 2ﬂi.f1
k), and by Qf the identity component of Ker Xgr We observe
that Q¢ is normal in M, hence in the identity component M, of M,
and that MO/Qf is a ceconnected, éimply connected, nilpotent Lie
group. The functional m € m* vanishes on G = ker (£}n(f) and
hence becomes a functional on the Lie algebra m/qf of Mo/Qf, gi-~

ving rise according to the Kirillov theory toc an irreducible



unitary representation of<Mo/Qf; its pull-back to M, will be

denoted po(m).

Let R(g) (resp. F(g), I(g)) denote the set of all uni-
tary (resp. factor, irreducible) representations o of G(g) such
that olG(g)° is a multiple of Xg' One may associate to uny
o € R(g) a representation m (o) of G. This construction, due to
Auslander and Kostant [1] and based -on the Mackey little group

method, will be briefly recorded here (after [4], [5], [10])..

One forhs first the representation o @)po(m) 6f the di-
rect produét G(g) X M, and one observes that it factorizes
through a representation (a @)po(m))' of the stabilizer Mg =
= G(g)M, of p,(m) in M (which acts naturally on M ). One consi-
ders next thé representation T{(0) of M induced by (¢ ® po(m))-
and one lifts it to a representation 1(0)” of the semi-direct
product MX N, Now, by forming the tensor product T(Uf“.@>v(f),
where v (f) stands for the canonical extension (see-[l, Proposi-
tion: TLL 2.2+ andsuTheorem T1T¢3::1])  to MX, N of the irreduci-
ble répresentation p(f) of N associated via the Kirillov construc-
tion to £ € n*, one get a representation of Mx, N which can be
dropped down to a representation (t(0)” @ v(f))~ of K = MN; note
that K is the stabilizer of p(f) in G acting onAﬁ, and that this
last representation when restrictéd to N is a multiple of p(f).

Finally, one defines m(o) as being the representation of G indu-

ced by (t(0)Y @ v(£))".

l.1.1. Remark, An important feature of this construction,
which is a consequence of the Mackey theory, is that the commu-

ting rings of the representations ¢ and 7 (o) are algebraically

isomorphic,



1.1.2. Remark. Another feature, which we state here for
later use, is that 7 (o) € RepA(G) if and only if.g.& gg. Indeed,
it is easy to see that 7 (o) |2 is a multiple of o}%, which in

turn is a multiple of xg{Z. But xg]Z = A if and only if glz = £.

1.2, There is a simpie'way for obtaining represeptations
in R(g) for a given g € g*, by in@ucing characters from various
I' € A(g) to G(g). Indeed, if T € A(g) and ¥ ¢ ?i then the repre-
sentation o(g,X) of G(g) induced by x is obviously in R(g). The
corresponding representation m{o(g,x)) of G will be denoted, more
simply, m(g,X) . We recall after [5] that m(g,x) is a factor re-

presentation if and only if F## =

'y a type I factor représenta-
tion - if -and only . if F#/P is finite, and is an irreducible repre-
sentation if and only if I = F#. In addition, 7 (g,x) can be de=:

scribed in terms of holomorphic induction, as follows.

Let h be a positive, n - admisible polarization at g (for
these definitions, see [1], [4]), let d = h Mg, and let D, be
the analytic subgroup corresponding to d. Then D = D,I' is closed
and there exists a unigue éharacter Xp on D which extends ) and
has the differential 2mi.g|d. Let us denote by K(G,D) the spacé
6f all continous functions y: G - C, with compact support modulo

D, satisfying
V(ad) = A ()b @ -"v(a) , a€G, deD,

where AG and Aﬁ are the modular functions on G and D respectively.
There exists a positive G - invariant linear functional wr»‘fé/D
v(a) dé, which is unique up to a multiplicative constant. Consider

now the space of all c” - functions 9:G = C, with compact support

modulo D, which verify:
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Il

(1) 9lad) = 8,(d) "8, 7" x @) "9(a), ae€q, denb;

