INSTITUTUL

DE

MATEMATICĂ

INSTITUTUL NAȚIONAL PENTRU CREAȚIE STIINȚIFICĂ ȘI TEHNICĂ

ON THE IRREDUCIBLE DISINTEGRATION OF THE REPRESENTATIONS OF C*-ALGEBRAS

by

SILVIU TELEMAN

PREPRINT SERIES IN MATHEMATICS
No.8/1977

BUCURESTI

Mad 14683

PENTRU CREATIE
STINGTINGS SETENICA

INSTITUTUL BO NATEWATIC

ON THE REPRESENTATIONS OF CT-AUGITRAS

MANS LET UNDER

PREPRINT GERIES IN MATHEMATICS
No. 9/1977

17239119118

ON THE IRREDUCIBLE DISINTEGRATION OF THE REPRESENTATIONS OF C*-ALGEBRAS by SILVIU TELEMAN *

MARCH 1977

^{*} National Institute for Scientific and Technical Creation, Calea Victoriei 114, Bucharest 22, Romania.

ON THE IRREDUCIBLE DISINTEGRATION
OF THE REPRESENTATIONS OF C*-ALGEBRAS
by
STLVIU TELEMAN *

NEX DOWN 1979

Marional Institute for Sewithing and Technical Greation, Coles Victorial III, Bucharest 22, Rodonia

ON THE IRREDUCIBLE DISINTEGRATION OF THE REPRESENTATIONS OF C* - ALGEBRAS

by Silviu Teleman

In a previous paper we have proved an irreducible disintegration theorem for the representations of C^* - algebras (see [13], theorem 3.1). We recall that in [13] we associated to any cyclic representation $W: \mathcal{C} \to \mathcal{L}(H)$ of the C^* - algebra \mathcal{C} in the complex Hilbert space H, a measure space (P, A, β), where β is a positive, σ -additive measure, such that $\beta(P) = 1$, defined on a σ - algebra A of subsets of the set P. Also, we constructed an integrable field $\{(H_p)_{p \in P}, \Gamma\}$ of Hilbert spaces and a field $\{(H_p)_{p \in P}, \Gamma\}$ of Hilbert spaces and a field $\{(H_p)_{p \in P}, \Gamma\}$ of irreducible representations $\{(H_p)_{p \in P}, \Gamma\}$, $\{(H_p)_{p \in P}, \Gamma\}$ such that there exists an isometric isomorphism

of H on the direct Γ - integral of the field of Hilbert spaces, such that if $x \in H$ and $(3p)_{p \in P} \in V(x)$, then, for any $c \in \mathcal{C}$, we have $(\pi_p(c)_{p})_{p \in P} \in V(\pi(c)_{x})$ and $\|\pi(c)_{x}\|^2 = \int_{\mathbb{R}^{N}} \|\pi_p(c)_{p}\|_{p}^2 d\beta(p)$.

The space (P, A, β) and the fields (H_p)_{p \in P}, $(\pi_p)_{p \in P}$, as we have constructed them in [13], depend on the representation π ; also, some of the representations π can be degenerated. By analogy with the case of the representations of commutative C^{π} -algebras (see the Gelfand - Naimark theorem, [10], ch. IV, § 17.4) it is desirable to obtain a decomposition theory as canonical as possible.

In what follows, for any $C^{\mathbb{X}}$ - algebra \mathscr{C} , we shall construct a measurable space (P,A), a field $(H_p)_p \in P$ of Hilbert spaces, a field $(\pi_p)_{p \in P}$ of non-degenerated irreducible representations $\pi_p : \mathscr{C} \to \mathscr{L}(H_p)$, of \mathscr{C} , and a vector subspace $\Gamma_o \subset \pi_{f \in P} H_p$, such that for any cyclic representation $\pi : \mathscr{C} \to \mathscr{L}(H)$ there exists a measure Γ_o defined on Γ_o , positive, finite, and such that the Γ_o completion Γ_o of the space Γ_o has the properties stated in the above mentioned theorem. As an application we shall give a new generalization to the continuity theorem of Γ_o . Lévy, as well as a generalization to the general case of the theorem of Γ_o . Bochner (see theorem 2 below).

1. Let $\pi: \mathcal{E} \to \mathcal{L}(H)$ be a cyclic representation of the C^* -algebra \mathcal{E} , and let $x \in H$, $\|x\| = 1$, be a cyclic vector. Let $\mathcal{L}(\pi(\mathcal{E}))'$ be a maximal Abelian von

Neumann subalgebra and \mathcal{B} the C^* - algebra generated by \mathfrak{Z} and $\pi(\mathscr{C})$. Then we have $\mathfrak{Z} \subset \mathcal{B} \subset \mathfrak{Z}'$ and $\mathfrak{B}' = \mathfrak{Z}$.

Let F (B) be the convex, $\mathcal{T}(\mathcal{B}^*; \mathcal{B})$ - compact set of the states of \mathcal{B} and $E_{\mathcal{O}}(\mathcal{E}) = \{ f \in \mathcal{C}^*; f \geq 0, \|f\| \leq 1 \}$.

Obviously, $E_0(\mathcal{C})$ is a convex, $\sigma(\mathcal{C}^*;\mathcal{C})$ -compact set and we have

ex
$$E(\mathcal{B}) = P(\mathcal{B})$$
, ex $E_{O}(\mathcal{C}) = P(\mathcal{C}) \cup \{0\}$,

where $P(\mathfrak{B})$, respectively $P(\mathscr{C})$ are the sets of the pure states of the C^* -algebra \mathfrak{B} , respectively \mathscr{C} (see $[\mathfrak{J}]$, $\{2.5.5.\}$). We define the state $f \in E(\mathfrak{B})$ by $f \circ (\mathfrak{b}) = (\mathfrak{b} \times_{\mathfrak{O}} (\mathfrak{b} \times_{\mathfrak{O}}))$, $\mathfrak{b} \in \mathfrak{B}$. The constriction $\pi : \mathscr{C} \to \mathfrak{B}$ induces an affine mapping $\pi^* : E(\mathfrak{B}) \to E(\mathscr{C})$ given by $\pi^*(f) = f \circ \pi$, $f \in E(\mathfrak{B})$. Obviously, π^* is $(\sigma(\mathfrak{B}^*; \mathfrak{B}); \sigma(\mathscr{C}^*; \mathscr{C}))$ - continuous. Let \mathscr{L} be the central measure associated to $f \in E(\mathfrak{B})$ (see [15], théorème 2 : [11], $\{5\}$.

Proposition 1. The direct image $(\pi^*)_*(\alpha)$ of the measure α is an orthogonal measure on E_0 (%), which represents $\pi^*(f_0)$.

Proof. a) The measure (π^*) (\mathcal{L}) represents $\pi^*(f_o)$. Indeed, for any \mathcal{L} let us denote by $\lambda_{\mathcal{L}}(c)$ the continuous, affine function, defined on $\mathbf{E}_{o}(\mathcal{L})$ by

$$\lambda_{\ell}(c)(f) = f(c), f \in E_{\ell}(\ell),$$

and by $\lambda_{\mathcal{B}}(\mathcal{L})$ let us denote the analogous continuous, affine function, defined on E(B), for any b \in B. We have

$$\lambda_{\mathcal{C}}(c) \circ \pi^* = \lambda_{\mathcal{B}}(\pi(c)), ce$$

and this implies that

$$(\pi^*)_*(\alpha)(\lambda_{\mathscr{C}}(c)) = \alpha(\lambda_{\mathscr{C}}(c) \circ \pi^*) = \alpha(\lambda_{\mathscr{B}}(\pi(c))) = f_*(\pi(c)) = (\pi^*(f_*))(c), c \in \mathscr{C};$$

the assertion is proved.

b) Let us now remark that the representation π may be identified with the Gelfand-Naimark - Segal representation associated to the state $\mathscr{L}_{\bullet} = \pi^*(f_{\bullet})$ of the C^* - algebra \mathscr{L}_{\bullet} . Let $K_{\mathcal{L}} : L^{\bullet}(\pi^*)_{*}(\mathscr{L}) \to (\pi(\mathscr{L}))^{\bullet}$ be the associated mapping (see [11], lemma 3). We have to prove that $K_{\mathcal{L}}$ is a homomorphism of * - algebras (see [11], theorem 7).

Indeed, for any $\varphi \in \mathcal{L}((\pi^*)_*(\alpha))$, and any $c_4, c_2 \in \mathcal{C}$ we have

$$(K_{g}(\varphi)\pi(c_{1})\chi_{o}(\pi(c_{2})\chi_{o}) = \int_{E_{0}(\varphi)} (\varphi\lambda_{g}(c_{2}^{*}c_{1})d\Gamma(\pi^{*})_{\chi}(\chi)] =$$

$$= (\pi^*)_*(\alpha) (\varphi \lambda_{\mathcal{C}}(c_2^*c_1)) = \alpha ((\varphi \lambda_{\mathcal{C}}(c_2^*c_1)) \circ \pi^*) =$$

$$= \alpha ((\varphi \circ \pi^*)(\lambda_{\mathcal{C}}(c_2^*c_1) \circ \pi^*)) = \alpha ((\varphi \circ \pi^*)(\lambda_{\mathcal{B}}(\pi(c_2^*c_1)))) =$$

$$= (K_{\mathcal{B}}(\varphi \circ \pi^*) \pi(c_1) \pi(c_2) \pi_0),$$

and this proves that we have

(*)
$$K_{\varrho}(\varphi) = K_{\mathcal{B}}(\varphi \circ \pi^*), \ \varphi \in L^{2}((\pi^*)_{*}(\alpha)).$$

From (*) we infer that the operator K is a homomorphism of * - algebras; consequently, $(\pi^*)_*(K)$ is an orthogonal measure (see [11], theorem 7). The proposition is proved.

Remark. From formula (*) and from the fact that im $K_{\mathcal{B}} = \mathcal{B}' = \mathcal{Z}$ we infer that im $K_{\mathcal{C}} \subset \mathcal{Z}$.

Proposition 2.
$$\pi^*(P(B)) \subset P(E) \cup \{o\}$$
.

Proof. a) Let $p \in P(B)$ and $\mathfrak{F}_p \in H_p$ be the cyclic vector associated to the pure state p. Let f be the pure state defined on $\pi_p(B)$ by the formula

$$f_{p}(\pi_{p}(k)) = (\pi_{p}(k)3_{p}^{\circ}(3_{p}^{\circ}) = p(k), k \in \mathcal{B}.$$

For any $z \in \mathcal{Z}$ we have $\pi_{\beta}(z) = \beta(z) \frac{1}{H_{\beta}}$, and, consequently, for any element $b \in \mathcal{B}$ of the form

$$b = \sum_{i=1}^{n} z_i \pi(c_i) + z_o$$

where $z_i \in \mathcal{Z}$ and $c_i \in \mathcal{C}$, i = 0, 1, 2, -, n, we have

$$\pi_p(b) = \sum_{i=1}^n \pi_p(z_i)(\pi_p \circ \pi_i)(c_i) + \pi_p(z_o) =$$

$$= \sum_{i=1}^{n} b(2i)(\pi_{p} \circ \pi)(Ci) + b(2o) \perp_{H_{p}} \in (\pi_{p} \circ \pi)(\mathcal{C}) + C \perp_{H_{p}}$$

It follows that we have the inclusion

because the sum from the right-hand member is closed in the norm topology (see [3], [1.8.]).

On the other hand, since the opposed inclusion is obviously true, we have the

equality

(1)
$$\pi_{\mathfrak{p}}(\mathcal{B}) = (\pi_{\mathfrak{p}}, \pi)(\mathcal{C}) + C \perp_{\mathcal{H}_{\mathfrak{q}}}.$$

b) It follows that $\pi_p(\pi(\mathcal{C}))$ is a two-sided ideal of $\pi_p(\mathcal{B})$, closed for the norm topology; from proposition 2.11.7, from [3], we infer that there exists a decomposition

$$f_p = f_p' + f_p''$$

where f' and f'' are positive linear forms on T(B), such that

$$\|f_{b}'\| = \|f_{b}'\| \pi_{p}(\pi(\mathcal{E}))\|$$

and

$$f_{p}^{"} \mid \pi_{p}(\pi(\mathcal{C})) = 0.$$

Since f is pure, from (2) we infer that there exists a number $\lambda \in [0,1]$, such

that

$$f_{\beta}' = \lambda f_{\beta}$$
, $f_{\beta}'' = (1-\lambda)f_{\beta}$.

