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Abstract. A class of boundary-distributed linear control
systems in_Banach spaces is studied, A maximum~principle fox a

convex control problem associated with such syﬁtem is obtained.

- 1. INTRODUCTION., In Lilg Lp] {see also f@}, Chaptex IV) we
have s»udled control problems with convex cost critexlon
associated with linear evolution eqaaﬁ*ons of the form
(1.1) x' = Ax + Bu, ('= Ly adhie o

’ oy Lrvadil St I ey
in g”Hilbert space E, where A is the infinitssimal ggnerator of
a strongly.continuous semigroup on E and B is g linesr convinuous
operator from a control space U»to E. This setting is,véry gsuited
for distributed control. systems but is quite inadequate for
boundary control systems. In Lact to represent in the form (1 )
& such system we are led to consider unbounded operators B.
In [9] Fattorini has developed a general theory of boundary
control systems. Starting from his model we Introduce here a
general class of bpgndaxy control systems qu which a ?mild"l
solution exists f&i each summablé controller. For such systems

we coneider the control problem with convex cost criterion and



o i
prove s meximum principle in'thé subdiffarentiél form {see
Theorem 1 below). It turns out that the class of boundéry control
systems studied here is large enough to include the prineipal
boundary control systems of parabolic type (see Séction 3).

T lAn othex general approach to the boundary control problems
with quadratic cost hae developed by Lions [10] (see also EG} ;
for a semigfoup approach tdhthis prcblem); * ’

Before conclude fhisvsection we get forth some notations

which will be used in sequel.

1% Given a Eanach space X ané“a real intexval [O,T}‘ we denote
by ¢(0,T3X) the Banach space of all continuous functions . .
Xt [O,TJ —-> X endowed with standard norm.

_}29 Fox each 1£p<& @ Qenate by_Lp(O,T;X) the space of all
p-summable funciions on [O,T] with values in'X. The usual
modification in case p =0, ‘ ,

i BOIGiyen enother Banach space Y we denote by L(X,Y)gthe algabrs
Qf‘linaar continucus operators from X to Y endowed with the usual

norm |l .{i L(X, 1) *

 "‘4? Given a closed, densely defined linear operatqrfA on X we

denote bj D(4A) ite domain endowed with the graph norm.

5% Let (? v X ---?_ﬁ = ]foo‘,«& oO] be a lowex semicontinuous
convex function. The subdifferehtial'?)TQ X X 4
defined by ‘

!

4

L

(1»2) ra(f:)(xo): { .xoe x s ‘)9(3;0)"37(::)& (xg,xowx) fgr all x€X ;
Here X" is the, dual space of X (which is assumed reel) end (..<)
the paeiring between X and X. For other propertiles of’igff which

will be used in the sequel we refer the reader to _[4], [BJ,

[13] amd [14]. il S



- 3 -

2 BOUNDARY CONTROL. 5Y YSTEMS To begin with let us briefly
describe Pattorini's theory of toundary-distributed control
gystem (ses E9}). S e _
| Let E be a (zeal ox complex) Banach space and let o e
s closed, 1inear densely defined operatox in E. Leu T bera
lineax opexator ’the boundary operatoz) with domein in- E and
range_in;sgmc Banach space X Flnally, let U, and U2 be two_j'k
Banach spaces which in sequel will be reffered to és'the control
- spaceg of the system; | .

The control systeé wé ghaiT éon51ée* i
(2.1) () = a3r(t)+BiLa.1(’s)+f(t'), _vy(t)=32ﬁ2-(t) ovex '[o;m]
bt i éézﬁditioﬁ '
(2 2) e Q(o) =

where BlsUl wheie E and B?:U ww% X are 1inear obntjnuous Operaﬁors
and [O T] is o flted 1nterv4¢. The controllers ul( ) end uz( )
sxe summable xunctions on [Q,T] with values in Uy and Us,
xespectively. Ye shall call Uqs uzﬂthe distributed énd boundaxy
céntrol, respepﬁively; Here f is & given E-valued sumnmable
function. 2 }

~In applications tha state space E is & space of funétions
on some domain _fjl of the Euclidean space R®, ¢ iz a partial
diffexential operators Qh_,ljl and T .'a partial differential

operator acting on the boundary A er ),

| Assumption I  D(o ) C D{(~) end the regtriction of <
to D(¢ ) is continuous relative to graph norm of D(o )«

et AaF - § be the lineax operator defined by

(2:2) D(A)x(yED(O); «ay:oj, Ay= oy for yeD(A)
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-Assumption II  The operatox A l1s the infinitesimal gensraio:

of a strongly continuous semigroup {S(t);t;>og on E.