(TL)ax #ope= (e DE (x) ~ 208 < g,x:20e o, k& ks
where

: d ) a :
((x+iy) *¢) (@) = — ¢ (a exptx)]|,_. + i = ¢ (a expty)| ., _
dt = dt il

for -xtiv e gc,and Tr (x) stands for the trace of the operator on
gc/h + h induced by ad x, with x € h. Since for any function ¢
satisfying (i), the function on G aw |g(a)|? belongs to K(G,D),

it makes sense to put

. 2 »
llo 11 =§G/Dlw(a)i da ,

and we let H(g,x, h) denote the completion of this space of
functions with respect to the above norm. One defines finally

the holomorphically induced representation'b(g, X, h) as being
the representation of G by left translations on the Hilbert space

H(gr Xopiilt) s

According to [5, Lemma 2.2], w(g,x) and plg, X, h) are
unitarily equivalent; their equiéalence class will be denoted

o dgign)

1.3. Fix now £ € rn* and let gg denote the linear variety
of all g ¢ g* with gln = f, Assume that for anyvg & gg the orbit
Xy is locally closed in g*. If = € Fac(G) and T|N is carried by
the orbit G.p(f) in N, then using [10, 4.1] cne can see that the
construction involving Mackey'’s machinery described in E.L ean
be reversed and provides an element g € gg and a representation
o € F(g) such that m(g, x) is unitarily equivalent to m. For our
purposes, the following result, based on this remark, will be

especially useful. Before stating it let us introduce one more



definition: an orbit Xg in g”* will be called rational if the

cohomology class [vg] € Hz(xg, R) is rational.

1.3.1., LEMMA, Assume that any orbit ch: gg is locally
be
closed and rational, and let 7 € Irr{(G)“~such that T]N is carried

max (9

by the orbit G.p(f) in N, Then there exists g e g%; I € A
'A' 3 E
and x € I' such that 7 is unitarily equivalent to mlasind

Proof. By what we have said above, it suffices to prove

that if g € gE, then each ¢ ¢ I1(g) is equivalent to a représeﬁ-

A

tation of G(g) induced by a character X ¢ I for some I' € A (g}

max

(g) . As it is known [6, p.465], the

Consider an arbitrary I' € A
_ max

rationality of the cohomology class [vg] amounts to the finitude
of the index of G(g)# in G(g). Since G(g)# is clearly contained
in I', T must be of finite index in G(g) toé. It follows that the
abelian normal subgroup I‘/Qg is regularly embedded in G(g)/Qg.-
Furthermore, since T € Amax(g), the stabilizer of any ¥ el?tin

G(g) acting on T is T itself. Therefore, the Mackey machinery

works and leads us to the desired conclusion.
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§2

Besides the notations already fixed in §1, we heed a few
others which we are going to introduce now, ‘

First we denote by B(g*) the set of all paifs p = (g, X)
with g e g” aﬁd X € é?;;# and by B(gg) the subset of B(g*) con-
sisting qf thpse pairs p = (g, x). with g e gE « The ‘group G acts
in an abvious way on B(g*), leaving B(gE) invariant.

Next, we write @ for the Ad-algebraic hull of G, i.e.
the smallest algébraic group of automorphisms of g containing
Ad(G), and we note that & acts naturally on g (resé. n) and hence
by duality on g* (resp. n*) and leaves gE (resp. né) inveriant,

Finally, we denote by JA the two-sided ideal in C*(G)
which is the intersection of all kernels in C*(G) of the repre-
sentations of G whose restriction to 2 is a multiple'of ﬁhe cﬁa~
racter A,.and we put C*(Gll) = C*(G)/JA. There is a natural bi-
jection between RepA(G) and the set oflall non-degenerate repre-

sentations of C*(G|X). We shall say that G is of type I (mod A)

if all representations in RepA(G) are of type I, or equivalently

C*(G|X) is a type I C* - algebra.

2.,1. To prove our results in this section, we need the
following lemmas, which are-slightly modified versions of Propo-

sition and Lemme on p.5 in [2].

