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ON THE IRREDUCIBLE DISINTEGRATION OF THE REPRESENTATIONS
OF C* - ALGEBRAS

by Silviu Teleman

In 'a: greviogs paper we have proved an irreducible disintegration theorem for
the representations of Cx- algebras (see [13‘1 , theorem 3.1). We recall that in [_133 .
e 2 %X & &
we associated to any cyclic representation i A -—%-ffi,l«i) of the C - algebra & in
the complex Hilbert space H, a measure space (P, A, {5 ), where {3 is a positive, O -addi-
ilve measure, such that (3 (P)=1, defined on a & - algebra A of subsets of the set P. Also,
l b
we ccmstructed an integrable field {(H..P),?é o) T }Of Hilbert spaces and a field (‘Ti.?f)‘?é °
of irreducible representations ¥ ¢ & QX{HP\, p € P, such that there exists an isometric
v
isomorphism '
D
Vo — S W, 4
| H o Ap
P
of H on the direct T - integral of the field of Hilbert spaces, such that if x & H and

(§?§ € (%), then, for any < € 7 . we have {W@(C)?}) € V(T(c)n) ik
? S R

Iweey= It = XP W (e)§, Wy LAY,

The space (P, A, [3 )} and the fields (H

-

peP per

p)p ep (VP§?cP,as we have constructed

them in [133 , depend on the representation W ; also, some of the representations 'ﬁf?

13

" can be degenerated. By analogy with the case of the representations of commutative Cj‘—
algebras (see the Gelfand - Naimark theorem, [101 £ cha1v; §17. 4) it is desirable to

obtain a decomposition theory as canonical as possible.

-

it ‘
In what follows, for any C - algebra "g, we shall construct a measurable space

(P,’ A), a tield (Hp)p c D of Hilbert spaces, a field ('(T,? )p cP

cible representations T : ‘@ -— fi,P\ (}4 @, and a vector subspace f; CT R e

of non-degenerated irredu-

such that for any cyclic representation T : %A f(H) there exists a measure /2 , defined
on A, positive, finite, and such that the L2 - cdmpletion (" of the space f‘o has the pro-
perties stated in the above mentioned theorem. As an apblication we shall give a new genera-
lization to the continuity theorem of P. Lévy, as well as a generalization to tile general case
of the theorem of S. Bochner (~¢e theonewm 2 Lelos),

1. Let . : 8 —{(H) be a cyclic representation of the CX— algebra %, and

let X, € H, I XO\\ =1, be a cylcic vector . Let 'é. C ('ﬂ(%))' be a maximal Abelian von



*

Neumann subalgebra and J3 the CX— algebra generated by } and TW(¥) . Then we have
e RC 35’ and ﬁjzg :
Let F (B) be the convex, T(R; R) - compact set of the states of H and
E(g)=1f€ @ {20, tfuct], _
Obviously, EO( €) is aconvex, 0(%*; %) -compact set and we have
ex E(B)=P(B), ex B (g)=P(g) U o},
where P (), respactively P (%) are the sets of the pure states ovf‘th.e CX- algebra 3, res-
pectively ¥ (see ES] : ég 2.5.5.). We define the state fo € E® by fo (b} =
- (bxol xo), b ¢ JA. The comstriction W: 4 —» P induces an affine mapping T*: E(3)> E(®)
given by w*({) = {,oT(', R . Obviously , w¥ is (T(BR); (%™ @) -

continuous. Let ol be the central measure associatéd to fo & E{R) (see t151 , théoréme
21l a5y

Proposition 1, The direct image (T*) (« ) of the measure o« is an orthogonal
: % : .

la 5 Ve
measure on Eo (%), which represents T (fO).

Proof. a) The measure ( %° ) (aof ) represents T{‘*(—Q)) . Indeed, for any
< *

£ C (@ let us denote by A 9(_6) the continuous, affine function, defined on EO(‘Z‘Z) by

@ _
A XY= feey, fe BgCEW
and by }\%UZ,-) let us denote the analogous c‘ontinuous, affine function, defined on E('SS‘))
s 5 J
for any b ¢ J¥ . We have
—
)%CC—) ol = >\J£ (Tle)) e 4

)
and this implies that

(v*uoz)(\_)x%(cn = ML NG ed e W) = ol (A, (TleyYim
= { (Tlery = w43V ey eely

the assertion is proved.

b) Let us now remark that the representation w may be identified with

‘ the Gelfand-Naimark - Segal representation associated to the state a. = TE o &6‘) of the °
C’E - algebra % . Let Kiz s Lw((w*)*(o()) —» (T (¢ )3‘ be the associated mapping (see
['111 , lemma 3). We have to prove that K@ is a homomorphism of x* - algebras (see Cll} :
theorem f). ;

Indeed, for any (o ¢ '{jo(_(_'w*)ﬂ (o{)\) , and any L 6,€ ‘@ Wi

)

have ;

(K@ men ot mee) )2 [ @ tel ey dTamy, ()] =
E,(€) ‘



= L@ (ehe N £ Glad (e Y =
i G2

= oL (LQom™ VWP, (€7¢)0T™)) = o2 (LK oT™)( P (T LT CON) =

( Ko (g ey mie) 2, \Tled %),

and this proves that we have

S
N % (i = e g
() K%WM%WW Do & LGERTY Laliic
From () we infer that the operator ¥ is a homomorphism of x - algebras;
consequently, (Tr‘\ {«) is an orthogonal measure (see EH:} theorem 7). The'propo—

sition is proved.
Remark. From formula (¢) and from the fact that inr K = ’Jﬂlz §r we infer that

im \(%C, 5, ;

PI‘OpOSlthD 2 WEERERY Y ¢ Pl w4 O\; ,

Proof. a) Let pe P(RA)and Zg;é: H‘B be the cyclic vector associated to the pure
state p. Let fn be the pure state defined on "rr‘ ( R) by the formula

-& ("iT ey = Kr\g 5,,‘)) = ‘ig(fr\)) Ge R

Eor any z2¢ ? we have T (2—; Y= {P(%’z—h , and, consequently, fcr any element
H
k- € B of the form P :

i

b= i" 5 Tlatye 2
=4

where E.Le'é and c.\_e‘é , 1=0,1,2, -, n, we have

L) = 27@(»;\0‘ eTEN(EINe TR 3 Y

=1
S BRI e TG+ Bl ) A e (Mom)I(C )+ CA
o P M., " M

It follows that we have the inclusion

(TT,P(S'@) U’f* )C‘@)-&QLH&P,

becaunse the sum fror the right-hand member is closed in the norm topology (see ’{?l 5

On the other hand, since the opposed inclusion is obviously true, we have the



equality
(1) T AR =(T - TIE) C A .
b i Ry
b) It follows that ‘T\’,PCIT(_Q;')} is a two-sided ideal of ’TT,P(’J%) , closed
for the norm topology; from proposition 2.11.7, from [_‘33 , we infer that there exists a
decomposition
(2) ‘ ’(‘ = Vi = JI‘ N
p B %

where £ and f;)-’ are positive linear forms on W’\’(ﬁ>’ such that

i / . /
14, = 4 LT (TLEN

and
it 5 -
LM T (WG =1,
1% e g
Since f.p is pure, from (2) we infer that there exists a number A& ‘:CP, i) - such
that \ ' :
/ i el . e
=7 = (A=n \/ =,
'g%« y ’Cxo ( T
- We infer that we have
A=hNE N = Wi, VT (LG )
and

. (4=2) \\4%'\1&? ('ﬂf(% i =10,

Consequently, KN # O => A=A ; it follows that

N=0 = $HoT =0
and

NHEO => W peTh=1
With formula (1), the proposition -is now an immediate consequence.

Let & (B)= {Se BBy, WEL WY\ «;,A_\ . Obviously, E_(%) isa

convex subset of E(R). Let us denote Pl(%}z PR 0 El{jg) and PO(C%, = { p € P(R);

poT = 'O\r. From proposition 2 we infer that we have

LD aRlB) =0  R(BIUDPE —Fen)

We obviously have that fo ¢ L (R).