- Assumption ITI- There exists a linear continuous operator

BzUé e—é E such thet
(2.4) GBEL(UZ,F), r(Bu) = ‘Rzu fox all u€U2
(2¢5) f,. ﬂBuHE c hBZuﬂ ‘ for all ue'U2

whexe € is some posztlve constant. ke 8 4%
In terms of A and B SJstem (2. 1) can be written as
et i S
Y= 24 1’8112 '

' If uz(o) is continuously differsntiable on [O,T]‘ then z can
be defined as a "mild" solution to the Cauchy problem
: .
a AZ + Bla:! e UBUQ g Buz o+ f
a(O) = y - 3u2(o).

I

¢hus,}in thls we may deflne the solution y. to the system

(2.1), (2s2) by the vaxlatlon of constant formula
t

(207) y(t)mg(t)(y -Bun(o))+Bu2(t)+) S(tas)(Blul(s)+ GBuz(S)~
- Buz(s) + f(s))ds

Since the differentiability B controller Uy representé an

unrealistic and gevexe requl*ement, we are led to extevd the

concept of solution to (2o0), (2.2) for general ufé L (O i Uz)
Integrating (1orma11y) by parts in (2.7) we get
t

(2»6) y($)=5(t)y° J’A S(t~s)Bu2(s)ds+5'S(tms)(Bl l(s) -
+ oBuz(s)+f(s))ds :

In ganeral, unless we &mpcse furtnar assunptions on S(t)

and B, the rignt hand side of (238) is not well defined.

Aa:sumphon IV Tor each ’oC[O ] and uéU?
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S(t)Bu ¢ D(A). There exists s positive funcition VélLl(O,T)
such that
. s : ~
(29) Nas( )BHL(U z) & y(%) aee. téﬁ]o il

~ Since 8(%)Bu € D(A) for all uE;UZ, by the closed graph
theorem we deduce that the operator AS(t)B is continuous from .
U, to E so that (2.9) mekes sense. _A ' A
 “ “‘Assumpt‘on Iv implies'tha% for every u2€'L1(0 T5U,),
function t —> 5' AS(t=8) Buy(s)ds is well defined ee an
element of L (0 T,E) By deflnition9 for each y € E, :
(0 T3E), u1€ L (0,73 Ul) and uzéfL (0,75 U2)9 the Aunctmon
yé L '(0,T35) defined by (2.8) is the solutlon of

dlstrjbuoedwboundary control syitem (201), (2oc)

Since the funcn10n S 5' q(t—s)Buz(s)as bnlon .to ,
"1(0 Te D(A))Q v( ) may be expressed in the following eaquivelent

iorm ' "
R SR R e

F(£)=8(5)y, -4 fs(tnsmuz(s)as-;-fs(t-s)(:elul'(s).;. o Bup(s)
g 0 : g
+ f(s))ds T tc;]b TL_O
Let zé be a fixed number in Q(A) (the rgsolvent of A) and
let II= A~ 2,I (I is the identity Qperatcr)e Thus y may bse
regarded ss solutlon to dlst ibuted control system :

]
W= AW + Dlul + Du2+ I -1 £

(2010)

; yun
where : = _ :
(2:22) Dy=(4= 7,1) 7By, D=(a=1 1)} 0B~ 2, B)-B.