2adine 1oy LEMMA. Let m be an irrecducible representation of

&
G whose restriction to N is carried by the orbit G.p(f), where




sillo

£ € n*. The following assertions are equivalent:

(1) . 7n is normal;

n
(i1) if g € g* and g|n e G.f, then Xg is locally closed

and rational,

2.1.2, LEMMA, Assume that f e n* satisfies condition

(ii) above., Then any. factor representatlon of G whose restric-

tion tc N is carried by P p(f) is of type I,

2.1.3. LEMMA. The restriction to N of a normal irredu-

cible representation of G is carried by a transitive quasi-or-

bit;

These claimes can be proved exactly as in [2 locielt: ]
after noticing that all Pukanszky’s results used there are also

valid when L = [g, G] is replaced by N.

2.2. We are now in a position to prove the main results

of this section.

2.2.1., THEOREM, G is of type I (mod A) if and only if,

for any g ¢ gg, xg is locally closed and rational,

Proof. Assume G of type I (mod A). Then C*(le) is a
typé T @ algebra, hence any T e Irr (G) is normal. Now let
g gz sl 2E Amax(g) and yx ¢ F By [5 Theorem 2.1 (3)] and
Remark 1.1.2, w(g, x) € IrrA(G), therefo;e it is normal. Using
now Lemma 2,1.1,, we gét that X, is localiy closed andrrational.

To prove the converse assertion, let:n'e& FacA(G). As it
is known, its restriction to N is carried by some orbit G.p (f)

in ﬁ, with £ € n;. By our hypothesis and Lemma 2.1.2, it follows

that 7 is of type I.
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2.2.2. THEOREM. Assume G of type I (mod A). (i) Let

T A
p= (g, x) e 8(32), I e Amax(g) ands let w' el " beran extension

of X (which surely exists by [5, Lemma 1.2 (ii)]). Then the equi-

valence class of irreducible representations p(g, x’) depends .

only upon p, and will be dernotad accordingly & (p).

(ii) The assignment p = £(p) induces a bijection of 8(g£)/G

-~
-~

on to~G .,
4Proof; The firét claiﬁ can be checked by arguing as in
5 aual |
Now let 7 ¢ Irr, (G); it is normal,‘hence\by Lemma 2‘1‘3f
its restriction to N is carried by an orbit G.p(f). Thus, we are

in a position to apply Lemma 1.3.1 which ensures us that there
#e
exist g € gf c gE, re Amax(g} and ' &'T such that

T 1s equivalent to w(g, x’). Putting y = x’lG(g)# and p = (¢,X),

- we see that 7 is in the class £(p) . This proves the surjectivity

-~ '

Of E_: . B(ge*) . G ° ' "
Now let p = (g, Xx) € B(g;) and a ¢ G. Recall that a.p =

= (ad*(a)g, x%), where x3(c) = x(a~ 'ca) for c ¢ G(Ad*(a)g)# =

7~

F-?‘(;‘v(~3)1'%ét“1 . Let T € Am (g) and x’ € T be an extension of ¥,

ax
Then T = ara™ " e Amax (Ad*(a)g) and x'% ¢ ;2 extends %2, In
view of [5, 3.1], milg, %) is equivalent to ﬂ(adv(a)g, x'a),
which means thét Elap) = £(p). Conversel?, 1 &(p1) = £{p,) with
Py =gy xi) € B(g;) (i = 1,2), then after choosing Pi < Amax '
(g3) and x; € Fi which extend X3 (i =1,2), whe obtain two equi-
valent representations ﬁ(gi; x;) and 7m(g,,X,) . Again by [5,'100,
cit.], there exists a € G such that 9y = Bdilal sanand i LB 0 Fi:

= X;alF1IW Fi, But this clearly implies p1 = a.pz.
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2.3. We close this section by rephrasing in our context
the main results of Pukanszky in [7] and [8].

The equivalence relation on B(g*) introduced by Pukanszky
in [6, ch.II] will be denoted here by P; as it is easily seen,

B(gé) s left invariant by P. Given 0 € B(g*)/P one forms as in
@
0
duy(p) . The kernel of p(0) in C*(G) will be denoted J(0) and the

[6 , loc.cit.] the normal factor representation o) = "[~ pip)

quasi-equivalence class of w(0) by z(0).