S

Proposition 3. There exists a convex set Q« ¢ E,‘(’B)) which is BRaire measu-

rable in E(B) and has the properties that fo & Ql and OC(QI) =le
Proof. Let 4 U‘L\\"exbe an approximative unit in & . Then (see U3l ., pro-
position 2.1.5.) we havg

im { (TU)) =43

L
it follows that for anyn € N}f there exists an in & I, such that

e A= < focmlng )Y,
By induction, we can find a sequence Qfé ) of indices from I, such that j1 =i, and
MNE : =

{ % . *
b Eie it we N

It follows ihat 'T\'(\A,i N, £) and, consequently, we have
w Wi{

e e, AT chN\\ = 'RISUTQUL;AW)) < D AT CY P &

wd
Let (9 = lim /\:P;CT(\MA y) . Then (q : £ (RY>[01] is a Baire measurable, affine

w-b oo
function, and we have

2) S Lq&oa E

BN
Let Q, = §LeE@y; (gy=41% . From @) it follows that x(Q )= 1. Also, for

any f € Ql we have
lim { (Twi) =4
L

and this shows that \\f.o"ﬂ’ \ =A_ ; consequently, we have that f € Elﬂ%) and, therefore,
the inclusion Ql CEi(’j%) is established. On the other hand, the set Ql is obviously Baire

measurable, convex and fo - Ql’ as a consequence of (1). The proposition is proved.

Corollary 1. The set El(%).‘is ol - measurable and ot ( E(RY) =4,

Proof. It is an immediate consequence of proposition 3.

Corollary 2. Any hounded, con‘inuous functron t: E, (53 Y= € is o -

measurable.

Proof. Since the measure « is regular, there exists an increasing sequence

CK"-\-)MN of compact sets K»\.C E‘(jg‘) , such that o (X V71 4.
Let K= UK« and & : ER)—> € be defined by
w .

W=o

e T
T (E) =
0 Lee EARIREE



(B : ‘ ; i ¥

The functions tn are ol - measurable and we have

: n~> oo £ K
It follows that t is o - measurable, because
| LGE IR =0
and the corollary is proved.

It is known that the measure o/ is pseudoconcentrated on P(B) (see [153 5
theorem 2; {137 ). More precisely? if UcZE(®) is a Baire measurable set, such that
Un P(®)=¢, then o (U)=0.

It follows that by the formula

ALTUAPIR)) =el(T) A
: where U CE(R) s Baire n‘masurw@&Jwe cofectly
define a probabilistic measure /3 en the o -algebra AO (P(P)) of all traces on P(B) of

the Baire measurable subsets of E(R) :

)‘\0(9(3’3\3 = { WIPCR Y L TG ECRY e Baire measurable}.

Proposition 4. [3* ¢ Po CRY N=0

Proof. With the preceding notations, we have

(1) L =o(R) = FCQ\(\PU’SBB)
and ;
’ @) Q. NP(RY C PUR)

consequently, we have that POL’R) C PR {\QQJ\ : and the proposition is proved.

Corollary 1. TFor any bounded, continuous function t : E\(T‘n} —  , the

function <« \P(R) is @ - measurable and the following equality holds

oo J@Lﬁ_,
E(B) ES

Proof. —Trom corollary ¢ of proposition 3, we infer that the function t is o -mea-

surable, where-as the set El(_j%) is o -measurable in virtue of corollary 1 of the same

o

proposition. Consequently, the integral in the left-hand member of the preceding equality
makes sexise, and we have ‘ -
§ t dw = g t det
ER) a

by taking into account proposition 3.



=

Since the set Q is Baire measurable, it follows that there exists an increasing
sequence of compact sets L C Q vxéN which are Baire measurable and such that

sy 1 A . Since the functions t | Ln, n € IN, are continuous, the functions

/}“;E(_J’?))"—%C) neN

St el
A

defined by

CeELRINLES

}

are Baire measurable and we have

g./DWAod = g /.)WA_/;:: S‘ Aw”tﬁ
ER) PLB) P(B)
(see [1‘3] olemma; L4, ),

If we denote L =UL , we have
w»0 I

lim /)W = 't')(L-,

w3 0
and Ql\ L is a Baire measurabie set, for which ol { Qq\ LY=0 .1t follows that

A LERN LY QBB R,
and, therefore, ;

V\-”'>°v

BB TE m R(B)
= g Ex Ap = f tda,

AGY) PLR)
and this conciudes the proof.

Proposition 5. For any bounded, continuous, affine function ey E.,(ﬂ\"%‘ €

we have
+1L,) = g £ din
‘ ECT
Proof. Since t is contlnuous at fo for any & > 0 there exists a finite subset
Slbl, ...... ,bn\( CR. suchthat:f € E (%) and ey - £, (6 )<L, 1=1,2,-, n
iniplies | £(f) -t (£ )l < o0
Let S\A A \. be a finite bartition of E(R), consisting of Borel

measurable subsets A_ C E(P), such that
Lol P ol : :
FAlen = G- flbies, d=12,.n,
for amyiii=1,2; ..y melf necessary, we can refino the partition such that, with an arbitrary

selection of the points [ ¢ A n .;2« L=42,..,m, we have
. )



g %

\ g s B R R S
ELD) bt

Let 37 be the Radcn measure on E($), given by _
o 3
EEEL A Ve
= .
It is obvious that the barycenter b (§) of ¥ is the point 6(3‘3:

e
: LotAf e E®)
and we have (#Ye @ N It follows that i

L

bt - S =\ Ty Ak ) - { 4 Lothy\ =

= E(B)
= \ia(A;\Lm\—L §4(@é\44<4>\ =
[ =4 A;‘ ]
T Su w.x-g(frm&w) =
L 3
b : 7 ;
< %?§§§¢ﬁ\-§wp\ist<x)

for any j = 1, 2, -, n; consequently, we have

v el SR A <

. C . . .
Since the funtion t is affine, we have
W

LGy = 2, oL(A;StL{L\)

e=4

and, consequently,

V{ tae -tV 222
E(B)

The proposition is proved.

Corollary. For any bounded, affine function t : E(R) —» €, whose restriction to

E 1(?;;) is continuous, we have

i) = g tda.

P(m»)
Proof. It is an immediate consequence of proposition 4, of the corollary to

progesition 4 and of proposifion 5.

9. Since the function T*: EABRY—>E (), which was already defined,
is continuous, it is Baire measurable; consequentiy, the direct image e )* (ed) of the
measure of is defined on the G -algebra (o) (EO ( <g )) of all Baire measurable subsets of

EO ({9) by the formula

Tty el (@) = o« C (m*it ) | A e BLE(Y)),
From the inclusions ('rr*)-\( Loy c & FBre i Q\ it follows that

il



Sloe

O=o!((1\'*)-\d°“)and therefore, for the Borel measure ('n*)* (), direct imége of « , we

have
(k). (L 30) ) =0,
Since { 0} is a closed subset of Eo ( Qf), from the preceding equality if follows
that the exterior Baire measure, associated to the measure (”n’*)* (et), of the set {0} & E(;(@),

is zero.

Let now A CEO ((@) be a Baire measurable subset, such that AN P ((@) =y

Then we have

Hemdy el DAY =0
Indeed, from A NP () =g it follows that

a3y A PR C R ({ovy e 0],

and this implies that
rxstienla)nery= @
it follows that .
o ((TY AR, =0,
and, therefore, i
o (T Y (AY) =0,
becaﬁse X (C Q‘\=O. Consequently, we have.
(@™, OY(AY =0. ‘

Let A0 (P (%)) bethe O -algebra of the traces on P () of all Baire measura-

ble subsets of E (e

Ao P(¢)) = { YU ARG e Eo((e)}Baire meas. } :
From the precedeging result it follows that by the formula
F(UNPLQY) = (@'\"")*(oé I B , Baire measurable, we correc-

tly defire a probabilify measure ¥ on Ao (P (9)).

Ir analogy 0 lemma 1.1. from [13] , we can state the following.