We infer that we have

$$\lambda = \lambda \|f_b\| = \lambda \|f_b\| \|\pi_b(\pi(\mathcal{E}))\|$$

and

Consequently, $\lambda \neq 0 \Rightarrow \lambda = 1$; it follows that

and

With formula (1), the proposition is now an immediate consequence.

Let $E_{1}(\mathcal{B}) = \{ f \in E(\mathcal{B}); \| f | \pi(\mathcal{C}) \| = A \}$. Obviously, $E_{1}(\mathcal{B})$ is a convex subset of $E(\mathcal{B})$. Let us denote $P_{1}(\mathcal{B}) = P(\mathcal{B}) \cap E_{1}(\mathcal{B})$ and $P_{0}(\mathcal{B}) = \{ p \in P(\mathcal{B}); p \in \mathbb{T} = 0 \}$. From proposition 2 we infer that we have

$$P_{o}(B) \wedge P_{o}(B) = \emptyset$$
, $P_{o}(B) \cup P_{o}(B) = P(B)$.

We obviously have that $f_0 \in E_1(\mathbb{R})$.

Proposition 3. There exists a convex set $Q_1 \subset E_1(\mathfrak{B})$, which is Baire measurable in E(B) and has the properties that $f \in Q_1$ and $\mathscr{A}(Q_1) = 1$.

<u>Proof.</u> Let $\{u_i\}_{i \in I}$ be an approximative unit in \mathscr{C} . Then (see [3], proposition 2.1.5.) we have

 $\lim_{\zeta} \ f_o\left(\pi(u_\zeta)\right) = 1 \ ;$ it follows that for any $n \in N^*$ there exists an $\ i_n \in I,$ such that

(1)
$$1 - \frac{1}{n} < f_o(\pi(u_{i_n}))$$
.

By induction, we can find a sequence $(i_N)_{N \in \mathbb{N}}$ of indices from I, such that $i_1 = i_1$

It follows that $\pi(u_{\cdot}) \leq \pi(u_{\cdot})$ and, consequently, we have

$$0 \leq \lambda_{\mathcal{B}}(\pi(u_{i_n})) \leq \lambda_{\mathcal{B}}(\pi(u_{i_n})) \leq \lambda_{\mathcal{B}}(\pi(u_{i_n})) \leq 1$$

 $\varphi = \lim_{\kappa \to \infty} \lambda_{\mathcal{B}}(\pi(\kappa_{i_{\kappa}}))$. Then $\varphi : \mathcal{E}(\mathcal{B}) \to [0,1]$ is a Baire measurable, affine function, and we have

$$(2) \qquad \qquad \int \varphi \, d\lambda = 1.$$

Let $Q_1 = \{ f \in E(\mathbb{R}) ; \varphi(f) = 1 \}$. From (2) it follows that $\alpha(Q_1) = 1$. Also, for any $f \in Q_1$ we have

$$\lim_{i \to \infty} f(\pi(u_i)) = 1,$$

and this shows that $\| f \circ \pi \| = 1$; consequently, we have that $f \in E_1(B)$ and, therefore, the inclusion Q_1 CE $_1$ (3) is established. On the other hand, the set Q_1 is obviously Baire measurable, convex and $f_0 \in Q_1$, as a consequence of (1). The proposition is proved.

Corollary 1. The set $E_1(B)$ is α -measurable and $\alpha(E_1(B)) = 1$.

Proof. It is an immediate consequence of proposition 3.

Corollary 2. Any bounded, continuous function $t: E_1(\mathcal{B}) \to \mathbb{C}$ measurable.

Proof. Since the measure & is regular, there exists an increasing sequence of compact sets $K_{\kappa} \in E_{\kappa}(\mathcal{B})$, such that $\alpha(K_{\kappa}) \uparrow 1$

Let $K = \bigcup K_n$ and $t : E(B) \to C$ be defined by

$$t_{n}(f) = \begin{cases} t(f), & f \in K_{n} \\ 0, & f \in E_{n}(B) \setminus K_{n} \end{cases}$$

The functions t_n are α -measurable and we have

 $\lim_{\kappa \to \infty} t_{\kappa} = t \chi_{\kappa}.$ It follows that t is α -measurable, because

$$\alpha(E(B)\setminus K)=0$$
.

and the corollary is proved.

It is known that the measure lpha is pseudoconcentrated on P(B) (see theorem 2; [13]). More precisely, if UCE(为) is a Baire measurable set, such that $U \cap P(\mathfrak{Z}) = \emptyset$, then $\mathcal{L}(U) = 0$.

It follows that by the formula

 $\beta(U \cap P(B)) = d(U)$,
where $U \subset E(B)$ is Baire measurable, we correctly define a probabilistic measure β on the σ -algebra $A_{o}(P(B))$ of all traces on P(B) of the Baire measurable subsets of E(B):

$$A_{\circ}(P(B)) = \{ U \cap P(B); U \subset E(B) \text{ is } Baire measurable }$$
.

Proposition 4.
$$\beta^*(P_o(B)) = 0$$
.

Proof. With the preceding notations, we have

(1)
$$\Delta = \alpha(Q_1) = \beta(Q_1 \cap P(B_1)),$$

and

$$Q_1 \cap P(B) \subset P_1(B);$$

consequently, we have that $P_0(\mathcal{B}) \subset P(\mathcal{B}) \cap \mathcal{C}_{1}$, and the proposition is proved.

Corollary 1. For any bounded, continuous function $t: E_1(\mathcal{B}) \to C$, the t \P(B) is \(\beta\) - measurable and the following equality holds function

$$\int t d\alpha = \int t d\beta.$$

$$E_{1}(B) \qquad P_{1}(B)$$

Proof. From corollary 2 of proposition 3, we infer that the function t is &-measurable, where as the set $E_{1}(B)$ is α -measurable in virtue of corollary 1 of the same proposition. Consequently, the integral in the left-hand member of the preceding equality makes sense, and we have

$$\int_{E_{1}(B)} t d\alpha = \int_{Q_{1}} t d\alpha,$$

by taking into account proposition 3.

Since the set Q_1 is Baire measurable, it follows that there exists an increasing sequence of compact sets $L_n \subset Q_1$, $n \in \mathbb{N}$, which are Baire measurable and such that $\mathscr{L}(L_n) \uparrow \mathcal{L}$. Since the functions $t \mid L_n$, $n \in \mathbb{N}$, are continuous, the functions

$$\Delta: E(B) \to C$$
, $n \in \mathbb{N}$,

defined by

$$S_n(f) = \begin{cases} \cdot t(f), & f \in L_n, \\ 0, & f \in E(B) \setminus L_n, \end{cases}$$

are Baire measurable and we have

$$\int \cdot \rho_n d\alpha = \int \rho_n d\beta = \int \rho_n d\beta.$$

$$E(B)$$

$$P(B)$$

(see [13], lemma 1.1.).

If we denote L = UL, we have

and $Q_1 \setminus L$ is a Baire measurable set, for which $\alpha(Q_1 \setminus L) = 0$. It follows that

and, therefore,

$$\int t d\alpha = \lim_{n \to \infty} \int s_n d\alpha = \lim_{n \to \infty} \int s_n d\beta =$$

$$= \int t \chi_{\perp} d\beta = \int t d\beta,$$

$$P(B)$$

P(B) and this concludes the proof.

Proposition 5. For any bounded, continuous, affine function $t: E_1(\mathbb{R}) \to \mathbb{C}$

we have

$$t(f_0) = \int t dx$$
.

Proof. Since t is continuous at f, for any $\mathcal{E} > 0$ there exists a finite subset $\{b_1, \ldots, b_n\} \in \mathcal{B}$, such that $f \in E_1(\mathcal{B})$ and $\{f(b_i) - f_o(b_i)\} < 1$, f = 1, 2, -1, implies f = 1, 2, -1.

Let $\{A_1, A_2, -, A_m\}$ be a finite partition of E(B), consisting of Borel measurable subsets $A_i \subset E(B)$, such that

$$f', f'' \in A_i \Rightarrow |f'(G_i) - f''(G_i)| < 1, i = 1, 2, ..., n,$$

for any $i=1,2,\ldots,m$. If necessary, we can refine the partition such that, with an arbitrary selection of the points $f_i \in A_i \cap Q_i$, $i=1,2,\ldots,m$, we have

Let & be the Radon measure on E(B), given by

It is obvious that the barycenter b (8) of 8 is the point $b(8) = \sum_{i=1}^{m} \omega(A_i) f_i \in E(B)$ and we have $b(8) \in Q_1$. It follows that

$$|b(s)(b_{3}) - f_{0}(b_{j})| = |\sum_{i=1}^{\infty} \alpha(A_{i})f_{i}(b_{j}) - \int_{E(B)} f(b_{j}) d\alpha(f)| =$$

$$= |\sum_{i=1}^{\infty} \alpha(A_{i})f_{i}(b_{j}) - \sum_{i=1}^{\infty} \int_{A_{i}} f(b_{j}) d\alpha(f)| =$$

$$= |\sum_{i=1}^{\infty} \int_{A_{i}} (f_{i}(b_{j}) - f(b_{j})) d\alpha(f)| \leq$$

$$= \sum_{i=1}^{\infty} \int_{A_{i}} |f_{i}(b_{j}) - f(b_{j})| d\alpha(f)| \leq 1$$
for any $j = 1, 2, -$, n; consequently, we have

Since the function t is affine, we have

 $t(\ell(\delta)) = \sum_{i=1}^{m} \alpha(A_i) t(f_i),$

and, consequently,

The proposition is proved.

Corollary. For any bounded, affine function $t: E(B) \to \mathbb{C}$, whose restriction to $E_1(B)$ is continuous, we have

t(f.) = \(\tag{ tap.

<u>Proof.</u> It is an immediate consequence of proposition 4, of the corollary to proposition 4 and of proposition 5.

2. Since the function π^* : $E(\mathcal{B}) \to E_o(\mathcal{C})$, which was already defined, is continuous, it is Baire measurable; consequently, the direct image $(\pi^*)_*(\mathcal{C})$ of the measure \mathcal{L} is defined on the σ -algebra $\mathcal{B}(E_o(\mathcal{C}))$ of all Baire measurable subsets of $E_o(\mathcal{C})$ by the formula

$$[(\pi^*)_*(\alpha)](A) = \alpha ((\pi^*)^1(A)), A \in \mathcal{B}(E_0(\mathcal{E})).$$

From the inclusions $(\pi^*)^{-1}(\{0\}) \subset \mathbb{C}_{+}(\mathbb{B}) \subset \mathbb{C}_{+}(\mathbb{B})$ it follows that

 $0=\alpha'((\pi^*)^{-1}(\{o\}), \text{ and therefore, for the Borel measure } (\pi^*)$, (α) , direct image of α , we have

$$((\pi^*)_*(\alpha))(\{o\}) = 0.$$

Since $\{0\}$ is a closed subset of $E_o(\mathcal{C})$, from the preceding equality if follows that the exterior Baire measure, associated to the measure $(\pi^*)_*(\alpha)$, of the set $\{0\} \subset E_o(\mathcal{C})$ is zero.

Let now ACE $_{0}$ (%) be a Baire measurable subset, such that A \cap P (%) = \emptyset . Then we have

$$((\pi^*)_*(d))(A) = 0.$$

Indeed, from $A \cap P(\emptyset) = \emptyset$ it follows that

and this implies that

$$((\pi^*)^{-1}(A)\setminus Q_1)\cap P(B)=\emptyset$$
;

it follows that

$$2 ((\pi^*)^{-1}(A) \setminus CQ_1) = 0,$$

and, therefore,

$$\alpha((\pi^*)^{-1}(A))=0$$

because $\ll (\[\[Q_{\gamma} \] = 0.\]$ Consequently, we have

Let A_0 (P(\mathscr{C})) be the σ -algebra of the traces on P(\mathscr{C}) of all Baire measurable subsets of E_0 (\mathscr{C}):

$$A_{o}(P(%)) = \{ U \cap P(%); U \in E_{o}(%), Baire meas. \}$$

From the precedeing result it follows that by the formula

In analogy to lemma 1.1. from [13], we can state the following.