2.3.1. Remark. The map J : B(g*)/P = Prim C*(G), which
according to [7, Theorem 1] is a bijection, establishes a bijec-
tion between B(gg)/P and Prim C*(G|A) tco, this latter -space
being view‘és the subspace of Prim C* (G) consisting of all primi-
tive ideals which contain Jy e -

Indeed, if 0 € B(g)) then m(0) |2 = jg’ m(p) |2 Auy(p) is a
multiple of A since every 7 (p)|Z is so; therefore J(0) D Jy e
Conservely, assume that J(0) D Jy+ Since J(0) = Ker 7(p} for any
pe 0 [7, p.93], n(p) |2 will be a multiple of A, hence PeBE,) -

Thus 0cA8(g).

2.3.2, Remark. In a similar way one checks that the map

G- & BlgE) P> Gnorm , which by [8, Theorem 3] is bijective, esta-

A

blishes a bijection between B(g;)/P and Enorm.
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§3

From now on we shall denote by S a connected and simply con-
nected solvable Lie gfoup, and by 4 its Lie algebra.
3.1. For the convenience of the reader we shall record here
some known facts about 2-cocycles on a Lie group.
Let a € ZZ(S,T) be a Borel 2—éocycle on S with values in
the circleigroup T, and. .let
i% pa
L=t n - LSl RIS s SRS
be the corresponding group extension: precisely, S = T x S with
the multiplication rule (t1,é1) (tz,a2) = (titzalas,az), ai.aa),
ia(t) = (t, e), pa(t,a) = a, It is known that there exists a well-
determined Lie group structure on s® such that 1% and pa are Lie
homomorphisms, Moreover, when a is analytic, the analytic structure
on s% is exactly the product 'structure of T and §.
Vi o ; : a e
Now let S denote the universal covering group.of S, q 8 =
; I :
- 5% be the canonical projection, and E“:s“ - S defined as Ba=paoqa.
A little computation, involving the homotopy exact sequence of the
: o, Vo, Vil ] : .
fibre bundle p :5 =S shows that Ker (p) is a connected and simply
connected Lie group. Moreover, q|Ker (ga):Ker (ga)+T'is a covering

homomorphism, hence Ker (5“) is isomorphic'to R. We shall choose an

identification between them such that the restriction of qa to R=Ker

2"} 3 g
(pa) becomes tr- e2w1t. We get thus the commuting diagram:
0 > R F2S —>S5 > e
i | g% -
e21r1. waq L_
3 > T P ) =25 > e

According to & classical result of Malcev [3], there exists an"cross-
. Yo " " ; iy
section ¢:5+S", Then a:S x S - R, a(a,b) = d(a)o(b)o(ab) is-an ana-

lytic 2-cocycle on S and the extensions

e

0 —»R ~-—-‘—'—“"S&f —fl~és ——— @
¢ =

0 > R SRR BT B e

are. isomorphic. It follews ‘that 8 & 2°(8,T) given by R(a,b) =

"
wieila b)) . ; !
82 Haita) is an analytic 2~cocycle eguivalent to a.
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As usually, by an a - representation of S we mean a
Borel map p of«S into the unitary group of a separable Hilbert
space which satisfies the law p(a)p(b) = d(a,b)p(ab) and p(e) =
= Id. Our aim in this section being the study of a - representa-
tiohs of S and beariﬁg in mind the fact that equivalent coycles
give rise ko equivalent representation theories, by what we said
above, there will be no loss of generality in assuming from the
.beginning that «.€ 27 (8, T is of the form a(a,b) =‘e2"i &.(a,b)
it e DR Rl s

The cocycle a & Zz(s, T) with the above propefty‘being'
fixed from now on, we shall denote S& by G, and pg by p; further
we denote by 0 : S - G the canonical cross-section o (a) = (0,a).
Since G, when viewed as an analytic manifold, is precisely R x S,
the Lie algebra g of G can be (and will be) identified to R x 4.