Proposition 6. For any bounded, Baire measurable function t: E (4)— € |

we have

{ tatam, ] = @ LA
E.(¢) PLE)



=g

Proof. For any £ > 0 there exists a finite partition {El, E2, ..... s En .{‘ of

E (f), consisting of mutually disjoint, Baire measurable subsets of EO (%), and complex
- :

mmmbers £t o, € €, stich'that
2 n

406 = 8t %, £>\<5)4égo<%>,
=4

1t follows that we have

L AT, el @t[mﬁ EEDI <

£, %)

and :
£ Bl B e SHE R PN <,
e(Y) Ly

whencé the proposition is now an immediate consequence, if we take into account the defl— i
nition of the measure 3~ .

Let now /\ (P (3)) be the T -algebra of the traces on Pl(j;’)) of all thg sets
belonging to A (P(“?\ obv1ously, O(Pl(’,%)) is the O -algebra of the traces on Pl(?;) of
all Baire measurable subsets of E{( ).

Since

Q@ PLEY P ),
from the equality

ﬁ(@_\/\ PLRY) = 04(621321_,

it follows that by the formula

‘ [34 (AN ?@(3\53) = o/ (A) 3 Ac E(g) , Baire measurable, we cotiztly
dlafine a probability measure on Ao (Pl(‘%»'
Let us now consider the mapping G‘L:'W%\P‘(SS) , which is defined on the measu-
rable space (Plcﬁ'{)), Ao (Pl(?g))) , and takes values in the measurable space (P (@),
A (P (e
The mapping < is measurable. Indeed, 1£ A c E ((@ is Baire measurable,

we have

o (A N PIEYY (@ T A A PR
and (TIT*"}.\((%X is Baire measurable in E(J3).

Proposition 7. 0’*(@%) S

Proof. Let A C EO ((f,') be an arbitrary Baire measurable set. We have
T (R CANPE)) =3, (T (AN P =B L™ Ay A B RY) =
= et (LT (B Y = (O, (Y A= ECANPL)),



- -

and the proposition is proved.

3. For any p €2 (¥) let us consider the associated Hilbert space Hf’
[

the associated irreducibie representation "\TP . ¢ - LR %) » and the associated canoni-
cal mapping Q‘P; ¢ — \“\ We shall define a linear mapping & Y- T H by the

& pe By P
formula

Q{g (C\_—:(Q?(C))?pé%@) ) »cé(é_,

Similarly, for any p € P($) we shall consider the associated Hilbert space Hp’ the associa-

ted irreducible representation T, © B> f(‘r(,?) and the associated canonical mapping

P
6 R \-k . We shall consider the linear mappings Q B H,? and @R TH, :
P . P END) B PEPR)
given by ; st
() = (6,(6) 8 hy=06 &) e R
6 % ( PeP(RY J?;C fet ’P( );:eP‘(:m ) bed,

Let () 5 e H,[ — W HP be the canonical mapping.
PERR)Y PEP (T
We shall denote

MUY = &y | P BY= i€ | T(R)= i 6,

We now define the linear mappings L : U( ) »T(R)nd w:T(EL) > C (B) by

u,(Q(@(c y) = Qﬂcv(c))} M,(Q%(c)) o 93; (iR S
We obviously have o CTCRY )= (T5)and PoW =u,.
For any c ¢ (6 , the function pw>p(c) is measurable and bounded on (P ((@), Ao P ((6))),
whereas for any b & TS) the function p v p (b) is measurable and bounded on (P(®), AO(P{B)))

respectively on (Pl(ﬁs), AO(Pl('B))). It follows that we can define the scalar products

(@ toplig ce )iz | plele s diien i Shcael;
: PLY)

GG BNl Z—)o%ﬁ(b) ke

: PR
and )

A ER R YU d SYVRISU A 3
' P/B, ;
respectively on  ['( (w) el yeend.  ER),
We have thc following properties
a)u is an isometry of r(% ) into [ (fB Indeed, for any € G € (é

we have

(W8, Cadt UGy (e,y) = (G, (Tled) (G (TCe))) =

= § himcer ¢ )y detiCpdi= f flmiefen) datf) =
Ry aRER)



a0 = : : | 5

sia (s CWET ., v YY) =it (€ A CET ) o T ) =
= ( L‘Tr*)*(“’()SQ')\%L :; C‘\) = % ( )%Cci {‘.1»)> =

— L peeme MY = (6, ()18 ey )
PLE)

and the assertion is proved.
b) e\ C(R) is an isometry of [(R)on QGS) Indeed, we have
(e(@ (43)\ e (G, (4,0 = (9 CAAREN b

= fp(ﬁr*frBd./g‘(m = § w: ) AR () = (Fx (B B, (£,)),
AEEY) . (H
for any @ Zr € 3 . The fact that ¢ \ f‘(.?a) isa surJectlon on i‘ (J>) was remarked

before.

c) u, is an isometry of (%) into V‘('”JS). This immediately follows

1
from a) and b).

Let us now consider the mappings U:T(DR)—=>H and U : [(BY-> |
‘ P

given by
: ok : A T
U(Q:E(_gr)) = g U (8 (6)) = R
The first one is, obviously, correctly defined, because @55{“6‘) =0 =
@e(@-)xq peP@) therefore b = 0. Let us now assume that @5; (&) =0 . We then have 6’1)(6):-—0)
be P‘ (™) , and this implies that

0= § WOINTAp 4y = § 00O, dathy= § w06 dsihy =

2
PR P) PR
= § L6 datty = £,(6°6) =l b2 ;

G ; BBy
and this implies that bxo =0,

We obviously have U, s (¢ ) T(B3)= =Uand

B0y sy (BTG ey, (6 D)= {8 E 6y dt=
(0,95 (GO U, 9305 Byt by xo) = §, DR

B NT L R E VIS @(KQ_E’«)&[S&(M"(QCQ)\W &)y, b, be B

PRB) PR j
and this shows that U is an 1sometry of Wb\ into H; it follows that U is an isometry of

" (®)into H.

From the above considerations it follows that we have the commutative

diagram
L sy 1 0
6 g

A
and, therefore, the equalities



Shn

I8 o PR 6’%)@) =Mleyx,  cell

b}
U*OU\\ "——“—U-o\.k..

It follows that Ueu is an isometry of I'({) on a dense subset of H.

4. Let P be an arbitrary set, (W )Pép a field of Hilbert spaces,

defined on P, andeka - algebra of subsets of P. Let " CTF H? be a vector subspace
; peP
having the following pr operty
0¢) $=(3 )\GP A S
=> the function b s \\‘%‘, \\2' is bounded and A-measurable.

From the polarization formula it then follows that for any pair 2= (:?/P )‘?e
r _
? Lv)‘% )‘PGPQ , the function it Qgﬁ,\ 9@ ; XC P - is bounded and & -mea
surable
Let /w be-a probability measure, defined on . We can define a scalar

product, on " | by the formula (b V)) § C‘f‘, \9,‘,)‘) JL/"\W) S HE 5

: &
Let U, €W Ry be the set of all vector flelds §= ) such that
pe® PEP

* .
S \\fv\\z Ap(p) <+ oo |
P

One can easily show that F is a vector subspace of T H and, also, that the mabping
be P

e +——>( g g W o&/n«(p))/L

is a semi-norm on (e

o ; We obviously have ¢ P

Let r (/M) be the closure of F in {“ with respect to the topology deter-
mined in F by the semi-norm 2 it is obvious that (\ (,u) is the set of all vector fields
f = fﬂ)) ( v H@ , which have the property that there exists a sequence G )

be P
of vector flelds : § = (znp) er , such that

“im” g e, 1 ?‘\«» dia(p) =
P

w2

Ao - integrable.

{

An 2 : 2
Proposition 8. poy any ¥ (.“{‘9*) the function p v \\"{,P\\?is

Proof. t §=(% P>‘9GP€ {'au)and 2 .= fw)\)ep’uagbe a sequence of vector
fields from [ , such that ?
*
lim 55 % i
Flet § I f% é}) Iy oy«(p) =0

f

It follows that there exists a subsequence of the sequence (“§’ ) , for which
o

W2,

we shall maintain the same notation, such that



=

lim \\'@ = O /VL.- A. L.