Proposition 6. For any bounded, Baire measurable function $t: E_{\mathfrak{o}}(\mathscr{C}) \to \mathbb{C}$, we have

$$\int t d \left[(\pi^*)_* (\alpha) \right] = \int t d \delta.$$

$$E_0(\delta) \qquad P(\delta)$$

<u>Proof.</u> For any $\xi > 0$ there exists a finite partition $\{E_1, E_2, \ldots, E_n\}$ of E ((), consisting of mutually disjoint, Baire measurable subsets of E ((), and complex numbers $t_1, t_2, \ldots, t_n \in \mathbb{C}$, such that

$$1 + (f) - \sum_{i=1}^{n} t_i \chi_{E_i}(f) | \langle \varepsilon, f \in E_o(\mathscr{E}).$$

It follows that we have

lows that we have
$$|\int_{\mathbb{R}^n} d \Gamma \left(\pi^* \right)_* (\alpha)] - \sum_{i=1}^n \int_{\mathbb{R}^n} d \Gamma \left(\pi^* \right)_* (\alpha)] (E_i) | < \mathcal{E},$$

$$E_0(\mathcal{E})$$

and

whence the proposition is now an immediate consequence, if we take into account the definition of the measure & .

Let now $A_0(P_1(B))$ be the σ -algebra of the traces on $P_1(B)$ of all the sets belonging to A_0 (P(B)); obviously, A_0 (P₁(B)) is the σ -algebra of the traces on P₁(B) of all Baire measurable subsets of E(B).

Since

from the equality

it follows that by the formula

 $\beta_1(A \cap P_1(B)) = \alpha(A)$, A C E(B), Baire measurable, we connectly define a probability measure on A_{Ω} ($P_{1}(B)$).

Let us now consider the mapping $\sigma = \pi^*/P_s(\mathfrak{B})$, which is defined on the measurable space $(P_1(B), A_0(P_1(B)))$, and takes values in the measurable space (P(Q),A (P((2))).

The mapping σ is measurable. Indeed, if $A \subset E_0(\mathscr{C})$ is Baire measurable,

and (\min \sigma'(A) is Baire measurable in E(B).

Proposition 7. $\sigma_*(\beta_s) = \zeta$.

<u>Proof.</u> Let $A \subset E_0$ (\mathscr{C}) be an arbitrary Baire measurable set. We have $\sigma_{*}(\beta_{1})(A \cap P(\mathcal{E})) = \beta_{1}(\sigma^{-1}(A \cap P(\mathcal{E}))) = \beta_{1}((\pi^{*})^{-1}(A) \cap P_{1}(B)) =$ $= \alpha ((\pi^*)^{-1}(A)) = ((\pi^*)_*(X))(A) = \delta(A \cap P(\mathcal{C})),$

and the proposition is proved.

3. For any $p \in P(\emptyset)$ let us consider the associated Hilbert space H_p , the associated irreducible representation $\pi_p : \mathcal{C} \to \mathcal{L}(H_p)$, and the associated canonical mapping $\theta_p : \mathcal{C} \to \mathcal{H}_p$. We shall define a linear mapping $\theta_p : \mathcal{C} \to \mathcal{H}_p$ by the formula

$$\Theta_{\mathcal{C}}(c) = (\Theta_{\mathcal{C}}(c))_{\mathcal{C}}(c), \quad c \in \mathcal{C}.$$

Similarly, for any $p \in P(B)$ we shall consider the associated Hilbert space H_p , the associated irreducible representation $\pi_p: \mathcal{B} \to \mathcal{L}(H_p)$, and the associated canonical mapping $\theta: \mathcal{B} \to \mathcal{H}_p$. We shall consider the linear mappings $\theta: \mathcal{B} \to \pi \mathcal{H}_p$ and $\theta: \mathcal{B} \to \pi \mathcal{H}_p$ given by

$$\theta_{\mathcal{B}}(k) = (\theta_{p}(k))_{p \in P(\mathcal{B})}, \ \theta_{\mathcal{B}}^{1}(k) = (\theta_{p}(k))_{p \in P(\mathcal{B})}, \ k \in \mathcal{B}.$$

Let $\rho: \Pi H \to \Pi H$ be the canonical mapping. We shall denote

 $\Gamma(\mathcal{C}) = \operatorname{im} \theta_{\mathcal{C}}, \ \Gamma(\mathcal{B}) = \operatorname{im} \theta_{\mathcal{B}}, \ \Gamma_{*}(\mathcal{B}) = \operatorname{im} \theta_{\mathcal{B}}.$ We now define the linear mappings $u: \Gamma(\mathcal{C}) \to \Gamma(\mathcal{B})$ and $u: \Gamma(\mathcal{C}) \to \Gamma_{*}(\mathcal{B})$ by

 $u(\theta_{\mathcal{C}}(c)) = \theta_{\mathcal{B}}(\pi(c)), u_1(\theta_{\mathcal{C}}(c)) = \theta_{\mathcal{B}}^1(\pi(c)).$ We obviously have $\rho(\Gamma(\mathcal{B})) = \Gamma(\mathcal{B})$ and $\rho \circ u = u_1.$

For any $c \in \mathcal{C}$, the function $p \mapsto p(c)$ is measurable and bounded on $(P(\mathcal{C}), A_o(P(\mathcal{C})))$, whereas for any $b \in \mathcal{B}$, the function $p \mapsto p(b)$ is measurable and bounded on $(P(\mathcal{B}), A_o(P(\mathcal{B})))$ respectively on $(P_1(\mathcal{B}), A_o(P_1(\mathcal{B})))$. It follows that we can define the scalar products

$$(\theta_{g}(c_{1}) | \theta_{g}(c_{2})) = \int p(c_{2}^{*}c_{1}) d\delta(p), \quad c_{1}, c_{2} \in \mathcal{C},$$

$$P(\mathcal{C})$$

$$(\theta_{g}(b_{1}) | \theta_{g}(b_{2})) = \int p(b_{2}^{*}b_{1}) d\beta(p), \quad b_{1}, b_{2} \in \mathcal{B},$$

$$P(\mathcal{B})$$

anu

$$(\theta_{\mathcal{B}}^{1}(b_{1})) \theta_{\mathcal{B}}^{1}(b_{2})) = \int_{P_{1}(\mathcal{B})} b(b_{2}^{*}b_{1}) d\beta_{1}(b_{1}), \quad b_{1}, b_{2} \in \mathcal{B},$$

respectively on $\Gamma(\mathcal{C})$, $\Gamma(\mathcal{I}_{2})$ and $\Gamma(\mathcal{B})$.

We have the following properties

a) u is an isometry of $\Gamma(\mathcal{C})$ into $\Gamma(\mathcal{B})$. Indeed, for any $c_1, c_2 \in \mathcal{C}$ we have

$$(u\theta_{\mathcal{C}}(c_1)) u\theta_{\mathcal{C}}(c_2)) = (\theta_{\mathcal{B}}(\pi(c_1)) | \theta_{\mathcal{B}}(\pi(c_2))) =$$

$$= \int p(\pi(c_2^*c_1)) d\beta(p) = \int f(\pi(c_2^*c_1)) d\alpha(f) =$$

$$= \alpha(\lambda_{B}(\pi(c_{2}^{*}c_{1})) = \alpha((\lambda_{G}(c_{2}^{*}c_{1})) \circ \pi^{*}) =$$

$$= ((\pi^{*})_{*}(\alpha))(\lambda_{G}(c_{2}^{*}c_{1})) = \delta(\lambda_{G}(c_{2}^{*}c_{1})) =$$

$$= \int p(c_{2}^{*}c_{1}) d\delta(p) = (\theta_{G}(c_{1}))(\theta_{G}(c_{2})),$$

$$P(G)$$

and the assertion is proved.

b) $\rho \setminus \Gamma(B)$ is an isometry of $\Gamma(B)$ on $\Gamma(B)$. Indeed, we have $(\varrho(\theta_{R}(b_{1})) | \varrho(\theta_{R}(b_{2}))) = (\theta_{R}(b_{1}) | \theta_{R}(b_{1}) | \theta_{R}(b_{2})) =$ $=\int\limits_{P_1(B)}b(b_2^*b_1)d\beta_1(p)=\int\limits_{P(B)}b(b_2^*b_1)d\beta_1(p)=(\theta_B(b_1)|\theta_B(b_2)),$ for any $b_1,b_2\in B$. The fact that $\rho(\Gamma(B))$ is a surjection on $\Gamma_1(B)$ was remarked before.

c) u_1 is an isometry of $\Gamma(\mathcal{C})$ into $\Gamma_1(\mathcal{B})$. This immediately follows from a) and b).

Let us now consider the mappings $U: \Gamma(B) \to H$ and $U_i: \Gamma(B) \to H$

given by

「(B) into H.

$$U(\theta_{\mathcal{B}}(b)) = bx_0$$
, $U_1(\theta_{\mathcal{B}}(b)) = bx_0$, $b \in \mathcal{B}$.

The first one is, obviously, correctly defined, because $\theta_{\mathcal{D}}(k) = 0 \Rightarrow$ $\theta_{\mathbf{p}}(\mathbf{k}) = 0$, $\phi \in \mathcal{P}(\mathbf{E})$; therefore $\mathbf{b} = 0$. Let us now assume that $\theta_{\mathbf{p}}(\mathbf{k}) = 0$. We then have $\theta_{\mathbf{p}}(\mathbf{k}) = 0$,

$$0 = \int \|\theta_{p}(b)\|_{p}^{2} d\beta_{1}(b) = \int \|\theta_{p}(b)\|_{p}^{2} d\beta_{1}(b) = \int p(b^{*}b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{1}(b) = \int p(b^{*}b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{1}(b) = \int p(b^{*}b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{1}(b) = \int p(b^{*}b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{1}(b) d\beta_{$$

and this implies that bx = 0.

We obviously have $U_{\bullet} \circ (\rho \mid \Gamma(B)) = U_{\bullet}$ and $(U_{\bullet} \Theta_{B}^{*}(b_{\bullet}) \mid U_{\bullet} \Theta_{B}^{*}(b_{\bullet})) = (b_{\bullet} \times_{\bullet} \mid b_{\bullet} \times_{\bullet}) = \int_{\bullet} (b_{\bullet}^{*}b_{\bullet}) = \alpha(\lambda_{B}(b_{\bullet}^{*}b_{\bullet})) = \int_{\bullet} \lambda_{B}(b_{\bullet}^{*}b_{\bullet}) da = 0$ $= \int p(b_2^*b_1) d\beta(b) = \int p(b_2^*b_1) d\beta_1(b) = (\theta_3^*(b_1) | \theta_3^*(b_2)), b_1, b_2 \in B,$ P(B) and this shows that U_1 is an isometry of $\Gamma(B)$ into H; it follows that U is an isometry of

From the above considerations it follows that we have the commutative diagram

./.

and, therefore, the equalities

$$(U \circ u \circ \theta_{\mathcal{C}})(c) = \pi(c) \times_{\mathcal{C}}, c \in \mathcal{C},$$

$$U_{1} \circ u_{1} = U \circ u.$$

It follows that Uou is an isometry of PCG) on a dense subset of H.

4. Let P be an arbitrary set, $(H_p)_{p \in P}$ a field of Hilbert spaces, defined on P, and A a σ -algebra of subsets of P. Let $\Gamma \subset \pi H_p$ be a vector subspace, having the following property

 \Rightarrow the function $p \mapsto \|3p\|_p^2$ is bounded and A-measurable.

From the polarization formula it then follows that for any pair $\xi = (\xi_p)_{p \in \mathbb{N}}$, the function $p \mapsto (\xi_p \mid p)_p$, $p \in P$, is bounded and A-measurable.