Then, the bracket operation on g = R x 4 isief the form

[(t1,X1), (t2, Xz)] = (wa(le X‘l)r [X11 Xz]),

with v, & Z%(s, R). A direct computation gives the following

formula expressing Wy in terms of a:
é 2

n A ]
wa(x’y) = (e (exp sy, exp tx) - alexp tx, exp SY))|t=s=o

asdt

3.2. We maintain the above notation. In particular, g =
= R x 4 as vector spaces, which enables us to identify g* to

R x 4, Given s € 4" we shall denote by g(s) the functional (1,s)cC

Since R is central in g, the coadjoint action of G on g*
factorizes through an actioﬁvé on g which, in addition, preser-
ves the hyperplanes of the from {t} x 4* in g* and induces on

each of them an affine action of S, depending upon t € R, Actually,
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we are interested only in the action of S on {1} x 4* which we

shall view as an affine action on 4%, via the affine bijection

*

s+—> g(s). This action, which will be called the a =~ coadjoint

action of S and will be denoted Ad; » is given explicitely by the
fornula

*

ad"(o,a)g(s) = g(ad;(a)s), ae€s, s€s”,

The isotropy subgroup of 5 at s € 4* with respect to this
action is denoted Sa(S)' It isnot difficult to check that jts

Lie algebra A&(s) coincides with the set of those x € 8 such that

wa(x,y) = <s,[x,y]> for all y € 4., Clearly, Glgis)) p_1(Sa(s)) =

il

R x S (s), Glg(s)), = p” (S (s),) =R x S (s), and pihgie)); =

(dp)"1(4q(s)) = R x Aa(s). The orbit through s ¢ 4* under the

a = coadjoint action of § will be denoted YS; it possesses a ca-~
.nonical symplectic structure which is given by the unique Ad&(s)—
invariant 2 - form 92 , induced by the 2 - cocycle W, + dision 5
When the cohomology class.[vg] S HZ(YS » R) is rational, Y_ will

be called a rational orbit,

Now given s € 4* we define By & Bglhel e by n_ (e) i
=5 ' in 1.1, T
Xg(s)(o,c), where Xg(s) has the same meaning as in 1.1 hen

n. is an a - character of Sa(s)O ;o that ds ns(a)ns(b) = a(a,b) .

S
ns(ab), its differential at eeSa(s)o is given by (dns)e (x) =
2T iept s Dl hare ba(s), and the relationship between 75 and

Xg(s) is expressed by the formula: Xg(s) (t, a) = ezﬂltn (a).,

s
(t,a) € G(g(s)),. For later use it is worth mentioning that, as
in the case of ordinary characters, an a - character on a connec-
ted Lie group is uniquely determined by its differential at the

unit element.

Let Sa(s) denote.the set uf all sﬁbgroup % of Sa(s) con-
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taining Sa(s)o‘ For I € S%(s) we define Z# as being the set of

all a € S (s) such that afa,b)a(a™', b~ ")a(ab, a“’b'“)q§aba“b“‘)=

il ez thailb; b Y) ifer all b & L. iClearly, 4E 5 e $%(s), p (Bl

= R x Z is an element of S(g(s)) which we denote by T(Z) and

# #

THE)" s B B et eiis bk 2P e ety particular

rt € $%(s). Define now A% (s) (resp. Agax(s)) to be the subset of

s¥(s) consisting of all I such that I CLZ# (resp. z = A
: e

viously, I e A%(s) (resp.‘Amay(s)) 1f and enly df T(Z) E;A(g(s))

) ° Ob"

: A
(resp. Amax(g(s)). Given I € $%(s) we let % be the set of all
o = characters of I which extend Ngi then 2 ds nonvoid if and

- S5 B
ondy. df L erAvils) . Bor n.£ L, we define Xiln) & ABE) . by aeln)ile o)
a eznitn(a).

3.3. We intend now to adapt the pfocedure of holomorphic
induction (see 1.2) in order to obtain a - representations of §
starting with functionals s € s* and o - characters on subgroups
in Aa(s). To this end we need first an adequate notion of polari-
zation, |

We shall say.that a Lie subalgebra k of A is an a - po-
ardzationsat.s & 4% df: (1) k is & maximally isotropic subspace -
of 56 for the bilinear alterhating form iy ds; (2) kR + E is a
Lig subalgebra of dai (3) ik:-is, Ad S, (s)-invariant. When k N
[5, 5]Cis‘a maximally isotropic subspace of [4, A]C , relative to
the restriction of w, + ds to [s, A]C + B will be called admisi-
ble. When —i(wa + ds)(x,i) > 0 for any x & k, k'will be called
positive,