N = o 'X) )
It follows that we have ' : 2

lim 'QW? = *%/? /u.——-’;k.z

. —% o< %
and we consequently have the following equalities

i A AT —O R,
D i
i >ww\ ?’b\\ = {\;m \ SV«\/‘,M QM; \\? ! A K- e,
It follows that the functions. Px “% \\”P and p &M—.ﬁ. i :3““’?- éﬁ: “’P are % - measurable,
for any m ¢ IN, after having modified them on a - null set from«& We can therefore
write the equality
y
- 2
2
~ i e \ Pl F¥ - X &

FLe. ~ 2D ( g R e Ny u/*-(”p)) X

whereas from the inequality

RS s g Wl 3/?\%

it immediately follows that

$y Ve dpip,

2 :
[ e o= Wty \ Amipy £ p( T

e
P
Hence we immediately infer that

. f“ft,\\ oQ-M(M<+:>o
P

and the proposition is proved.

By the formula

g ¢ .
(% Oy ny = xC’%,\,\% dpaipy | 0T (),
we Lorrectly define a scalar product on T (/u») : which is thus endowed with a structure
of a pre—hllberuan space; let r (/«.) be the associated separated pre-hilbertian space : it can

be identified witl set of all c'asses of vector fields, which belong to T (/A) , modulo coinci-

dence /\k-' a.e.

i 2 R
Proposition 9. The spaces r (/-A) and | (/u) are complete.

Proof. It will be sufficient to prove that r (/l*) is complete. Let (€ Y

Ve O
: da
a fundamental sequence of vector fields ‘g’w-— (§%3?QP€ g,ns) ‘Byeéposmg a subsequence,

we can assume that
W g - ™ A
.( g";’? \\\‘ apmpy < weN

V\—\-’\)ﬁ l\f\ \ )

& v e



LG

and, therefore, from the SchWarz inequality, we get

é : —gwﬂ’«’ S -é)"”“')"? \\ﬂ‘ UL/%(?) < .iw ) QN'

The Beppo Levi theorem now implies that the sequence L is a fundamental

Sv‘ﬂ’)\f\

sequence in Hp for almost any p € P (with respect to the measure/&) Let us define

'2 = iyt , for any p & P at which the sequence (¥ 2 ) converges in the
wW-deo ™Mb YV 20

complete space Hp,_ and arbitrarily otherwise.

We then have : '
lim e o \\7‘ HE SR S
n - oo P _ 2
and, therefore, ¥ = Lg?’)t’ (/4) and lim 'g , in the space T”*(/M) .

i K w -3 oo
The proposition is proved.

We shall say that the vector fields from T (/u) are strongly square integrable

vector fields. We shall qay that the space . </U~) is the L (/uu) - completion of the space [

whereas the Hilbert space r (u) will be called the direct Hilbert integral of the field H )

with respect to the space I' and the measure /Af we shall also write § ‘r-( V{/"‘Lb‘

—w

instead of ) if the omission of the symbol T is not creating the ddnger of confusion.
[* ¥

We shall also say that a vector field = € is a weakly square

integrable vector field if the following conditions are satisfied.

_ a) there exists a }Ju—summable function @ : P — R, such that
\\ﬁb\ (((\3} & -a.e. on P, :

b) for any ne e () the function “> yodi (f" @éP} is

\ 9 *pep?
}/« -measurable.

From the Schwarz inequality it immeciately follows that we have

~ %
< = Lae
\(iﬁ’\O’\’)?\ = (-((%’) “91,“1’ : /kA Q.Q.}
for any weakly square integrable vector. field 'i , which satisfies the preceding conditions,
and for any strongly square integrable vector field s? = (912 b F‘(/u). We, therefore,
infer that the function P CTS,P \ ?’P) e Prds /u. -integrable.
We shall say that weakly square integrable vector fizlds f', £ N are weak!l-
equivalent if
/ e
g (f«,\ %’)b OL/L&(M = g (’i,‘) | ?P)? A/LA(P)
J
P D
for any = (p 5 é PZ(/Q)
9 Ppep :



Proposition 10. Any weakly square integrable vector field is weakly equivalent

to a strongly square integrable vector field, which is unique up to a strong equivalence.
Proof. The uniqueness is an immediate consequence of the fact that if ’§€, rl¢k),
and if
f L4} \fo‘-’)w’ &/M:@) =
2 :
.f(l)rany pér(/A),then §~0 ey on P,

Let us now conélder a weakly square integrable vector field 'g ( NebeE TR
’pep pep b

Let (q : P >R bea Jo = integrable function, such that

7] OIS g P
llgq’“? é(((‘e)) /u. o.e. o ¥
‘ ; r : 2
We shall define a linear mapping & (/MB —3» € by the formula

; i ) . # 2
Ly o S L0 dsby snim b By
From the Schwarz inequality we infer that T/
Qo 2 1] 1 oﬁmbﬂdmc |
1epny € {reogdea < CLeam) CE il dup ),
and, thcrefore, since P /u) is complete, \mth the theorem of F. Riesz it follows that there
exists a vector field g Voss. S ) c s O,k) , which is strong Jé‘ Aquare integrable and

*Plpee
such that

2
Bcp) o\ g6l gy
It follows that 3; is weakly equivalent to ‘S)’ , and the proposition is proved.

j 2 : o
Remark. Examples show that, in general, i S;*)is not a ,f (/a.z) — module. If I" is

o
a n:(o(/u) - module, then r(/»-)has the same property, but the converse is not necessarily true.

- Proposition 11, The vector space (" L) isa ff( ) = module if, and only if, the
</ 7

follom /ing property holds
) For any weakly square mLccfrabIe vector field % there exists a strongly sguare

integrable vector field 2 , such that, for any pé F (/u,} , the equality

(E-%,V9,) =0, peae ox'F

P » s
holds.
Proof. Indeed, leb us assume that V(/u} isa fgm) -module. Let ¥=(%, )MP
C;;(? H be a weakly square integrable vector field; let f ("% )‘PéP (/u‘) be the

q(1."on<rlv square 1nte01ab1e vector field which borrcsponds to g in virtue of proposition 10.

. We then have :
(1) § €~ % \pp dplpy =
for any p (p/‘))p g V,‘) . By fixing now /é[‘(«:.), we have 2:&"\ ——(3& ‘p)?’)) 6

/

S



i
2 oo I
el (/‘-&) , for any }e‘f (/LA) : hence, from (1), we get

@) PTG S SR =
: é » t pr )x; 0!"/“'(?3 0
for any 2(;f7/4.) : it follows that we have

4 [
— o - A L. T
Gar B V) e e '
P d ;
for any )?e_(‘ g/u) :
Conversely, let us assume that property () holds. It will be sufficient to prove
2 2
that for any A € A and any § = (€")’9é?év (ix), we have 'xg"fg‘ = (Xﬁ(ﬂ?v)\még@a,where XA
is the characteristic function of the set A. Obviously, XA € is a weakly square integrable

vector field.

In virtue of proposition 10, there exists a strongly square integrable vector field

'i (f XPEP’ such thgt

- ™ _p/ i o ) 2
(Xﬂ(ﬁ\s?\\%,}?_ (g‘?\?")\),/& a.e. o P) for any ?é r (/‘-*).
By making successively \?.—: ¥ and 9—-* f’ , we infer that

\'X = {
G N “é", \\? XalPI(Xplh) g, - i L3 slmrnibt AN —g?\ ,;)?
M—a-e. o Py
it follows that 7( ‘f /2, f ) and the proposition is provcd

fi

o
)

5. By applying the construction we have just made fo the spaces (P(@))F\,(P(%));a”){’(g)‘g
(PEBY, A (DY) 8, M3y and ( BIRY,ALR(RY) B, f(»3) » we respectively obtain the complete
pre-hilbertian spaces (¥} , F*(p) and T3 (/3‘) , and the Hilbert spaces T (¥) , l"z(/g)
and FZ{/&Q . From what we have proved at % 3, we immediately infer that we have the

following commutative diagram

Q AT
‘6--—-_»-»» c%/ L§\.*‘ .