Let μ be a probability measure, defined on \mathcal{A} . We can define a scalar product, on Γ , by the formula $(319)_{\mu} = \int (3_{1}19_{p})_{p} d\mu(p)$, $3,9 \in \Gamma$. Let $\Gamma_{0} \subset \mathbb{T}_{1} + \mathbb{F}_{2}$ be the set of all vector fields $\xi = (\xi_{p})_{p \in P}$, such that

One can easily show that Γ_0 is a vector subspace of ΠH_0 and, also, that the mapping

is a semi-norm on Γ_o ; we obviously have $\Gamma \subset \Gamma_o$.

Let $\Gamma^2(\mu)$ be the closure of Γ in Γ_0 with respect to the topology determined in Γ_0 by the semi-norm g: it is obvious that $\Gamma^2(\mu)$ is the set of all vector fields $\xi = (\xi_p)_{p \in P} \in \mathcal{T}_p \in \mathcal{T}_p$, which have the property that there exists a sequence $(\xi_n)_{n \geq 0}$ of vector fields $\xi_n = (\xi_n)_{p \in P} \in \Gamma$, such that

$$\lim_{n\to\infty} \int_{P}^{*} \| \hat{\beta}_{np} - \hat{\xi}_{p} \|_{p}^{2} d\mu(p) = 0.$$

Proposition 8. For any $\xi \in \Gamma_{\mu}^{2}$ the function $p \mapsto \|\xi_{p}\|_{p}^{2}$ is μ -integrable.

Proof. Let $\S = (\S_p)_{p \in p} \in \Gamma^2(\mu)$ and $\S_n = (\S_{np})_{p \in p}$ has be a sequence of vector fields from Γ , such that

$$\lim_{n\to\infty} \int_{P}^{*} \| \hat{s}_{np} - \hat{s}_{p} \|_{p}^{2} d\mu(p) = 0.$$

It follows that there exists a subsequence of the sequence $(3n)_{n \ge 0}$, for which we shall maintain the same notation, such that

It follows that we have

and we consequently have the following equalities

It follows that the functions. $p\mapsto \|\xi_p\|_p$ and $p\mapsto \|\xi_{mp}-\xi_p\|_p$ are \mathcal{U} - measurable, for any $m\in\mathbb{N}$, after having modified them on a μ - null set from \mathcal{U} . We can therefore write the equality

$$2(\xi_m - \xi) = \left(\int_{P} \|\xi_{mp} - \xi_p\|_{p}^{2} d\mu(p) \right)^{1/2},$$

whereas from the inequality

it immediately follows that

Hence we immediately infer that

and the proposition is proved.

By the formula

we correctly define a scalar product on $\Gamma^2(\mu)$, which is thus endowed with a structure of a pre-hilbertian space; let $\tilde{\Gamma}^2(\mu)$ be the associated separated pre-hilbertian space: it can be identified with set of all classes of vector fields, which belong to $\tilde{\Gamma}^2(\mu)$, modulo coincidence $\mu-a.e.$

Proposition 9. The spaces $\int_{-\infty}^{2} (\mu)$ and $\int_{-\infty}^{2} (\mu)$ are complete.

Proof. It will be sufficient to prove that $\Gamma^2(\mu)$ is complete. Let $(\xi_n)_{n > 0}$ be a fundamental sequence of vector fields $\xi_n = (\xi_n)_{n > 0} \in \Gamma^2(\mu)$. By coosing a subsequence, we can assume that

and, therefore, from the Schwarz inequality, we get

The Beppo Levi theorem now implies that the sequence $(\xi_{n,p})_{n>0}$ is a fundamental sequence in H_p, for almost any p ∈ P (with respect to the measure). Let us define $\xi_p = \lim_{n \to \infty} \xi_{n,p}$, for any $p \in P$ at which the sequence $(\xi_{n,p})_{n \ge 0}$ converges in the complete space H_p , and arbitrarily otherwise.

We then have

$$\lim_{n\to\infty} \int \|\mathbf{x}_{n,p} - \mathbf{x}_{p}\|_{p}^{2} d\mu(p) = 0,$$
and, therefore, $\mathbf{x} = (\mathbf{x}_{p})_{p \in p} \in \Gamma^{2}(\mu)$ and $\lim_{n\to\infty} \mathbf{x}_{n} = \mathbf{x}_{n}$, in the space $\Gamma^{2}(\mu)$.

The proposition is proved.

We shall say that the vector fields from $\Gamma^2(\mu)$ are strongly square integrable vector fields. We shall say that the space $\Gamma^2(\mu)$ is the $L^2(\mu)$ - completion of the space Γ whereas the Hilbert space $\tilde{\Gamma}^2(\mu)$ will be called the <u>direct Hilbert integral</u> of the field (H_p) with respect to the space \(\) and the measure \(\mu \); we shall also write \(\) \(\mu \), instead of $\Gamma^2(\mu)$, if the omission of the symbol Γ is not creating the danger of confusion.

We shall also say that a vector field $\xi = (\xi_p)_{p \in P}$ is a weakly square integrable vector field if the following conditions are satisfied.

, a) there exists a μ -summable function $\varphi: P \to \mathbb{R}$, such that $\|\xi_b\|_b^2 \le \varphi(b), \mu -a.e. \text{ on P.}$

b) for any $\gamma \in \Gamma^2(\mu)$ the function $\beta \mapsto (\xi_{\beta} | \mathcal{P}_{\beta})_{\beta \in \mathcal{P}}, \beta \in \mathcal{P}_{\beta}$ is ~-measurable.

From the Schwarz inequality it immediately follows that we have

for any weakly square integrable vector field ζ , which satisfies the preceding conditions, and for any strongly square integrable vector field $\gamma = (\gamma_p)_{p \in P} \in \Gamma^2(\mu)$. We, therefore, infer that the function $p \mapsto (\xi_p | \gamma_p)_b$, $p \in P$, is μ -integrable.

We shall say that weakly square integrable vector fields \$ \ \ \ \ \ \ \ \ are weakly equivalent if

$$\int_{P} (\xi_{p}' | \gamma_{p})_{p} d\mu(p) = \int_{P} (\xi_{p}'' | \gamma_{p})_{p} d\mu(p),$$
for any $\gamma = (\gamma_{p})_{p \in P} \in \Gamma^{2}(\mu).$

Proposition 10. Any weakly square integrable vector field is weakly equivalent to a strongly square integrable vector field, which is unique up to a strong equivalence.

<u>Proof.</u> The uniqueness is an immediate consequence of the fact that if $\xi \in \Gamma^2(\mu)$,

and if

for any $\gamma \in \Gamma^2(\mu)$, then $\xi_p = 0$, μ -a.e., on P.

Let us now consider a weakly square integrable vector field $\xi = (\xi_p) \in \mathbb{T}H$. Let $\varphi : P \to \mathbb{R}$ be a μ -integrable function, such that

We shall define a linear mapping $\ell: \Gamma^2(\mu) \to \mathbb{C}$ by the formula

From the Schwarz inequality we infer that

and, therefore, since $\Gamma^2(\mu)$ is complete, with the theorem of F. Riesz it follows that there exists a vector field $\xi' = (\xi'_p)_{p \in P} \in \Gamma^2(\mu)$, which is strongly. Aquare integrable and such that

It follows that ξ' is weakly equivalent to $\dot{\xi}$, and the proposition is proved.

Remark. Examples show that, in general, $\Gamma^2(\mu)$ is not a $\mathcal{L}^2(\mu)$ - module. If Γ is a $\mathcal{L}^2(\mu)$ - module, then $\Gamma^2(\mu)$ has the same property, but the converse is not necessarily true.

Proposition 11. The vector space $\Gamma^2(\mu)$ is a $\mathcal{L}^2(\mu)$ - module if, and only if, the following property holds

(*) For any weakly square integrable vector field ξ there exists a strongly square integrable vector field ξ' , such that, for any $\gamma \in \Gamma^2(\mu)$, the equality

holds.

Proof. Indeed, let us assume that $\Gamma^2(\mu)$ is a $\mathcal{L}^2(\mu)$ -module. Let $\mathcal{J} = (\mathcal{J}_p)_{p \in P} \in \mathcal{T}$ be a weakly square integrable vector field; let $\mathcal{J}' = (\mathcal{J}'_p)_{p \in P} \in \Gamma^2(\mu)$ be the strongly square integrable vector field which corresponds to \mathcal{J}' in virtue of proposition 10. We then have

for any
$$y = (p_p)_p \in \Gamma^2(\mu)$$
. By fixing now $y \in \Gamma^2(\mu)$, we have $\geq y = (\geq (p)p_p)_p \in \Gamma^2(\mu)$

$$\in \Gamma^{2}(\mu)$$
, for any $\ni \in \mathcal{L}^{\infty}(\mu)$; hence, from (1), we get

(2)
$$\int_{P} \overline{2(p)} \left(\frac{2}{3} p - \frac{2}{3} p \right) \left(\frac{2}{3} p \right$$

for any $2 \in \mathcal{L}(\mu)$; it follows that we have

for any $\eta \in \Gamma^2(\mu)$.

Conversely, let us assume that property (*) holds. It will be sufficient to prove that for any $A \in A$ and any $\xi = (\xi_p)_{p \in P} \in \Gamma^2(\mu)$, we have $\chi_A \xi = (\chi_A(\xi) \xi_p)_{p \in P} \in \Gamma^2(\mu)$, where χ_A is the characteristic function of the set A. Obviously, χ_A is a weakly square integrable vector field.

In virtue of proposition 10, there exists a strongly square integrable vector field $\xi' = (\xi')_{p \in P}$, such that

$$(\chi_{A}(p)\xi_{p}|\gamma_{p})_{p} = (\xi_{p}'|\gamma_{p})_{p}, \mu-a.e. \text{ on } P, \text{ for any } \gamma \in \Gamma^{2}(\mu).$$

By making successively $\gamma = \xi$ and $\gamma = \xi'$, we infer that

$$\|\chi_{A}(p)\|_{p}^{2} - \xi_{p}^{2}\|_{p}^{2} = \chi_{A}(p)(\chi_{A}(p)\xi_{p} - \xi_{p}^{2}|\xi_{p})_{p} - (\chi_{A}(p)\xi_{p} - \xi_{p}^{2}|\xi_{p})_{p} = 0,$$
it follows that $\chi_{A} \xi \in \Gamma(p)$, and the proposition is proved.

5. By applying the construction we have just made to the spaces (P(4), A, (P(4)); 5, ((6)) $(P(B), A_o(P(B)), \beta, \Gamma(B))$ and $(P_o(B), A_o(P_o(B)), \beta_o, \Gamma_o(B))$, we respectively obtain the complete pre-hilbertian spaces $\Gamma^2(x)$, $\Gamma^2(x)$ and $\Gamma^2(x)$, and the Hilbert spaces $\Gamma^2(x)$, $\Gamma^2(x)$ and $\tilde{\Gamma}^{2}(\beta_{1})$. From what we have proved at ξ 3, we immediately infer that we have the following commutative diagram

$$\mathcal{C} \xrightarrow{\widetilde{\Theta}_{\mathcal{C}}} \widetilde{\Gamma}^{2}(\mathcal{C}) \xrightarrow{\widetilde{\mathcal{U}}} \widetilde{\Gamma}^{2}(\beta_{1}) \xrightarrow{\widetilde{\mathcal{U}}} H$$

in which \widetilde{u} , \widetilde{u}_1 , \widetilde{U} , \widetilde{U}_1 and $\widetilde{\rho}$ are isomorphisms of Hilbert spaces, and we have the following inequalities

$$(\widetilde{\mathcal{D}}_{\circ}\widetilde{\mathcal{U}}_{\circ}\widetilde{\mathcal{O}}_{\mathscr{C}})(\mathcal{L}) = \pi(\mathcal{L})\chi_{\circ}, \quad \mathcal{L} \in \mathscr{C}$$

$$(*)$$

$$\widetilde{\mathcal{U}}_{\circ}\widetilde{\mathcal{U}}_{\circ} = \widetilde{\mathcal{U}}_{\circ}\widetilde{\mathcal{U}}.$$

We obviously have $\widetilde{U} = V^{-1}$, where V is the isomorphism from ([13], theorem 3.1).

./.