Denotd by U the producﬁ space UIY%UA and by A U v E

the lineaxr continuouq operator given by
(26 12) d(ul,uz)mbqulvbzuz, fox ulC Uys us € Up

Then we maey rewrite system (2 alO) as
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(2.13)
Jr- HW.
5 Thus, we are led to interpret the eolution y %o (2 1) as
the obgerved value of a control system of the form (2.13) with

unbounded obsexvation operator II (we refer the reader %o L?;

for def*nitlon and theory of obsarvation silehil infinite dimensional

systems) .
. Remark 1 If uy€3 (O,.L,Uz) and 7€ IP'(0,1)5 Yp+¥ptsl
then we see by (2.8) and (2 09) that yé.C(O 38) . : .1./ e
3 EXAMPLES It should be ooscrvnd that hesumptions IV has
some sevexe implications on system (dol)o in parvlcﬂlar Ae the
range R(B) of B 18, say, &ll of E then the se m$gxogpvu(,g must
be ‘analytic (see eege Ll?] p.254) . However, this condition is
- less restrictive than it might et first appear to he. We shell
see hexre that it is sa'isfled by the main boundaxy cpntxol

systems governed by perabolic eauations.

Mixed Dlriohlet nroblem uet ,(2 be a bounded and open

subset'of_R with a sufficiently smooth boundary | .
Consider the boundary control sysiem
. ol ot
. ,}-% - 4y=f in e Oxlem] L
(3.1) ' yl— = u fox tC[O TA

r
y(x,0) = yD(x) for ?’€ SO

where uC~L (‘ )(2 [")( £0,¢]), o (Jl) and 4 Q(Q’;

To formulate this es =& bouﬁdarv control system of fhe féﬁm
(2.1) we defino E = U = 13(0)), - BT Y tPel ) B
Ba__ I and (Hr(jl), H (F ) are usual Sobolev spaces 6n‘jl and | )
(3.2) (o) ={ye1Pa)s dveirQ)f, o=a.

-
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~ The operator 7 is the "trace' operator =Ty = y|
which is well de;lned end belongs to H /“(i—; for each yé D(c )
(see I::Lons-nﬁagenes [12] Vol.l). The operator A is given 'by

(3 3) b= eI = B O (VSR
Glearly Assumptions I end II are patisfieds To verify III and
IV we define the linear operator BzU2 5 e ([ L) —-'»’L (1) by

Bu = w, where w, & It ) 1 the anﬁque (general zed) sclution

to the Dirichlet boundary-value problem
Aw, =0 dn )
(304) : . : ’

T - wu\r = U

In other words,

: (5;5) ‘(g)—w A\f dx= f (N do fox ell \/ CH (f) /‘:ﬁ'Z(_Q) .

‘Here /-?—Y deﬁOuQS the outwa:cd normal deriwvative of \«IV which
e S ; :

is well defined as en eiement of II??‘(F) We need the following
~ lemma : | ,"

i

TEMMA 1 Yor every ué H /Z(H problem (3.4) has a unique

sblution e Lz(_Q.) éa’cis‘fying
(3.6) w g gl o p
01 ué H/2(F ) then w é 7L Q) ggg

(3e7) i Wu_‘\Hl(ﬂ) 2“ ull ﬁ/g(r)

Hexe C::., 1 = 1,2 are positive conwtantfs indepenaentbf‘u.

% Procz. Tet uéH"/z(r) The existence of W, s.«.a%isfying
(3.;5) is well-known (see esge LlOJ, po72). It follows from the
:{‘act that the operestor 4 with domain H (C) A #(Q) is

onto on I LQ) and the functional \3/ m‘»f v—a—&{ do is

E
continuous on~H (.Q.) & I (_Q ,  Aleo the uniqueness of such
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Vi, is immediste. On the other hand by "trace" inequélity
s (\‘
¢
’3‘%!} 12 l\}/”
HEe(E )
and by (3.5) we see that

it & . S
\wu(tf)\éehul\ 2y i a l\f“ 2 for all )PQL ()

theraby proving (3. 6).