1 .

in which U, u U U and F are 1swnorph1bms of Hilbert spaces, and we have the

following iuequahtles

({30105%)Cc)=1r(c)xo ce ¢

b}
%)

~

—J TN~
ek e T W

i -1
We obviously have U=V |, where V.is the isomorphism from (E13] swthcorem g3sil ).
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el
Proposition 12 () is a Z (¥)-module.

Proof. It will be sufficient to prove that for any function t & ff)w( &) and any

cel , we have
ety G e ek
: ik >pe?c%) ).
Indeed, since the functicn ;
. s
2% > UG () -t BaIN, O

where ¢, & %: is an arbitrary element, is ¥ -nreasurabie, by taking into account the

fact that we have
o (geTFNR) = 1, (T(&)) ~ BT (2)) G (TLed) \[‘Z, :
for any g € ?‘Lﬁ % : we infer that
B s 8 : i 2
S \\6’?(&) -ﬁ(@;é?‘) cc;)\\,P Adhy = g i\ i?,P(Tr(co))~t(ﬁ’*<fp)36pum))\\‘; A/xg(@,)-:;

Py ACLY B
= f &\Q@Qﬂ'(m)—<to~\r’*)c«\,)9‘?('facc_3)\\h 6”\/’3“%)

(35)
where the function tew® has been extended arbitrarily on PO(%). Since ["%( RYisa
2 |

og 3 . .
e ((3) -module (see EIGI , theorem 1.1 and proposition 11 above), we infer that
TN 6. e é L
(£aT") € (Teer ) e Tg),

From the tact that the representation v is cyclic, we infer that there exists a

sequence Ccn) eMOf elements of g , such that
n

(@) Hm g He mle =™ i e
i o (M) ~ (teT M) Gp(Ten) Wy dacg) = 0.
P)

From formulas (1) and (2) it follows that

lim o Lo,y =096, e MGl o
S i S P ) fp(_ )\\4(, &K‘Up)~.¢/)
d PCE)

and, therefore, T 9(@((;) & Tz(a") . The proposition is proved.

Corollary. The syste 3 5 = e
o sl SyStemIy V“("))AO( (%))\ 2{') CH‘P)\;QQ(%)) f “ﬂ}
is an integrable ficld of Hilbert spaces (in the sense of W. Wils).

Proof. It is an immediate consequence of the preceding results and of ( [161 s
theorem 1.2).

We resume the results already obtained in the following theorem, which is a gene-

ralization of theorem 3.1. from [1‘3] ;
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x y
Theorem 1. Let € be an arbitrary C~ - algebra. Then there exist

: 10. A measurable space (P, AO), where P is a set and AO isa < -algebra of

subsets of P;

0
2. Afield H ) of Hilbert spaces;
: prpEr g
30. A vector subspace 7' CTTH. , consisting of vector fields 208y ;
pep P Plpep

1

which have toe property that the function s i‘?“ﬁ’ , p & P, is bounded and A(;méasu—
rable, for any g’ef‘ .

4° A field (TT,P )P i of non-degenerate irreducible representations ’\Tv: ¢ -”Dﬁ(%-!?})
p & P)such that : for any cyclic representation W : fé—)fﬁH) there exists a probability

measure ¥ , defined on A , and having the following properties :
O .

a) the L2 N’) - completion &) of T determines an integrable field of
Hilbert spaces (in the sense of W. Wils);

b) there exists an isometric isomorphism V : H —> % Hb&@(ﬁx) , such that
if x¢ Wand V (x)is represented by the strongly square integrable vector field C%\,\}%&? ;
then, for any c € % , the vector V (7 (c¢) x) is represented by the strongly square integra-

ble vector field (W, (c)$. ) , and the equality
: ® ®pep

W) %W = g \\’rr"(cx% \'\7,; A p)
hoids. 4
: Proof. We shall take P=P (%), I (¢)), the Hilbert spaces Hp, p e P,
being those we have considered above; (= T({} , whereas the measure ¢ is that given by
proposition 7. The property a)is a consequence of the corollary to proposition 12, whereas
property b)y is obtained by taking V =L60 s \)-‘ and by taking into account formulas (%)

from § 5. The theorem is proved.

6. Let ‘écéE(%) and f~ be a probability Radon measure on EO ((g), which repre-

sents %o, i.6.5 L G—(lp.). The following property is a variant to proposition 3.

Proposition 13. There exists a Baire measurable convex set @ CEO(%), which is

contained in E (%) and such that %oe \Q and /,g((;Z) =i

Proof. Let (u.a. ). i be an approximate unit of the CX— algebra <@ . We have
3€7

A = Waol = Q/M %0“’“3 ))
i ;



=00 - :

and, therefore, there exists a sequence ( UL ) G such that w. < w. and %‘"(“3} \’fi
nw

T

d
It follows that we have A, (W: Yy ¢ A («: \ plet W= /Zu.u >\ (u._ wﬁ\ . Then osW<4d
G G Qe

and ) isa Baire measurable, affine function, defined on EO ( %’ ! We have Y Cg},\ = A

and :
& ‘-;J%w:@w% g Aol Y Ae = L gl Y =4
E46) 6 g5 >
Let ® =4 {e{i(g) Ay (£y=1Y% . We obviously have that 4_¢ R, R
- is a Baire measurable, convex set and /’A(Qh'&_ i ~§€ ® , then

A sl ﬂw(cw\ Zwé(wé):w<_4');:ﬁ_\

B oo

and this shows that Wlii= f.\_ . The proposition is proved.

Corollary. The set E ( ¢ ) is /',g—measurable and /,(/L CEC@S =

e e e

_I-;l_l;;;{i—c_:_\l_lar, let us consider the Gelfand-Naimark-Segal representation fﬂ‘ga: /"
—->>\f(H R associated to 4, ¢ EL{§) , in the Hilbert space Bl ohilefesie H be
tho corrcspondmg cyclic vector and denote by R the C = algeb; a ger\eratod in ;f(H
by <% (ié) and by a maximal Abelian von Neumann algebra 2 C (_7%(}(_ A )) . Let 4, C-, °e®)
be the state given by :

IR et S W o

We obviously bave ¢ ={ oM, = ™ (£,) . Let o/ be the central measure on E(3),
o e o %o
asqomated to f :
Tn virtue of proposition 1, the direct image (T('"‘ 5 (04 ) is an orthogonal
probability Radon measure on EO (@), which represents g
If the approximate unit 5, ""L\' . of the C - algebra % , used in the proof of
LeX

proposition 3, coincides with the approximate unit used in the proof of proposition 13, and

if the subsequences S e, \ "~ and X \,(, \ coincide too, then, from the equality
Ywoive dw e
N, (e T, = (Tr oy et
4T, o5

we immediately irnfer that we have STL (( JLand;sitherefore; Q = (T ) ((2

Obviously, E (%) isa ("IT%:) () -measurable set, and we have
Ecw;;)*u PR =,

Proposition 14. a) Any bounded, continuous function TE e

1
6]

(w* y () =measurable;
b) For any bounded, continuous function el BEEE Y i the

' function tey W%) is ¥ -measurable and {xfe have

S t&(iﬁga)*(oz.)): g t At
E(Y) : P(¢)



S0l

Proof. a) Since the measure oL is regular, there exists an increasing sequence

(Kn)na 0 of compact sets K _CEC%), such that [('ﬂ'%) Gy 3 CHE S Letulie VK,

and t : E,(‘6 )= € be the function defined by
sy, e,
£ Gy = { >
b

nzop

FeEL UK,
The functions tn are Borel measurable and we have
lim t = tXK
W= e
It follows that t is (’ﬂ‘é ‘) (o) -measurable, because C(TT%@) (YY) (ECEIINKY =0,

‘b) Since the function t is (’Tr%ayﬁ(aS -measurable, whereas the set E (&) is

(Tgo\écl) - measurable, it follows that the left hand integral the equality makes sense, and

. we have X '{:A,[(TT*X*UL‘;S_. ft&[{ } (d33

ECY)
as a consequence of proposition 13. Since the set & C €,( (éé)is Baire measurable, it follows

that there exists an increasing sequence of compact sets Lv\.C Q )WG-R\T , which are
Baire measurable, and such that [_('ﬂ‘%a)’& (_o/.ﬂCLWBT A . Since the functions ¢t { Ln’

n € N, are continuous, the functions 75 Eo(%\éﬁ)méﬁi‘given by

t('g‘)) 'g'eLla. X
DG = ) : £
i % ol ) S GBS L. -

are Baire measurable and we have

g' n. ¥ = g Dp eif(“” \(o()-‘ &= x A o(C(’W*}(a]
PCE) A E(¢)

where we nave taken into account proposition 6 and the corollary to proposition 13..