Proposition 12. $\Gamma^{2}(\mathcal{E})$ is a $\mathcal{L}(\mathcal{E})$ -module.

<u>Proof.</u> It will be sufficient to prove that for any function $t\in\mathcal{L}^{r}(\mathcal{E})$ and any $c\in\mathcal{E}$, we have

Indeed, since the function

where $c_o \in \mathcal{C}$ is an arbitrary element, is \mathcal{C} -measurable, by taking into account the fact that we have

$$(\varphi \circ \pi^*)(2) = \| \theta_2(\pi(c_0)) - t(\pi^*(2)) \theta_2(\pi(c_1)) \|_{2}^2$$

for any $q \in P(B)$, we infer that

$$\int \|\theta_{p}(c) - t(p)\theta_{p}(c)\|_{p}^{2} d\delta(p) = \int \|\theta_{p}(\pi(c)) - t(\pi^{*}(p))\theta_{p}(\pi(c))\|_{p}^{2} d\beta_{1}(p) = P(B)$$

$$= \int \|\theta_{p}(\pi(c)) - (t \circ \pi^{*})(p)\theta_{p}(\pi(c))\|_{p}^{2} d\beta(p),$$

where the function $t \cdot \pi^*$ has been extended arbitrarily on $P_0(B)$. Since $\Gamma^2(B)$ is a $\mathcal{L}(B)$ -module (see [16], theorem 1.1 and proposition 11 above), we infer that

From the tact that the representation π is cyclic, we infer that there exists a sequence (c_n) of elements of g, such that

(2)
$$\lim_{n\to\infty} \int \|\theta_p(\pi(c_n)) - (t_0\pi^*)(p)\theta_p(\pi(c))\|_p^2 d\beta(p) = 0.$$

From formulas (1) and (2) it follows that

and, therefore, $\forall \theta_{\ell}(c) \in \Gamma^{2}(\delta)$. The proposition is proved.

Corollary. The system $\{P(\mathcal{C}), A_o(P(\mathcal{C})), \mathcal{E}, (H_p)_{p \in P(\mathcal{C})}, \Gamma^2(\mathcal{E})\}$ is an integrable field of Hilbert spaces (in the sense of W. Wils).

<u>Proof.</u> It is an immediate consequence of the preceding results and of ([16], theorem 1.2).

We resume the results already obtained in the following theorem, which is a generalization of theorem 3.1. from [13].

./.

Theorem 1. Let & be an arbitrary C* - algebra. Then there exist

- 1° . A measurable space (P, A_{\circ}), where P is a set and A_{\circ} is a σ -algebra of subsets of P;
 - 2°. A field (H_p)_{p ∈ P} of Hilbert spaces;
- 3°. A vector subspace $\Gamma \subset \Pi H_p$, consisting of vector fields $\xi = (\xi_p)_{p \in P}$, which have the property that the function $p \mapsto \|\xi_p\|_p$, $p \in P$, is bounded and A_0 -measurable, for any $\xi \in \Gamma$;
- 4° . A field $(\pi_{p})_{p \in P}$ of non-degenerate irreducible representations $\pi_{p} : \mathcal{C} \to \mathcal{L}(H_{p})$, $p \in P$, such that: for any cyclic representation $\pi : \mathcal{C} \to \mathcal{L}(H)$ there exists a probability measure \mathcal{E} , defined on A, and having the following properties:

a) the $L^2(\mathcal{X})$ - completion $\Gamma^2(\mathcal{X})$ of Γ determines an integrable field of Hilbert spaces (in the sense of W. Wils);

b) there exists an isometric isomorphism $V:H\to \mathcal{F}_{P}H_{p}\mathcal{U}(p)$, such that if $x\in H$ and V(x) is represented by the strongly square integrable vector field $(\mathcal{F}_{P})_{p\in P}$, then, for any $c\in \mathcal{C}$, the vector $V(\pi(c)x)$ is represented by the strongly square integrable vector field $(\pi_{P}(c)\mathcal{F}_{P})_{p\in P}$, and the equality

hoids.

Proof. We shall take $P = P(\mathcal{C})$, $A_0 = A_0(P(\mathcal{C}))$, the Hilbert spaces H_p , $p \in P$, being those we have considered above; $\Gamma = \Gamma(\mathcal{C})$, whereas the measure \mathcal{C} is that given by proposition 7. The property a) is a consequence of the corollary to proposition 12, whereas property b) is obtained by taking $V = (\widetilde{\mathcal{D}} \circ \widetilde{\mathcal{U}})^{-1}$ and by taking into account formulas (*) from \S 5. The theorem is proved.

6. Let $q_0 \in E(\mathcal{C})$ and p_0 be a probability Radon measure on E_0 (\mathcal{C}), which represents q_0 , i.e., $q_0 = b(p_0)$. The following property is a variant to proposition 3.

Proposition 13. There exists a Baire measurable convex set $QCE_o(\mathcal{C})$, which is contained in E(\mathcal{C}) and such that $q \in \mathcal{Q}$ and $p(\mathcal{Q}) = 1$.

Proof. Let (u.) be an approximate unit of the C^* -algebra $\mathscr C$. We have

and, therefore, there exists a sequence $(u_i)_{n \geq 1}$, such that $u_i \leq u_i$ and $g_i(u_i) \uparrow 1$. It follows that we have $\lambda_{\mathcal{C}}(u_i) \leq \lambda_{\mathcal{C}}(u_i)$; let $\psi = \lim_{n \to \infty} \lambda_{\mathcal{C}}(u_i)$. Then $0 \leq \psi \leq 1$ and ψ is a Baire measurable, affine function, defined on $E_i(\mathcal{C})$. We have $\psi(g_i) = 1$ and

 $\int \psi \, d\mu = \lim_{n \to \infty} \int \chi(u_{j_n}) \, d\mu = \lim_{n \to \infty} g_0(u_{j_n}) = 1.$ Ed(6)
Let $Q = \{ f \in E_0(\mathcal{E}) : \psi(f) = 1 \}$. We obviously have that $g_0 \in Q$, Q

is a Baire measurable, convex set and $\mu(\mathcal{Q})=1$. If $f\in\mathcal{Q}$, then

$$1 \ge \|f\| = \lim_{\delta} f(u_{\delta}) \ge \lim_{n \to \infty} f(u_{\delta n}) = \psi(f) = 1$$

and this shows that $\| \cdot \|_{\infty} = 1$. The proposition is proved.

Corollary. The set E (%) is μ -measurable and μ (E(%)) = 1.

In particular, let us consider the Gelfand-Naimark-Segal representation Tq: 4-> $\rightarrow \mathcal{L}(H_{g_0})$, associated to $g_0 \in E(\mathcal{C})$, in the Hilbert space H_g . Let $g_0 \in H_{g_0}$ be the corresponding cyclic vector and denote by $\mathcal B$ the C^* -algebra generated in $\mathcal L(H_g)$ by $\pi(\mathcal{C})$ and by a maximal Abelian von Neumann algebra $3 \in (\pi_{\mathcal{C}}(\mathcal{C}))'$. Let $f_{\mathcal{C}} \in \mathcal{C}(\mathcal{C})$ be the state given by

 $g_o = f_o \circ \pi_{g_o} = \pi_{g_o}^*(f_o)$. Let α be the central measure on E(B), associated to f.

In virtue of proposition 1, the direct image $(\pi_q^*)_*(\alpha)$ is an orthogonal probability Radon measure on E (%), which represents g

If the approximate unit $\{u_i\}_{i\in \Sigma}$ of the C^* -algebra \mathcal{C} , used in the proof of proposition 3, coincides with the approximate unit used in the proof of proposition 13, and if the subsequences { with and } with coincide too, then, from the equality

$$\lambda_{\ell}(c) \circ \pi_{\ell}^* = \lambda_{\mathcal{B}}(\pi_{\mathfrak{g}}(c)), \quad c \in \ell_{\ell},$$

we immediately infer that we have $\psi \circ \pi^* = \varphi$, and, therefore, $Q = (\pi^*)^{-1}(Q)$. Obviously, E (\mathscr{C}) is a $(\pi^*)_*(\alpha)$ -measurable set, and we have

$$[(\pi_{g_0}^*)_*(\alpha)](E(G)) = 1.$$

Proposition 14. a) Any bounded, continuous function t: E(%) -> C $(\pi_{g_0}^*)_{x}(\alpha)$ -measurable;

b) For any bounded, continuous function t: E(%) -> (the function tip(%) is t-measurable and we have

$$\int t d((\pi_{g_0}^*)_*(\alpha)) = \int t dr.$$

$$E(6) \qquad P(6)$$

Proof. a) Since the measure & is regular, there exists an increasing sequence $(K_n)_{n \ge 0}$ of compact sets $K_n \subset E(\mathcal{C})$, such that $[(\pi_q^*)_*(\mathcal{C})](K_n) \uparrow 1$. Let $K = \bigcup_{n \ge 0} K_n$ $\begin{array}{c} (K_n)_{n\geqslant 0} \\ \text{and } t : E_o(\mathcal{C}) \to \mathcal{C} \text{ be the function defined by} \\ \\ t_n(f) = \left\{ \begin{array}{c} t(f), f \in K_n \\ 0, f \in E_o(\mathcal{C}) \setminus K_n \end{array} \right. \end{array}$

$$t_n(f) = \begin{cases} t(f), f \in K_n \\ 0, f \in E_0(\mathcal{C}) \setminus K_n \end{cases}$$

The functions t are Borel measurable and we have

It follows that t is $(\pi_{q_0}^*)_*(\alpha)$ -measurable, because $[(\pi_{q_0}^*)_*(\alpha)](E(\mathcal{C})\setminus K) = 0$.

b) Since the function t is (π^*) (α) -measurable, whereas the set E (\mathscr{C}) (m) - measurable, it follows that the left hand integral the equality makes sense, and

we have

[td[(mg,),(d)] = [td[(mg,),(d)],

a consequence of proposition 13. Since the set QCE (%) is Baire measurable, it follows that there exists an increasing sequence of compact sets $L_{\kappa}CQ$, $\kappa\in\mathbb{N}$, which are Baire measurable, and such that $[(\pi_{q_0}^*)_*(\alpha)](L_n)$ \(\tau)\). Since the functions $t \mid L_n$, n EN, are continuous, the functions s: Eo(6) > (, new, given by

$$S_n(f) = \begin{cases} t(f), f \in L_n \\ 0, f \in E_0(\mathcal{E}) \setminus L_n \end{cases}$$

are Baire measurable and we have

 $\int_{C(g)} \operatorname{Snd} x = \int_{C(g)} \operatorname{Snd} \left[\left(\pi_{g_0}^* \right)_* (d) \right] = \int_{C(g)} \operatorname{Snd} \left[\left(\pi_{g_0}^* \right)_* (d) \right],$

where we have taken into account proposition 6 and the corollary to proposition 13.

By denoting $L = \bigcup_{n \ge 0} L$, we have

and $Q \setminus L$ is a Baire measurable set, for which we have $[(\pi_q^*)_*(\mathcal{U})](Q \setminus L) = 0$. It follows that

and, therefore, we have

$$\int t d \left[\left(\frac{\pi}{g_0} \right)_* (d) \right] = \lim_{n \to \infty} \int s_n d \left[\left(\frac{\pi}{g_0} \right)_* (d) \right] = E(\ell)$$

=
$$\lim_{n\to\infty} \int s_n dx = \int t \times_{\mathbb{R}} dx = \int t dx$$
,
 $P(6)$ $P(6)$ $P(6)$

and the proposition is proved.