Since the pull-back'to G 0F w, * ds coincides with dg(s),
it follows easily that k is an (admisible, resp.positive) o - po-

larization of 4 at s if and only if h(k) = (dp)” " (k) (= R x k) is
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ans = admisible, resp. positivé) polarization of g at g(s),
where n = R + [g, g]. This remark and the-known facts concerning
the polarizations ensure the existence of admisible, positive
o - polarizations at‘any s € &%,
We fix now an s £ 47, a positive, admissible o - polari-
Ay

zation kiat.is, f subgroup I & A%(s) and an o - character n € I.
e the

Let e = kN 4, E ~analytic.subgroup of S corresponding to e, and
B= Eoz; Cleanly D, = p"‘(Eo)i= R x E,) is the analytic subgroup
corresponding to d = h(k) /A g, and D = p~ ' (E) (=R « E).coincideé
with DOF(Z). Tt follows that E is closed and there exists a unique
o —scharacter Np on E which extends n and has the differential |
[l = 2nis|e. Consider the space of all C® - functions g¢:5:~ C,
with compact support modulo E, which verify:

(1) olae)=Ag(e) *ag(e) *n (e) 'a(a,elo(a), a €S, e €E;

(id) (X*w)(a)=(x*a(a,?)(e)—2ﬂi<s,x>+1/2 Tr(x))e(a), x € k;
(111) floll® = fg g lo(@)|2aa < =
where the_symbols *.5Pr and §S/E have the same meaniﬁg als ainialisi2;
with G, D .replaced by S, E. We let Ha(s, n, k) denote the comple-
tion of the space of functions considered above, and then we de-
fine pa(s, n, k) as being the o - representation of S on Hd(s,n,k)

given by the formula:

(pu(sy, n, R)(a)g) (b) = afasaT WleaE b, ta bie. S

3,3.1., LEMMA, Let s, £, n and k be as above and let
: sy .
g=g(s), T =T(£) x=x()&T and h = h(k). Then p, (s, n, k)

and p(g, X, h) e o are unitarily equivalent o - represengations

of S,

Proof. For ¢ & H, (s, n, k) define T¢ € H(g, %, h) by
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(To) (t,a) = e~2nit@

(a) . Then T:H(s, n, k) = Hig, x, h) is an
isomorphism of Hilbert spaces which intertwines pa(s, n, k) and
il (o P 1) [ B

Owing to‘this lemma we may extend to the case of cocycle

represcntations Theorem 2.1 in [5].

e
3.3.2. THEOREM, Let s € 4*, £€A%(s) and ne I,

(1) The equivalence class of the a - representaﬁion,

pa(s, n, k) does not depend on the choice of a positive, admis-

sible a - polarization k at s; accordingly, it will be denoted

in the sequel pa(s,n).

i

(2)i p siynd; s primary if and only if 2" = L; when this

is so, p,(s,n) is of type I if and only if I'/I is finite.

s i

_ i ‘ ; . a
(@) pa(s,n) is ;rreduCLble if and Oanwlf ZwéiAmax(°)’

when this is so, pu(s,n) is nermal if and enly if Y, is locally

closed in 4% and rational.

¢
(4) Let 2’ € A%(s) be such that £ C &’ and let n’ € L’

be an extension of n. Then.

®
' apuils, n'.%)dv,
(Z'/x)

Da(Sm) = f a

where v stands for the pull back to I’ of the character v of the

abelian group Z’/Z, and dv is the Haar measure on the character

group (Z//Z) .