By denoting L =L , we have
w0 I

lim Ay t’X.
W eco

and @\ L is a Baire measurable set, for which we have [(‘i“*) &GN (ALY = Ot

: follows that

?((Q\L) N Pc@ﬂ =
and, thercfure, we hav~

( ELCemyy (] = Lo | 5 (LE(WMMQ -

£Q) ~ E(g) 5

sl (o dea({ tx ar-{ car

- oo

P PE) PCE)

)

and the proposition is oroved.



Proposition 15. For any

we have

Proof.

- continuous at g,a

SEDDR

bounded, continuous, affine functiont:E (€)—> €

tige) = g G A LCW;X&%W.

ELE)

From the fact that %oéEC‘:@) , and this implies that t is defined and

, it follows that for any & > 0 there exists a finite subset .);cl, c

2,.—,

cn\(c @ , such thatf € E (©), and \éCC;\wc}f,(CLBRMI L=, R s imply

Let { A, A,

subsets A, C E (
i o

£ e e

for any i =1,2,..

FECE)

@ ), such that
= 1£'ce

=Ll <t

Am-\r be a finite partition of EO (@), consisting of Borel measurable

ﬁlt ;
"'1((—(,}'>\<'\) 224‘,2"\'“'}“’)

.,m. If necessary, we can refine the partition, such that, with an

arbitrary selection of the points f

iS -&ECWZBM>3~MEL ) (LY R CC e 8

EC(¢)

éA AN s b= 102, i ver e

Let ¥ be the Radon measure on E ( ©), given by

€ G ,and, therefore,

(22"

o T [/T’ S G CAR S €

L=A

|l eiyis Gt
| bty Cey)d téa(cay\ \12::

e e

'ﬁ’

£ 229
it is obvious that the bary center &-¢(y) of V) is the point & (Tr BN )](AL}«/- &

HE RN («MM FACITN RWIATIC AREI
Eo(%)

'W\

=4

=\ 2 ECTT Y ONANE ey = & S N e nh_mr Y (V) =
A, © i

il
03
D

-

L

(3"3? ﬁ

>

9

for any J 155525

U,

'( ‘(L(Cé\ *4(‘C35> (XE(“‘;)%(&)’_X(@ e

\1(;(6”3')‘"')6((‘&')\ (.Q.E(_‘!T;)*(a/)'l(&) < '.‘\)

-,n; conseguently, we have

e (bm%t(w\

Since the function t is affine, we have

(6 = 2
L=y

Car® ) OJAN )
o
i



- 23 -

and, therefore,

\ f i Jg[(v;)kcxﬂ -ty < 2¢,
E(Q)

The proposition is proved.

Corollary For any bounded, affine function t : EO( (@’) S , whose

PLg)

Proof, It is a immediate consequence of prop051t10ns 14 and 15.

7. Let us now consider, for any f ¢ E ({5) , the associated Hilbert space H
the corresponding representatlon e e f( HQX the associated cyclic vector
5)’&(: Hg , such that \\ §’g \\ = {1l , and the canonical mapping % ¢, = H-§ , which
are all obtained by the Gelfand-Naimark- -Segal construction. Let @ AR - H

$eEAB)T

be the linear mapping given by

6,(c) = (6§<cx)§égv((g) , <t <,

and F {(@) @ é:(iZH'g , the vector subspace im 67 . If we consider in E ((ﬁ)
the -algebla A of all Baire measurable subsets of E (kf), it is obvious that condition
. (%) from §4 is Satisfied. Tet I- U@) be the vector space of all strongly square inte-’

grable vector fields, with respect to 2 plobablhty regular Borel measure f)t._ , which re-

presents f ENE % ). We have the following generalization of a theorem of E. C. Effros
(see [4] s bhiv s, Cllj, 1.8).

Proposition 16. The system {(H )&eE (%)) (%)}15 an integrable field of

* Hilbert spaces (in the sense of W. Wils) 1f and only if, the measure f.,._ is orthogonal,
Proof. We shall define a mapping
' w s ¢y - “40

by the formula Wi@ ¢ey) = 9_§ 0y, ce% . We have

H\%(C)\\Z —S:(c"'c) )%(c e (k) = f %%(c_"‘c)(4) &M((Q)
Sl L
b g frererdmth = { wgon dutd) = 16,n*
E%) E.t¥

for any ce ¢ (the norm in E(‘é) is calculated as in %4). It follows that u induces

an isometric isomorphism

f\a""l z
Wi ?,_((Z)e Hgo.

of Hilbert spaces.
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Let us assume that { (Hf; MeEoUé) 2 \"/_f (¢ )\( is anintegrable field of Hilbert
spaces, in the sense of W, Wils (see DG} ;def, 1.1, and th. 1.2.). Then, for any Baire

measurable function 2 : E_(@G)Y— (€ the multiplication operator "T'Z ! \';:(’@)-% V.,?:{'QZ)
3 /
B A
is defined. It induces a continuous, linear operator T;‘ €8 V/,A (‘Z)) et

H be the operator defined by
=

4~ =

S = uu"'\ W
3
For any <€,, ¢ & A we have :
ST@@@)Q{C@)W( ? By T e <C03~(\»~T\U§@ <C<o)~
N o
o ST (R e = AW ()12(4) € (co) o
= Be L LAl 94 T ﬂ%eﬁac%)j L § )46&(%)} A

' ~ g
= Tféccy o 'T ‘\Q@ (c)) = “‘@CC)HQ%OCC)
o

and this implies that

i [ ; :
consequently, we have & & *’\W‘& (%) } . On the other hand, we have
o

%eﬂ-f“’ \ I, CCa\\":“-E:L%)i“({')L%(C\ )18, () )¢ J\,MH) ~

<l %—(4)%(41 ey dp(f)y = (K H)%(cn\@o“a)),

—

E"( Vi Sl
for any c_ €s (, \Z ; this shows that we have S& = ‘y( C’”) 2e ¥ (/“",) Since the

-

mapping }\»»5» 5% obviously is & ®* - homomorphism of ki (/,\) into ¥( Hac , from
Témita’s theorem we infer that w. is orthogonal (see @1" , th.7). Conversely, if

i
is orthogonal, then the system Q(Hi ‘)4;(}' Ué.)’ /”“( )\{ is an integrable field of Hilbert
spac:es (in the sense of W, Wils). Indeed, it will be sufficient to prove that for any Qo(ca)x:

={ %C'fa) )§6&(%)& FOC‘@) , where ¢, & ¥ , any %é:f&(;u) and any £'> 0,

there exists a c¢e ¢ , such that we have

| 6,¢e) —(2(§) G(&)), e

£eE,(¢)
We have

Fa iy @cc)—zcaﬁ)@(c@)\\;‘ L 6) =

G- (2O GLEN) ooyl
E.C¥¢)

= § “@éfﬁ\\z (£ § %) (G (@I G e)) duld) ~
EC%) Bl

_ (3P (ot gum) dathr+ 5{({:)&(@\ \\Qékm\\g Kn(£)
E(¢) &

op e e N S
Tl e o ). /
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By taking into account the fact that the measure o is orthogonal, with Tomita’s
theorem we infer that

ot ("V"*’____ e sl
= KECKEY =T K

m"

and, therefore, from the preceding equality, it follows that

)= (200G, (o Dl :
W2, (e - 24 ))4 CECES \\,._(\93( () Ki 9{9(6«:)\\ :
since KPQ (Q)éH from the fact that 9;( %) is a dense subset of Hf el
° 2 0
follows that there exists ¢ ¥ | such that

\\%(c)-—-mm (co),jc CE(Q) \k<£

and, therefore, (%(é) b‘;(&a)), EO(Q;) /U_( ¥) . Thepr OpOultloYl is proved.