Proposition 15. For any bounded, continuous, affine function $t: E(\mathscr{C}) \rightarrow \mathscr{C}$ we have

$$t(g_0) = \int t d ((\pi_{g_0}^*)_*(\alpha)).$$

$$E(\emptyset)$$

Proof. From the fact that $g \in E(\mathcal{C})$, and this implies that t is defined and continuous at g, it follows that for any $\varepsilon > 0$ there exists a finite subset $\{c_1, c_2, -, c_n\} \in \mathcal{C}$, such that $f \in E(\mathcal{C})$, and $\{f(c_i) - g(c_i)\} \in \{1, 1, 2, ..., n, imply\}$

Let $\{A_1, A_2, -, A_m\}$ be a finite partition of $E_0(\mathcal{C})$, consisting of Borel measurable subsets $A_i \subset E_0(\mathcal{C})$, such that

$$f', f'' \in A_i \Rightarrow |f'(c_i) - f''(c_i)| < 1, j = 1, 2, ..., n,$$

for any $i=1,2,\ldots,m$. If necessary, we can refine the partition, such that, with an arbitrary selection of the points $f_i\in A_i \wedge Q$, $i=1,2,\ldots,m$, we have

$$\int \int d \Gamma \left(\prod_{g_{i}}^{*} \right)_{*}(\alpha) \int - \sum_{i=1}^{m} \Gamma \left(\prod_{g_{i}}^{*} \right)_{*}(\alpha) \int (A_{i}) t(f_{i}) | \langle \varepsilon \rangle$$

$$E(\mathcal{C})$$

Let V be the Radon measure on $E_0(\mathscr{C})$, given by

$$V = \sum_{i=1}^{m} \left[(\pi_{g_0}^*)_* (\alpha) \right] (A_i) \in_{f_i};$$

it is obvious that the bary center $\mathcal{C}(\mathcal{V})$ of \mathcal{V} is the point $\mathcal{C}(\mathcal{V}) = \sum_{i=1}^{\infty} \left[(\pi_q^*)_*(\alpha) \right] (A_i)_{i=1}^{\infty} \in \mathbb{Q}$ and, therefore,

$$| b(v)(c_j) - g_0(c_j)| = |\sum_{i=1}^{m} [(\pi_{g_0}^*)_*(\alpha)](A_i) + |(c_j) - \int \lambda_g(c_j) d[(\pi_{g_0}^*)_*(\alpha)]| = |\sum_{i=1}^{m} [(\pi_{g_0}^*)_*(\alpha)](A_i) + |(c_j) - \int \lambda_g(c_j) d[(\pi_{g_0}^*)_*(\alpha)]| = |(c_j) - \int \lambda_g(c_j) d[(\pi_{g_0}^*)_*(\alpha)| = |(c_j) - \int \lambda_g(c_j)$$

$$= \sum_{i=1}^{m} \left[\left(\pi_{g_0}^* \right)_* (\alpha) \right] (A_i) f_i(c_i) - \sum_{i=1}^{m} \int_{A_i} \lambda_{g_0}(c_i) d\left[\left(\pi_{g_0}^* \right)_* (\alpha) \right] =$$

$$\leq \sum_{i=1}^{m} \int_{A_{i}} |f_{i}(c_{j}) - f(c_{j})| d [(\pi_{g_{o}}^{*})_{*}(\alpha)](f) < 1,$$

for any j = 1, 2, -, n; consequently, we have

Since the function t is affine, we have

$$t(b(v)) = \sum_{i=1}^{m} [(\pi_{g_0}^*)_*(\alpha)](A_i)t(f_i)$$

and, therefore,

The proposition is proved.

Corollary. For any bounded, affine function $t:E_o(\mathcal{C})\to\mathcal{C}$, whose restriction to E(C) is continuous, we have

$$t(g_0) = \int t ds.$$

$$P(g)$$

Proof. It is a immediate consequence of propositions 14 and 15.

7. Let us now consider, for any $f \in E_0(\mathscr{C})$, the associated Hilbert space H_f , the corresponding representation $\pi_f:\mathscr{C} \to \mathscr{L}(H_f)$, the associated cyclic vector $\{f \in H_f\}$, such that $\|f\|_f^2 = \|f\|$, and the canonical mapping $\{f : \mathscr{C} \to H_f\}$, which are all obtained by the Gelfand-Naimark-Segal construction. Let $\{f : \mathscr{C} \to \Pi_f\}$ be the linear mapping given by

and $\Gamma_o(\mathcal{C}) \subset_{f \in E_o(\mathcal{C})} \mathcal{F}$, the vector subspace im \mathcal{C}_o . If we consider in $E_o(\mathcal{C})$ the σ -algebra A of all Baire measurable subsets of $E_o(\mathcal{C})$, it is obvious that condition (*) from §4 is satisfied. Let $\Gamma_o^2(\mathcal{C})$ be the vector space of all strongly square integrable vector fields, with respect to a probability regular Borel measure μ , which represents $f_o \in E(\mathcal{C})$. We have the following generalization of a theorem of E.C. Effros (see [4], th. 4; [11], th.8).

Proposition 16. The system $\{(H_f)_{f \in E_o(\mathcal{C}_f)}, \Gamma_\mu^2(\mathcal{C}_f)\}$ is an integrable field of Hilbert spaces (in the sense of W. Wils) if, and only if, the measure μ is orthogonal.

<u>Proof.</u> We shall define a mapping

$$u: \Gamma_{o}(\mathcal{C}) \to H_{f_{o}}.$$
 by the formula $u(\theta_{o}(c)) = \theta_{f_{o}}(c), c \in \mathcal{C}$. We have

$$\|\theta_{f_{0}}(c)\|_{f_{0}}^{2} = f_{0}(c^{*}c) = \lambda_{g_{0}}(c^{*}c)(f_{0}) = \int_{0}^{\infty} \lambda_{g_{0}}(c^{*}c)(f) d\mu(f) = \int_{0}^{\infty} \int_{$$

=
$$\int_{E_0(E)} f(c^*c) d\mu(f) = \int_{E_0(E)} ||\theta_f(c)||_f^2 d\mu(f) = ||\theta_o(c)||^2$$
,

for any $c \in \mathcal{C}$ (the norm in $\Gamma(\mathcal{C})$ is calculated as in $\S 4$). It follows that u induces an isometric isomorphism

$$\tilde{u}: \tilde{\eta}^2(\mathcal{C}) \to H_{f_0}$$

of Hilbert spaces.

Let us assume that $\{(H_f)_{f \in E_0(\mathcal{U})}; \Gamma_\mu^2(\mathcal{U})\}$ is an integrable field of Hilbert spaces, in the sense of W. Wils (see [16], def. 1.1, and th. 1.2.). Then, for any Baire measurable function $Z: E_c(\mathcal{U}) \to \mathbb{C}$ the multiplication operator $T_z: \Gamma_\mu^2(\mathcal{U}) \to \Gamma_\mu^2(\mathcal{U})$ is defined. It induces a continuous, linear operator $T_z: \Gamma_\mu^2(\mathcal{U}) \to \Gamma_\mu^2(\mathcal{U})$. Let $S \in \mathcal{L}(H_f)$ be the operator defined by

For any co, ce & we have

$$\begin{split} & S_2 \pi_{f_0}(c) \theta_f(c_0) = (\vec{u} \vec{T}_2 \vec{u}^{-1}) \pi_{f_0}(c) \theta_{f_0}(c_0) = (\vec{u} \vec{T}_2 \vec{u}^{-1}) \theta_{f_0}(c_0) = \\ & = \vec{u} \left[(2(f_1) \theta_f(c_0))_{f \in E_0(\mathcal{C})} \right]^{\sim} = \vec{u} \left[(\pi_f(c) 2(f_1) \theta_f(c_0))_{f \in E_0(\mathcal{C})} \right]^{\sim} = \\ & = \pi_f(c_1) (\vec{u} \vec{T}_2 \vec{u}^{-1}) (\theta_{f_0}(c_1)) = \pi_{f_0}(c_1) S_2 \theta_{f_0}(c_1), \end{split}$$

and this implies that

$$S \pi_{f_o}(c) = \pi_{f_o}(c) S_2, \quad c \in \mathcal{C};$$

consequently, we have $\mathcal{L} \in (\pi_{f_o}(\mathcal{L}))'$. On the other hand, we have

$$(S_{2}\theta_{f_{0}}(c_{1}) | \theta_{f_{0}}(c_{2})) = \int_{E_{0}(E)} 2(f)(\theta_{f}(c_{1}) | \theta_{f_{0}}(c_{2}))_{f} d\mu(f) =$$

$$= \int_{E_{0}(E)} 2(f) f(c_{2}^{*}c_{1}) d\mu(f) = (K_{\mu}(2)\theta_{f_{0}}(c_{1}) | \theta_{f_{0}}(c_{2}))_{f}$$

for any C_1 , $C_2 \in \mathcal{C}$; this shows that we have $S_2 = \mathcal{K}_{\mu}(\mathcal{Z})$, $\mathcal{Z} \in \mathcal{L}(\mu)$. Since the mapping $\mathcal{Z} \mapsto S_2$ obviously is a * - homomorphism of $\mathcal{L}(\mu)$ into $\mathcal{L}(\mathcal{H}_{\mathcal{L}})$, from Tomita's theorem we infer that μ is orthogonal (see [11], th. 7). Conversely, if μ is orthogonal, then the system $\{(\mathcal{H}_{\mathcal{L}})_{\mathcal{L}} \in \mathcal{E}(\mathcal{L})_{\mathcal{L}}\}$ is an integrable field of Hilbert spaces (in the sense of W. Wils). Indeed, it will be sufficient to prove that for any $\theta_0(\mathcal{L}) = (\theta_{\mathcal{L}}(\mathcal{L})_{\mathcal{L}})$ is an integrable field of Hilbert spaces (in the sense of W. Wils). Indeed, it will be sufficient to prove that for any $\theta_0(\mathcal{L}) = (\theta_{\mathcal{L}}(\mathcal{L})_{\mathcal{L}})$ is an integrable field of Hilbert spaces (in the sense of W. Wils). Indeed, it will be sufficient to prove that for any $\theta_0(\mathcal{L}) = (\theta_{\mathcal{L}}(\mathcal{L})_{\mathcal{L}})$ is an integrable field of Hilbert spaces (in the sense of W. Wils). Indeed, it will be sufficient to prove that for any $\theta_0(\mathcal{L}) = (\theta_{\mathcal{L}}(\mathcal{L})_{\mathcal{L}})$ is an integrable field of Hilbert spaces (in the sense of W. Wils), where $\mathcal{L}(\mathcal{L})$ and any $\mathcal{L} \to 0$, there exists $\mathcal{L}(\mathcal{L})$ is such that we have

We have

$$\begin{split} \|\theta_{0}(c) - (2(f)\theta_{f}(G))_{f \in E_{0}(G)}\|^{2} &= \int \|\theta_{f}(c) - 2(f)\theta_{f}(G)\|_{f}^{2} d\mu(f) = \\ &= \int \|\theta_{f}(c)\|_{f}^{2} d\mu(f) - \int 2(f)(\theta_{f}(G))\theta_{f}(c))_{f} d\mu(f) - \\ &= E_{0}(G) &= E_{0}(G) \\ &- \int 2(f)(\theta_{f}(G))\theta_{f}(G))_{f} d\mu(f) + \int |2(f)|^{2} \|\theta_{f}(G)\|_{f}^{2} d\mu(f) + \\ &= E_{0}(G) &= E_{0}(G) \\ &+ (K^{\mu} \cdot \theta_{f}(G))\theta_{f}(G)). \end{split}$$

By taking into account the fact that the measure μ is orthogonal, with Tomita's theorem we infer that

$$K_{\mu}^{\mu} = K_{\mu}^{\mu} (K_{\mu}^{\mu})^{*} = (K_{\mu}^{\mu})^{*} K_{\mu}^{\mu}$$

and, therefore, from the preceding equality, it follows that

 $\|\mathcal{G}_{o}(c) - (2(f)\mathcal{G}_{f}(c))\|_{f \in E_{o}(\mathcal{C})}\| = \|\mathcal{G}_{f}(c) - \mathcal{K}_{2}^{\mu}\mathcal{G}_{f}(c)\|_{f};$ since $\mathcal{K}_{2}^{\mu}\mathcal{G}_{f}(c)\in\mathcal{H}$, from the fact that $\mathcal{G}_{f}(\mathcal{C})$ is a dense subset of \mathcal{H}_{f} , it follows that there exists $c\in\mathcal{C}_{f}$, such that

 $\|\theta_{\xi}(c) - (2(f)\theta_{\xi}(c)) \}_{f \in E_{0}(\mathcal{E})} \| < \mathcal{E},$ and, therefore, $(2(f)\theta_{\xi}(c)) \}_{f \in E_{0}(\mathcal{E})} \in \Gamma_{\mu}^{2}(\mathcal{E})$. The proposition is proved.