3.4, We are going to transfer now the results in §2 teo
the context of cocycle representations. To this end, a few pre-
liminary comments are in order. First we note that the rdle of
the central subgroup Z of G is played by R, and the character A

(resp. the functional £) is explicitely given: X (t) = eZKlt
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(resp. <4,t> = t). Next we observe that C*(G|A) is just C*(S,a)
and the map m - 7o ¢ establishes a bijection of RepA(G) onto the
set Rep(S,a) of all a - representations of S; this bijection
preserves the factoriality, the type, the normality, the irredu-
cibility of representations and also the relations.of ejuivalence
and quasi-equivalence. |
Now let EZié*) be the set of all pairs g = (s,n) with t

‘s € 4" and n e Sa(s)#. Thejgroup S aets on BY LS by (a,(s,n))A»

*

(Ada

(a)s,na), where n?(b) = afa,a” " afa”?,b)a(a” 'b,a)n(a” ‘ba),
be;sa(Adé(s))#. Clearly the assignment q = (s,n) = p(qg)g(s),x(n))
establishes a bijection Of‘Ba(A*) onto B(gz), which induces a
bijection between the orbit spaces B%(4*) /s and B(gZ)/G. By trans-
porting the equivalence relation P on B(gz) via the above bijec-
tion, we get an equivalence relation P® on B%(s*). of course,

o

P~ can be introduced independently of P, but we see no special

reason for carrying out this point here.

Remark also that (dp)*: 4* = g%, the transposed map.of
the projection dp: g = 4, induces for each s € 4" an isomorphism
of symplectic spaces Eetween (Ys, vz) and_(Xg(S), vg(s)) (in par-
ticalar YS is rational if and,only 53 Xg(s) is ;ational), and‘ —
that Ys is locally closed in 4* if and only if Xg(s) is locally
closed in g*. |

Finally let us note that a class ¥ Ba(b*)/Pa may be
identified, via the bijection between B* (5*) and B(gz), to a
class 0 é_B(gz). Thus, by imitating the construction in [6, ch.II],
one may form the direct integral pa(Oa) = fja pa(q)dpoa(q), where
u is the pull back of the measure Mo the quasi-equivalence

o
class of pa(Oa) will be denoted by ca(Oa) and its kernel in
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c*(s,a) by Ja(Oa). As a matter of fact_pa(oa) = p(0)oo, hence

Lo (0% (resp. J (0%)) corresponds to g (0) (resp. J(0)) through

the natural bljectlon between (S, a)norm (resp. Prim C*(S,a)) and
~
G orm (resp. Prim C el .

The above remarl:s and the results in §2 enable. us to

state the main results of this paper.

.3.4.1, THEOREM. (S,a)-is of type I if and only if, for

any si@ 8, ¥ is locally closed and rational.

3;4.2. THEOREM, Assume (S,0) of type I,

’AV
(i) Let g = (s n) e B (A ) = A (s) qu.n'é I be an

P e B T — vM»v-r ity

Ol o character extandlng n. Then the equ1valenc9 class cof drre=

Aty A e A B AN AT

ducible o - representatlona p (s n ) dependq only upon 4, and

LA SN

will bewdenabed aF?9r§}991Y,€a§9?'

(ii) The assignment g+ aa(q) induces a bijection of

B2 ) /8 onte (G 0) T .

3.4.3. THEOREM. The,maps J B (A )/P = Prim C "(S,0) and

S e WA Y

o LY e ~ s 2 .
Ca :B(s7)/ P (S (1) norm na,r‘%m}?} Jeqt}‘l‘z»\e_’

3.5. In this closing section we shall exhibit the example

promised in the introduction.

Let S be the connected and simply connected Lie group
6 e
with Lie algebra 4 = I Rei, the only non-vanishing brackts bet-
i=1 ;
ween the e;’s being: [e1, es] = 2me, [ez, e ] = -2me, , [es,eql=

B ARTE [e“, esl = -27me,. Consider now w € ZAlbE R). w(ei,ej)
= NP B, S 4K 5 S 6, and chepse pi€3tis, T) . of the

536
form a(a,b) = ezﬁl (&, b) with O € z° (5, R} analgtic, such that

Qo P

w = w . Denote by £ F4 0 v fe) the basisiof 4% dual to.ley..«reeibs
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By a direct computation one checks that, for s = tyfist, cattefe @d™
Syle)= Su(s)#(=8a(s)o) if tq = tzsgr ts = ty = 0 and is isomor-
phie to Zi .otherwise, On the other hand, since the central ex-
tension g of 4 corresponding to w is isomorphic to Dixmier'’s

Lie algebra, all the orbits if ‘the o - coadjoing aqtion are local-.

ly closed. It follows that (S,a) is type I, although only "few"

orbits are dntegral.,
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