Corodqry If /u.. is an orthogonal, regular, Borel probability measure on E ((/)

Proof. Hen AO(EO ({g )) denotes the vector subspace of (E' (%)), consisting
of all affine, continuous ,complex functions, defined on E (%} and Vanlshmfr at 0. It is

obvious that for any ¢¢& / and & we h1ve
P& Lm

f\)\ (ey— | aL/w g ) (c)\ aﬁ/uw ( )\%Cc)féi/& -~
EL¢)" Cv(‘@) Bl

-—§ g / N, (C) CC) «79»/**&— &' i‘»(\LX_/A S‘ N Cc*c)i/u —

£,(¢) B¢ E(%)
{ e () @ A f @ A cqx/*—«« MoV A =
&gy © i E(%) ' tqu/)
e, §0(¢*c) — ((\(/; )*l(—?{; (<) \fj(g) L (\y{;&é’{o{ 62(0((:)) 4
‘w‘g\fg)m i ol ~(b§(<>w< §)-—

(KK’ ?;o‘@{“”"*'”( :§’ = 9<c)~§4 ?DC \\

where we have used the Schwarz inequality under the form



6 =

m%(c.)\z'(fr\ = et s fererngn ¢ frerey =, (ehe) (f),

for any £ € EO( (@), and the fact that the measure /p&. is orthogonal. The corollary is
an immediate consequence of the preceding inequality.

Remark. The preceding corollary is a generalization, to the possibly nonsepa-
rable case, of the corollary to theorem 8 from Cll-l :

8. In this section, as an application of tieorem 1, we shall give a generalization

of the following well-known theorem of P. Lévy.

Let (F ) be a sequence of distribution functions and ((( ) the corres-
n'nz0 wnzo
ponding sequence of characteristic functions. If lim ((h(g):. (((4))f0r any »ne R, where
D oo

(’( is the characteristic function of the distribution function F, then

im  (LAF, = (LAF,

Y2 oo R @ 8

for any bounded, continuous function Ap cR->€ (see [77 , % 122

' The preceding theorem belongs to Harmonic Analysis, since the characteristic
functions Q))W are the Stielties-Fourier transforms of the Radon measures /‘L‘w , which
correspond to the distribution functions Fn’ n £ IN. Several mathematicians have
successively extended this theorem into the frame of Abstract Harmonic Analysis. Thus,
U. Grenander, in {51 ,. extended this theorem to the case of locally compact groups
satisfying the second countability axioni; R. M. Loynes, in ES}, to the case of locally
éompact groups which satisfy the first countability axiom; P. Martin - Lof, in EE)J, for
arbitrary locally compact groups (see also Ii.Heyer [Gj Yoo It EGE and CS] the pre-
sented proofs make use of Kthe Tomita disintegration theory, as it was exposed in [101 i
but, since this theory was shown not to be correct (see J. L. Taylor []_2] ), the exten-
sions given in EGj and [93 remained under doubt. |

The first correct proof, in which the irreducible disintegration theory apparentiy
is not used, was given by Ch. A. Akemann and M.E.Wal@er (see El:) , propogsition 6 ).

In this article P. Lévy’ s theorem is extended and framed intothe theory of the_W’{-—algebra :
associated to an arbitrary locally compact group.

In what follows we shall further extend P. Lévy’ s theorem by framing it into a
compacity theorem and by making an explicit use of the Choquet-Bishop-de Leecuw-Wils
decomposition theory.

I gratefully acknowledge the useful discusions I had with H. Heyer, who introduced
me into the problem and informed me about the pertinent bibliography.

a) Let G be an arbitrary, topological, locally compact group, and U : G~
_->§f(H) a Lanitary,continuous representation of G, where H is an arbitrary Hilbert space.

For any “;)? ¢ H, the complex function



Sl

%,\'—’*C'Uéi\f) e G

is continous and bounded on G.
Let M (G) be the complex vector space of all finite, complex, Radon

measures, defined on G. For any /m,eM"((;,) , the integral

Cj G sidacay o Sipet
exists, and there exists a unique, continuous, linear operator i}.,(U}ej f( t) , such that

o) ae C U -2 e
(/wCU)?\V)B- )( s A0 ) dacy) | o PR,

G
The operator P,,(_U) is called the Fourier - Stieltjes transform of the measure M,

corresponding to the representation U (see IB} @13 Fiex {:6} p.147), whereas the
mapping f}“ &—-‘?/\3» (7Y isa %~ repre%‘ontatxon of the involutive a’geora M'(6)  into
bf(l—l (see E?} s prepesition. 13.8.1 9.

It is Well known that in M (G) the following topologies can be con-
eidered : ol ) the vague topology : since M (G) is the dual of the normed space K (G)
of all the continuous, complex functions, defined on G and having compact supports, in

“which the norm is given by

S WLK = A £y ge\«a))

4 €G
.the vague topology is the topology & (. M‘Q;A K(G)Y),

[3) the x -weak topology : K"'\‘(G) is, at the same time, the dual of the Banach
space C (G) of all continuous, complex functions, defined on G and vardishing at infinity,
endowed with the same norm as above. The % -weak topology is the topology o ( M‘Q@}
»CQCG\) and it is obviously stronger than the vague topology.
i The two tobologies coincide on the norm bounded subsets of M‘(_@)J
but a vaguely compact set can be unbounded for the norm. ;
| ¥") the narrow topology : any measure from M\(G‘) can be extended, with
Gownded,
the help of regularity, as a Radon measure on the space (4 C6)~ C(/g,(;)of aly'bntmuous
complex functlons defined on G, space whmh can be canomcally identified wifh the space
of all coatinuous complex functions, defined on the Stone-Cech compaectification [3G of G
The mentioned extension yields an isometric imbedding of M (G) into C(/& Gl , and the
narrow topology is the topology induced by the topology 0“((:((3(;}) S ((g & ,)
Obviously, the narrow topology is stronger than the x -weak topology (see EZ] yochuIX,
S 5.3). :
3 ) The Fourier topology. Let F(G) ¢ Cb(G) be the complex vector space of

all funztions of the form
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where U(i) G — }f(H,) arekij“«reducible, continuouis, unitary representations, and
‘gk WA & H € L, seenThe Fourier topology.on M) _is the topology O‘( M (6\)
F(G)). Itis obv1ou° that the Fourier topology is weaker than the narrow topology but,

nevertheless, it is a Hausdorff topology.

b) Let P (G) be the set of all continuous functions of positive type, defi-
ned on G; let P« (G) = -i (Qé P(G); (€C€)= 5..\ . It is known that there exists an aliine
bijection T : 9(&‘)—%((‘:&(&)'{: between P(G) and the set ((L*CG)\i of all positive, conti-
nuous linear formé, defined on the CX— algebra CI}E (G) of the group G; the bijection T is

given by the formula

TLY)Y (g = q agoukz,n,

: o cqs : 4 ’ / :
where /u, is a left-invariant Haar measure on G, »x & L (@), @€ PCG) and 9:L(G)>
— C¥*(G) is the canonical injection (see {31 s %%2.7, 13.4 and 13.9). Moreover,
we have KTOUO N = ley=ly \\w)for any % € P(G) (see [3] ,882.7.5
and 13.4. 3).

e) Let W G — f( 1) be a cyclic, continuous, unitary representation
of G and (9 G y’(&‘)w L (1) the corresponding cyclic representation of the C™ -algebra

CK(G) (see L 3 §l 3.9). let SeH, WS\ Sy be a (J~cychc vector and % {:E/ﬂ,,,@)~

the corresponding state, given by
o o : ¥
%oca)x(€(c)§\z)) Ce erray:

For any maximal, commutative von Neumann algebra 5 C @ cele ))')E we shall con-
Sider the C%«algebra B generated by ?CC%(“QQ) and 5, , and the corresponding
measures o(}/fi) & , constructed as in the preceding sections.