Corollary. If μ is an orthogonal, regular, Borel probability measure on $E_0(\ell)$, then $A_0(E_0(\ell))$ is a dense vector subspace of $L^2(\mu)$.

Proof. Here $A_0(E_0(\mathscr{C}))$ denotes the vector subspace of $C(E_0(\mathscr{C}))$, consisting of all affine, continuous, complex functions, defined on $E_0(\mathscr{C})$ and vanishing at 0. It is obvious that for any $C \in \mathscr{C}$ and $\varphi \in \mathscr{L}^\infty(\mathscr{A})$ we have

$$\begin{aligned} & \int |\lambda_{g}(c) - \varphi|^{2} d\mu = \int |\lambda_{g}(c)|^{2} d\mu - \int |\lambda_{g}(c)| \varphi d\mu - \\ & - \int \varphi |\lambda_{g}(c)| d\mu + \int |\varphi|^{2} d\mu \leq \int |\lambda_{g}(c)| \varphi d\mu - \\ & - \int |\lambda_{g}(c)| \psi |\lambda_{g}(c)| d\mu + \int |\varphi|^{2} d\mu \leq \int |\lambda_{g}(c^{*}c)| d\mu - \\ & - \int |\lambda_{g}(c)| \psi |\lambda_{g}(c)| \psi |\lambda_{g}(c)| d\mu + \int |\varphi|^{2} d\mu = \\ & = \int_{0} (c^{*}c) - ((K_{\varphi}^{\mu})^{*} |\varphi_{g}(c)| |\beta_{g}(c)| d\mu + \int |\varphi|^{2} d\mu = \\ & + (K_{\varphi}^{\mu})^{*} |\varphi_{g}(c)| \psi |\lambda_{g}(c)| |\beta_{g}(c)| |\beta_{g}(c)| + \\ & + (K_{\varphi}^{\mu})^{*} |\varphi_{g}(c)| + ||K_{\varphi}^{\mu}|^{2} |\varphi_{g}($$

where we have used the Schwarz inequality under the form

for any $f \in E_0(\mathcal{C})$, and the fact that the measure μ is orthogonal. The corollary is an immediate consequence of the preceding inequality.

Remark. The preceding corollary is a generalization, to the possibly nonseparable case, of the corollary to theorem 8 from [11].

8. In this section, as an application of theorem 1, we shall give a generalization of the following well-known theorem of P. Lévy.

Let $(F_n)_{n \geqslant 0}$ be a sequence of distribution functions and $(\varphi_n)_{n \geqslant 0}$ the corresponding sequence of characteristic functions. If $\lim_{n \to \infty} \varphi(s) = \varphi(s)$, for any $s \in \mathbb{R}$, where φ is the characteristic function of the distribution function F, then

for any bounded, continuous function $f: \mathbb{R} \to \mathbb{C}$ (see [7], § 12.2).

The preceding theorem belongs to Harmonic Analysis, since the characteristic functions ω are the Stieltjes-Fourier transforms of the Radon measures ω , which correspond to the distribution functions F_n , $n \in \mathbb{N}$. Several mathematicians have successively extended this theorem into the frame of Abstract Harmonic Analysis. Thus, U. Grenander, in [5], extended this theorem to the case of locally compact groups satisfying the second countability axiom; R. M. Loynes, in [8], to the case of locally compact groups which satisfy the first countability axiom; P. Martin - Löf, in [9], for arbitrary locally compact groups (see also H. Heyer [6]). In [6] and [9] the presented proofs make use of the Tomita disintegration theory, as it was exposed in [10], but, since this theory was shown not to be correct (see J. L. Taylor [12]), the extensions given in [6] and [9] remained under doubt.

The first correct proof, in which the irreducible disintegration theory apparently is not used, was given by Ch. A. Akemann and M. E. Walter (see [1], proposition 6). In this article P. Lévy's theorem is extended and framed into the theory of the W*-algebra associated to an arbitrary locally compact group.

In what follows we shall further extend P. Lévy's theorem by framing it into a compacity theorem and by making an explicit use of the Choquet-Bishop-de Leeuw-Wils decomposition theory.

I gratefully acknowledge the useful discusions I had with H. Heyer, who introduced me into the problem and informed me about the pertinent bibliography.

a) Let G be an arbitrary, topological, locally compact group, and $U: G \to \mathcal{L}(H)$ a unitary continuous representation of G, where H is an arbitrary Hilbert space.

For any $\xi, \gamma \in H$, the complex function

is continous and bounded on G.

Let $M^1(G)$ be the complex vector space of all finite, complex, Radon measures, defined on G. For any $\mu \in M^1(G)$, the integral

exists, and there exists a unique, continuous, linear operator $\hat{\mu}(\mho) \in \mathcal{L}(H)$, such that

$$(\hat{\mu}(\nabla)\S1\eta) = \int (\nabla_{g}\S1\eta) d\mu(g), \quad \S, \eta \in H.$$

The operator $\hat{\mu}(U)$ is called the Fourier - Stieltjes transform of the measure μ , corresponding to the representation U (see [3], §13.3; [6], p.147), whereas the mapping $\mu \mapsto \hat{\mu}(U)$ is a *-representation of the involutive algebra M^(G) into $\mathcal{L}(H)$ (see [3], proposition 13.3.1.).

It is well known that in $M^{\bullet}(G)$ the following topologies can be considered: \mathcal{A}) the vague topology: since $M^{\bullet}(G)$ is the dual of the normed space K (G) of all the continuous, complex functions, defined on G and having compact supports, in which the norm is given by

the vague topology is the topology or (M'(G); K(G)).

(3) the *-weak topology: $M^4(G)$ is, at the same time, the dual of the Banach space $C_o(G)$ of all continuous, complex functions, defined on G and variishing at infinity, endowed with the same norm as above. The *-weak topology is the topology or ($M^4(G)$; $C_o(G)$) and it is obviously stronger than the vague topology.

The two topologies coincide on the norm bounded subsets of $M^1(G)$, but a vaguely compact set can be unbounded for the norm.

the help of regularity, as a Radon measure on the space $C^b(G) = C(\beta G)$ of all continuous complex functions, defined on G, space which can be canonically identified with the space of all continuous complex functions, defined on the Stone-Čech compactification βG of G. The mentioned extension yields an isometric imbedding of $M^1(G)$ into $C(\beta G)^*$, and the narrow topology is the topology induced by the topology $\sigma(C(\beta G)^*; C(\beta G))$. Obviously, the narrow topology is stronger than the *-weak topology (see [2], ch. IX, \S 5.3).

) The Fourier topology. Let $\mathfrak{F}(G)\subset C^b(G)$ be the complex vector space of all functions of the form

3., N: € H; 1€i€n; n∈n The Fourier topology on M'(G) is the topology of (M'(G); F(G)). It is obvious that the Fourier topology is weaker than the narrow topology but, nevertheless, it is a Hausdorff topology.

b) Let P (G) be the set of all continuous functions of positive type, defined on G; let $P_A(G) = \{ (\varphi \in P(G); \varphi(e) = 1) \}$. It is known that there exists an attine bijection $\tau: P(G) \to (C^*(G))^*$ between P(G) and the set $(C^*(G))^*$ of all positive, continuous linear forms, defined on the C*-algebra C* (G) of the group G; the bijection τ is given by the formula

$$T(\varphi)(g(x)) = \int \varphi x d\mu,$$

where μ is a left-invariant Haar measure on G, $x \in L'(G)$, $\varphi \in P(G)$ and $g: L'(G) \rightarrow$ \rightarrow C*(G) is the canonical injection (see [3], § 2.7, 13.4 and 13.9). Moreover, we have $\|T(\varphi)\| = \varphi(e) = \|\varphi\|_{\infty}$, for any $\varphi \in P(G)$ (see [3], §§ 2.7.5 and 13.4.3).

c) Let $\pi:G\to\mathcal{Z}(H)$ be a cyclic, continuous, unitary representation of G and $\rho: C^*(G) \to \mathcal{L}(H)$ the corresponding cyclic representation of the C^* -algebra $C^*(G)$ (see [3], § 1 3.9). Let $\xi \in H$, $\|\xi\| = 1$, be a ρ -cyclic vector and $g \in E(C^*(G))$ the corresponding state, given by

For any maximal, commutative von Neumann algebra 3 C (((C*(G))) we shall consider the C^{*} -algebra \mathcal{B} , generated by $\rho(C^{*}(G))$ and \mathcal{F} , and the corresponding measures α , β , δ , constructed as in the preceding sections.

The bijection τ induces the bijection τ (P(G) , from the set P(G) of all pure continuous functions of positive type, defined on G and equal to 1 at $e \in G$, to the set $P(C^*(G))$ of all pure states of the C^* -algebra $C^*(G)$. Let A(G) be the σ -algebra of subjets of P(G), which is the reciprocal image through TIP(G) of the G-algebra $A_{o}(P(C^{*}(G)))$, constructed as in §2 for the C^{*} -algebra $\mathscr{C} = C^{*}(G)$.

Theorem 2. For any $\varphi \in P(G)$ there exists a probability measure $\sqrt[4]{}$, defined on the T-algebra A(G) of subsets of P(G), such that

$$\hat{\mathcal{V}}(\varphi_0) = \int \hat{\mathcal{V}}(\varphi) d\mathcal{S}(\varphi),$$

for any VEM'(G). In particular, we have

for any g & G.

Proof. From the Raikov theorem (see [3], theorem 13.5.2) it follows that T (G) is a homeomorphism from the space P_1 (G), endowed with the compact convergence topology, onto the space E(C*(G)), endowed with the topology induced by $\sigma((c^*(G))^*; C^*(G))$. For any $V \in M'(G)$ let us consider the function $\widetilde{\mathcal{V}}:(C^*(G))^* \to \mathbb{C}$ given by

$$\vec{v}(f) = v(\tau^{-1}(f)), f \in (c^{*}(G))^{*}.$$

Obviously, $\tilde{V} \mid E_o(C^*(G))$ is an affine, bounded function, whose restriction to $E(C^*(G))$ is continuous, in virtue of the above mentioned theorem of D. A. Raikov and of the finiteness and the regularity of the measure ν . From the corollary to proposition 15 we infer that

$$\widetilde{V}(g_0) = \int \widetilde{V}(g_1) d \widetilde{v}(g_1),$$

where $q_0 = T(\varphi_0) \in E(C^*(G))$. Let f be the direct image through $T^{-1}(P(C^*(G)))$ of the measure \checkmark . It is obvious that for the measure \checkmark thus defined, the first equality from the statement of the theorem holds. The second equality can be obtained by taking $\mathbf{v} = \mathbf{E}_{\mathbf{q}}$, the Dirac measure at $\mathbf{g} \in \mathbf{G}$. The theorem is proved.

The preceding theorem is a generalization to the possibly non-separable case, of the proposition 13.6.8 from [3].

d) Let us now remark that to any measure $v \in M'(G)$ we can injectively associate a function $\hat{v}: P_{c}(G) \rightarrow C$ by the formula

$$\hat{V}(\varphi) = V(\varphi), \qquad \varphi \in P_{o}(G);$$

we use here the finiteness of the measure γ . It is obvious that the function $\mathring{\gamma}$ which we thus associate to the measure ν , is bounded and $\sqrt{}$ -measurable, as a consequence of proposition 14, b) and of the definition of the measure of.

On the other hand, it is easy to see that the mapping $M'(G) \ni V \mapsto \hat{V} \in \mathcal{L}$ is a homeomorphism from $M^4(G)$, endowed with the Fourier topology, into $C^{P_0(G)}$ endowed with the simple convergence topology (i.e., the Tikhonov topology).

Theorem 3. The subsets of $M_{\star}^{i}(G)$, which are metrizable and compact for the Fourier topology, are compact for the narrow topology.