The bijection T induces the bijection T \F;(Cz) , from the set R(G) of
al’l'pure continuous functions of positive type, defined on G and equal to 1 at e & G, to the
set P LC%(C%)) of all pure states of the Cx—algebra CX-(G), Let A(G) be the g -algebra of
subcets of P(G) which is the reciprocal image through TP (6) of the g ~algebra
A, (PLC"(a)Y)) . constructed asin §2 for the Cx—algebra ¢ =c*a)

Theorem 2. “ For any ({loe P‘ (Q) there exists a probability measure S :

defined on the < -algebra A(G) of subsets of I;(G), such that

Vg, = { S,

¢ ; (&)
for any VEM (G) . In perticular, we have

g.(8) = S Qg &gy,
P (G)

7

for —any g & @
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Proof. From the Raikov theorem (see [3] , theorem 13.5.2) it follows that

T \Q(G) is a homeomorphism from the Space P‘ (&) , endowed with the compact con-

vergence topology, onto the space E(C*C&)) , endowed with the topology induced by
gilteeant  Cxea ) JBor any e M EG) et usieonsider the function

V:(¢&)) > € given by

== ~4 , T L
VY = V(T (&3)) Lieie ce))+,

~ : . - %, -
Obviously, V| €,(c*a)) is an affine, bounded function, whose restriction to E (C (@y)
is continuous, in virtue of the above mentioned theorem of D. A, Raikov and of the finite-

ness and the regularity of the measure V - From the corollary to proposition 15 we

infer that

o) V) = | Vg diigy,
- PCEY)Y .
~ where %= TLE,Y € B Certen i uleta e e dineot image through T i[ Pt a))

of the measure ¥ . It is obvious that for the measure ﬂzthus defined  the first equality
from the statement of the theorem holds. The second equality can be obtained by taking
N = Ef?r , the Dirac measure at g € G. The theorem is proved.
The preceding theorem ic a generalization to the possibly non-separable
case, of the proposition 13.6.8 from B8k
d) Let s now remark that to any measure V & if‘"\‘(é.) we can injectively

~ . _
associate a function WV ¢ P (6Y—> £ by the formula

V() = vy geR(a)

we use here» the finiteness of the measure ¥V . It is obvious that the function /\\“ which
we thus associate to the measure V , is bounded and ny—measurable, as a consequence
of proposition 14, b) and of the definition of the measureqff : P (e

On the other hand, it is easy to see that the mapping i“'\‘lCG) 9\’\-—9/\3 e’
is a homeomorphism from MY(a) , endowed with the Fourier topology, into QP"(&') Gt
endowed with the simple convergence topology (i.e., the Tikho-ov topology).

Theorem 3. The subsets of Ml (G) , which are metrizable and compact for

the Fourier topology, are compact for the narrow topology.
Proof.. Let M ¢ \V\l (&) be a compact, metrizable subset (with respect
to the Feurier topology). Here M:_(Ga) is the set of all positive, finite Radon measures

on G,

a) M is norm-bounded, Indeed, let 1 ¢ 11((3) be the constant function, equa!

to 1 sn G. We have V)= Wi ! for any y ¢ i"\:_ (&) ; since the mapping

£



=

N> V(A is continuous, the set 4 W\ VEM YL is compact in R.
b) Any ultrafilter TFon M converges for the topology induced on M by the weak
topology Q"QM (&), P(&)Y) . Indeed, let Tfbe an ultrafilter on M. Since M is compact

for the Fourier topology, there exists
(1) lim W =v, e M,
Let us now show that for any (e e P(aYy , wehave

AN
um o Ly = ¥, Cy).
Vel
(here we have dcnotod by \) (¢ {) the integral of the function Qq with respect to the

finite Radon measure ¥ ). Indeed, to prove this, we must show that for any & > 0. there
exists a set U;i €TJ , such that

WV =Ygk g e Ve

If this be not true, there would exista (¢ & P(&) , and an gc\» 0, such that, for

any UelJ there exists a v eU | for which
Tr

S ~
{ \>UU€<»\ =R 3 e
Let ﬂ\f \f be a countable basis of neighbourhoods of V for the Fourier
W w4 (-] E
topology &’\}’ ¢ M) . From (1) we infer that Ve TJ , n>1. Consequently, for any

n &N , there exists a v (»;_V»; , such that
1Y

o~ ; ~
@) VY, ()= V(g ) > &
and, obviously, we have lim V = \7 for the Fourier topoclogy
WP e :
o(}_“ = \,(Lea) é CC (G )‘) andr;,?be the posifive measure, defined on

the (¢ -algebra A(G) of subsets of %(G), given by the theorem 2. Let K(G) be the complete
G’--élgebra of subsets of P(G), generated by A(G) with respect toqf’. Then all the functions
oS > A ~o !

LR PQ_{,&)G-‘.» @)\)éi"\(&))are A(G)- measurable, and we have |

' @ ‘ ~ : « ¥
(3) \)n(%) = S kug)&\«)(xg)) we N,
' P (&)
By iaking into account the fact that

Aoty Ak AV ((Q)\<+<>o
WeN  QERG)
from the Lebesque dominated convergence theorem and from the01 em 2 we infer that

lim WY (Y, ) = g » ((@)&S(l{)——\?((q)

n. oo
. S ; % Lm
and this contradicts inequality (2).



o S : a.‘
()L (?)({) € X(a) , then Cox is a linear combination of four continuous
functions of positive type (see [‘3} , corollary 13.6.5). From we have just proved in b),

it follows .that for any ultrafilter T on M, which converges for the Fourier topology to

\’Oeﬂ , we have

lim ’\\)w%k\))xvo(‘ww.
Vel
d) Let now e K(a) and ( W, )\Aé;_[\_ be an approximate unit in K(G)

(with respect to the convolution). We have

’Quw-(uv y‘W\"'W;

AE SN

-uniformly on G, and, therefore,

lim /\\)C‘ ) =/\\) v(:)
\)GU LQ 7] L?;

for any @ € K(G). Indeed, this follows from the inequalities
o I ~ ~ ”~
WY =V () €10 (- wyx @) |+ | VIWx @) =V (Wyn )+

FARLCU S DY 2 I g — W QU+ VU, @)= (W mig e

A
e Wow -\
i e) Let now ¢ » 0 be an arbitrary positive number, ¥ an ultrafilter on M and
¢ e C G). Let VY be the limit of the ultrafilter LJ for the Fourier topology There

exists a compact set K ¢ G, such that

VKDY= (v h—¢

Q

Let now @, ¢ K*CG) be ruch that

é <
’x\< ('?o<~l.

We then have
A
WV~ 22 V() € 4y, W
and, therefore,
Will=w ) < &
Sincevlin%‘j WV = v, 1] » from what we have just proved it follows that there
3

exists a U QU) such that

Woll-e < Wy <y, W+g

and
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)

~ A A~ :
Vo (9,1 - £ < VY <V (g, )+ £

for any V¢ U . We infer that we have
A A o ' ~ A~
\\)(\Q)"‘VOLLQ')\,;?:%&\\LQ\& +\Q(L€L{70)"VGCWW03\
&7 )

for any v& U . By taking into-account the fact that w &K {&), from what we have
y e

‘just proved in d), it follows that we have
~ ~
lim VY = vV, (@),
Vel :
b
for any we C (&) . Consequently, any ultrafilter on M converges for the narrow

topology. Consequently, M is compact for this topology.

Corollary 1. On the n

wrcleet subsets of j\’\‘:_(G), which are compact

and metrizable for the Fourier topology, the narrow topology coincides with the Fourier
topology.

(:‘(_31_01:1:15‘27_2_ Let (\)h’)v\ 5 be a sequence of finite, positive Radon measures
on the 160a11y compact group G. If there exists a finite positive Radon measure \ , such
that

Losls A
lim '\?n( ) = ey
w -3 oo
for any pure, continuous function (e , of positive type, defined on G, then the same equa-
lity holds for any bounded, continuous, complex function C( , defined on G.

This corollary extends P.ILévy s theorem to arbitrary locally compact groups.
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