<u>Proof.</u> Let $M \subset M'$ (G) be a compact, metrizable subset (with respect to the Fourier topology). Here $M_{\tau}^{\iota}(G)$ is the set of all positive, finite Radon measures on G.

a) M is norm-bounded. Indeed, let $1 \in P(G)$ be the constant function, equal to 1 on G. We have $\hat{V}(1) = ||V||$, for any $V \in M'_{+}(G)$; since the mapping

 $\mathcal{V} \mapsto \hat{\mathcal{V}}(1)$ is continuous, the set $\{ ||\mathcal{V}|| ; \mathcal{V} \in M \}$ is compact in \mathbb{R} .

b) Any ultrafilter Uon M converges for the topology induced on M by the weak topology $\sigma(M'(G); P(G))$. Indeed, let U be an ultrafilter on M. Since M is compact for the Fourier topology, there exists

(1)
$$\lim \mathbf{U} = \mathbf{v}_{\circ} \in \mathbf{M}$$
.

Let us now show that for any $\varphi \in P(G)$, we have

$$\lim_{\gamma \in \mathbb{D}} \widehat{\gamma}(\varphi) = \widehat{\gamma}(\varphi).$$

(here we have denoted by $\widehat{\nabla}(\varphi)$ the integral of the function φ with respect to the finite Radon measure ν). Indeed, to prove this, we must show that for any $\epsilon>0$ there exists a set U EU, such that

If this be not true, there would exist a $\varphi \in P(G)$, and an $\xi > 0$, such that, for any UEU there exists a VEU, for which

Let $\{V_n\}_{n\geq 1}$ be a countable basis of neighbourhoods of V_n for the Fourier topology ($\bigvee_{n} \in M$). From (1) we infer that $\bigvee_{n} \in U$, $n \ge 1$. Consequently, for any $n \in \mathbb{N}^*$, there exists a $\mathcal{V} \in \mathcal{V}_h$, such that

(2)
$$|\hat{\mathcal{V}}_{n}(\varphi_{o}) - \hat{\mathcal{V}}_{o}(\varphi_{o})| \geq \varepsilon_{o},$$

and, obviously, we have $\lim_{N\to\infty} V_n = V_0$, for the Fourier topology. Let $g_n = T(\psi_n) \in (C^*(G))^*$ and f be the positive measure, defined on σ -algebra A(G) of subsets of P(G), given by the theorem 2. Let $\widetilde{A}(G)$ be the complete σ -algebra of subsets of $P_c(G)$, generated by A(G) with respect to \mathcal{S} . Then all the functions $\hat{V}: P_{\mathcal{C}}(G) \rightarrow \mathcal{C}, V \in M(G)$ are $\widetilde{A}(G)$ - measurable, and we have

(3)
$$\hat{V}_{n}(\varphi_{o}) = \int \hat{V}_{n}(\varphi) d\hat{V}(\varphi), \quad n \in \mathbb{N}.$$

By taking into account the fact that

sup sup
$$|\hat{V}_n(\varphi)| < +\infty$$
, new $\varphi \in P_0(G)$

from the Lebesque dominated convergence theorem and from theorem 2 we infer that

$$\lim_{n\to\infty} \hat{V}(\varphi_0) = \int \hat{V}(\varphi) dJ(\varphi) = \hat{V}_0(\varphi_0),$$
where inequality (2)

and this contradicts inequality (2).

c) If $\varphi, \psi \in K(G)$, then $\varphi * \psi$ is a linear combination of four continuous functions of positive type (see [3], corollary 13.6.5). From we have just proved in b), it follows that for any ultrafilter U on M, which converges for the Fourier topology to $V_o \in M$, we have

$$\lim_{\gamma \in \mathbf{U}} \hat{\nabla}(\varphi * \varphi) = \hat{\nabla}_{o}(\varphi * \varphi).$$

d) Let now $\varphi \in K(G)$ and $(u_{\lambda})_{\lambda \in \Lambda}$ be an approximate unit in K(G) (with respect to the convolution). We have

uniformly on G, and, therefore,

$$\lim_{\gamma \in \mathbb{T}} \widehat{\gamma}(\varphi) = \widehat{\gamma}_{o}(\varphi),$$

for any $\varphi \in K(G)$. Indeed, this follows from the inequalities

$$|\hat{v}(\varphi) - \hat{v}_{o}(\varphi)| \le |\hat{v}(\varphi - u_{\lambda} * \varphi)| + |\hat{v}(u_{\lambda} * \varphi) - \hat{v}_{o}(u_{\lambda} * \varphi)| +$$

$$+ 1\hat{\mathcal{S}}_{0}(u_{\lambda}*\varphi) - \hat{\mathcal{S}}_{0}(\varphi) 1 \leq ||\hat{\mathcal{S}}|| ||\varphi - u_{\lambda}*\varphi||_{\infty} + 1\hat{\mathcal{S}}(u_{\lambda}*\varphi) - \hat{\mathcal{S}}_{0}(u_{\lambda}*\varphi) |+$$

$$+ ||\hat{\mathcal{S}}_{0}||_{\infty} ||u_{\lambda}*\varphi - \varphi||_{\infty}.$$

e) Let now $\varepsilon > 0$ be an arbitrary positive number, U an ultrafilter on M and $\varphi \in C'(G)$. Let V be the limit of the ultrafilter U for the Fourier topology. There exists a compact set $K \subset G$, such that

Let now $\varphi_o \in K_*(G)$ be such that

We then have

and, therefore,

Since $\lim_{\nu \in \mathcal{U}} \|\nu\| = \|\nu\|$, from what we have just proved it follows that there exists a $u \in \mathcal{U}$, such that

for any $v \in U$. We infer that we have

for any $\gamma \in U$. By taking into account the fact that $\varphi \varphi \in K(G)$, from what we have just proved in d), it follows that we have

$$\lim_{\gamma \in \mathcal{V}} \widehat{\gamma}(\varphi) = \widehat{\gamma}(\varphi),$$

for any $\varphi \in C^{b}(G)$. Consequently, any ultrafilter on M converges for the narrow topology. Consequently, M is compact for this topology.

Corollary 1. On the term bounded subsets of $\mathcal{M}_{+}^{1}(G)$, which are compact and metrizable for the Fourier topology, the narrow topology coincides with the Fourier topology.

$$\lim_{n\to\infty}\hat{\mathcal{V}}_n(\varphi)=\hat{\mathcal{V}}(\varphi),$$

for any pure, continuous function φ , of positive type, defined on G, then the same equality holds for any bounded, continuous, complex function φ , defined on G.

This corollary extends P. Lévy's theorem to arbitrary locally compact groups.

BIBLIOGRAPHY

- 1. Ch. A. Akemann, M. E. Walter
- 2. N. Bourbaki
- 3. J. Dixmier
- 4. E.G. Effros
- 5. U. Grenander
- 6. H. Heyer
- 7. M. Loève.
- 8. R. M. Loynes
- 9. P. Martin Löf
- 10. M.A. Naimark.

- Non-Abelian Pontrjagin duality. Duke Math. Journ., vol. 39, no. 3, 1972, p. 451-463
- Intégration. Elém. de mathém., Hermann, Paris, 1963.
- Les C^{*}-algèbres et leurs représentations. Gauthier-Villars, Paris, 1969.
- On the représentations of C*-algebras.
 Thesis. Harvard University. Cambridge,
 Massachussetts, U.S.A., 1961
- Probabilities on algebraic structures. Almq-vist and Wiksell, Stockholm; John Wiley and sons, inc., New York, London, 1963.
- L'analyse de Fourier non-commutative et applications à la théorie des probabilités, Ann-Inst. Henri Poincaré, vol. IV, no. 2, 1968, p. 143-164.
- Probability theory. Van Nostrand, Princeton, Toronto, New York, London, 1960.
- Fourier transforms and probability theory on a non-commutative locally compact topological group. Arkiv for Matehm., vol. 5, 1963, p. 37 - 42.
- -The continuity theorem on a locally compact group. Theory of Prob. and its appl. t.x., 1965, p. 338-341.
- Normirovannye koltsa. Nauka, Moscow, 1968
 (1st edition)

- 11. C.F.Skau
- 12. J. L. Taylor
- 13. S. Teleman
- 14. J. Vesterstrøm, W. Wils
- 15. W. Wils
- 16. W. Wils

- Orthogonal measures on the state space of a C*-algebra. Algebras ir Analysis., ed. by W. Williamson, Academic Press, 1975.
- The Tomita decomposition of rings of operators. Trans. Amer. Math. Soc., vol. 113, no.1, 1967, p. 30-39.
- On reduction theory. Rev. roum. de math. pures et appl., t.XXI, no.4, 1976, p. 465-486.
- Direct integrals of Hilbert spaces. II. Math. Scand., vol. 26, fasc. 1, 1970, p. 89-102.
- Désintégration centrale des formes positives sur les C*- algèbres. C.R. Acad. Sci. Paris, t. 267, 1968, p. 810-812.
- Direct integrals of Hilbert spaces I. Math. Scand., vol.26, fasc.1, 1970, p.73-88.

INSTITUTUL DE MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

PREFRINT SERVES IN MATHEMATICS 1976 ISSUES

- 1. S. Strătilă, D. Voiculescu, L. Zsido: ON CROSSED PRODUCTS.
- 2. I. Suciu and I. Valușescu: FACTORIZATION OF SEMI SPECTRAL MEASURES.
- 3. Zoia Ceaușescu: ON INTERTWINING DILATIONS.
- 4. D. Burghelea and R. Lashof: STABILITY OF CONCORDANCES AND THE SUSPENSION HOMEORPHISM.
- 5. Zoia Ceaușescu and F.H. Vasilescu: TENSOR PRODUCTS AND TAYLOR'S JOINT SPECTRUM.
- 6. Gr. Arsene and S. Strătilă: A BIBLIOGRAPHY ON OPERATOR ALGEBRAS AND RELATED TOPICS I.
- 7. Otto Liess: THE FUNDAMENTAL PRINCIPLE OF EHRENPREIS PALAMODOV.
- 8. Henri Moscovici and Andrei Verona: QUANTIZATION AND PROJECTIVE REPRESENTATIONS OF SOLVABLE LIE GROUPS.
- 9. A. Halanay and T. Morozan: STABILIZATION BY LINEAR FEEDBACK OF LINEAR DISCRETE STOCHASTIC SYSTEMS.
- 10. Dan Burghelea: ON THE DECOMPOSITION OF THE AUTOMORPHISMS GROUP OF $M \times S^1$.
- 11. N. Popa: PERMANENCE PROPERTIES OF TENSOR PRODUCTS OF BANACH LATTICES.
- 12. C. Vârsan: LOCAL CONTROLABILITY ALONG A SINGULAR TRAJECTORY.
- 13. C. Apostol, C. Foiaș and C. Pearcy: QUASIAFFINE TRANSFORMS OF COMPACT PERTURBATION OF NORMAL OPERATORS.
- 14. Zoia Ceaușescu and Ciprian Foiaș: ON INTERTWINING DILATIONS III.
- 15. R. G. Douglas and C. Foias: A HOMOLOGICAL VIEW IN DILATION THEORY.
- 16. Dan Burghelea: AUTOMORPHISMS OF MANIFOLDS.
- 17. I. Suciu and I. Valușescu: ESSENTIAL PARAMETERS IN PREDICTION.
- 18. Gr. Arsene and Zoia Ceaușescu: ON INTERTWINING DILATIONS IV.
- 19. Dan Voiculescu: ON A THEOREM OF M.D. CHOI AND E. G. EFFROS.
- 29. A. Halanay and S. Mirică: THE TIME OPTIMAL FEEDBACK CONTROL FOR SINGULARITY PERTURBED LINEAR SYSTEMS.
- 21. A. Halanay and S. Mirică: TIME OPTIMAL FEEDBACK USING STATE ESTIMATOR.
- 22. A. Bacopoulos, G. Godini and I. Singer: ON BEST APPROXIMATION IN VECTOR VALUED NORMS.
- 23. Henri Moscovici and Andrei Verona: HOLOMORPHICALLY INDUCED REPRESENTATIONS OF SOLVABLE LIE GROUPS.
- 24. Ion Colojoară: SUR LE THEOREME DE STONE.
- 25. Constantin Pănică: LE LIEU REDUIT ET LE LIEU NORMAL D'UN MORPHISME.