(3.8)

HAQNE(Q)

~ Suppose now that ué:hlz(f') Then again by "trace" theowem
thexe is yué H (D_) such that ryd = u and

(3.9) Il ¥al, (mA cllul /2( ) . | :

where € is 1ndepsndent of u. On the othex haﬁd, it folloms from
(355) and ﬂreer 8 ‘Poxmuls that the function z = yu - Wy,
satisfies the nqua ien | ;

o ;{z zAp dx zwg‘grad y#»grad\r dx
for all € H () NE (Q). Honce &
(3610) lz(kj))! < ciyyll 3 nkj)\\ ;1 . Bomnll ?@1,2(,@)0
: g (o)) Re0)

This shows that zé;Hé(JL); Hence wﬁéhHl(iZ)oFurthermore, by
(3;9) and (3;10) we get (3;7) as claiméd; This completes the
'proof of the 1emma. v‘ bt St R =

~ In particular, Iemma 1 shows that Assumption TII is

satisfled As regaxdﬁ Assumption IV, we observe first that by
(366) and (3.7) it follows that Bué}(L (12), e (Jl))V2 for all
‘e ( ) end

(3.11) | Bul q/z(ﬂ) cliul 2{{_) for a1l ‘ue Lz(f"h
Here (L (&L), H (11))V2 denotes the 1nterpolation space

{y(x,on ye12(r*; T a, %-% Caitety o (_Q)(f (see 8cge [m)
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~ Inusmuch as the semigroup S(. ) genewa'bed by A is onalytic
(see Cole L}Z] V01°LI) we have

(3.12) R AS(t)ybn g(il) ¢ o2 yQH 12¢ 03

fox el1 7, €13(Q) and t>’°~ AR e N
- On the othex hand according to an 1nterpolat10n result dua
to Lions L11], we have for each yoé g (Jl), ‘

4(3013) IIAS(t)ybH 1200) Z g t”74ﬂ ybﬂ 1) fox t3?05

Thus 1nterpolat1ng between spaces H (Jl) and LE(AQ) we see
: by (3 11)y (3el2) end (3a13) that

'(3Q14) I AS(t)BuH ¢ % ”7/8\\ i

——

(11)_ 120

Tox 317 ué;Tz(jl) and t>0, Hexe € is & pcsitﬁve co“otant |
‘independent of u and t. In other words, insquality (2.9) holds
with  7(4) = ¢ +"7/8,  1‘ b

. ~ Thus we have shomn that gggjgg (3 3) “atlsiies

Assumptlonq T up.to IV ‘with & end B defined by (30)) and ()a%)

Yegpectively.

Mixed Weumann prchblem. Consider the boundaxy control system

: 5?f4yff an xumm]
(3415) .y ey =u in 3 =0x[o,7]

y(o,x) o .,o(x) x é ,_(7_

whexre Joé L (ll), fé—L (Q) and u (the boundary control) is in
1°( ), Here a 1s a nonnegative constant. }
Define E = 1°(Q), Uy = X = I (T‘)g By £ 0, 32 =,

L A.Va D(O) HE(()) and oy = aﬂ%-i " Thevoperator

4 is given by

-

(3616) Ay = Ay on D(A)= {yé (L) ay«su,%\’az o o}
. . e ‘ n. . >
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Define the opefator.Bziz({_) m*%'Lz(il) by Bu = zﬁ where

z ErHl(fl) is the solution'to boundary-value problem
u _ _ .
s Zy " 4z, = 0 | in =7
: : u
az +
-On

Consider ou the product space H (&13>( e (&1) the bilinear

s Ladme T G'

functional

(3018; a(yﬁf) S(yjo*grad y grad\f)dx- g(u-' oc;sr)g>
e

where u¢ H /2(T') (fbe integral )u Y do must be regarded as
i .

the velue of u at rj>é ﬁla(f')) Since a is coercive, thexe

is z,€ H (12) satisfying alz;, gf) = 0 for all <§>C Hl( L)o In

othex words, 2 Bu is the solution to (3. 17). Brom. {3, 18) vie

u =
see also that

| (3;19) ( 4 ¢ fiul

“l 1(.@) Hep)]

In par’cicular9 we have .ghown that Assumptlon III hOIdSn To
verify Assumption IV we notice that since the operator -A is

gself-adjoint and pcsitive, we have

.(3;20) | ASCH)y.| I -t"’“/af |
‘ ol 0y y°‘ D((~ )”/2>

for all t>o0 and yé&-D((wA)?é); Since D((fA)Yg) = B0 e
may rewrite (3920) ag '

\\ ASCH)y | 200y ““1/21 yo

L= | H (_O.)
fox all t>o and yo( oy ((l)o The lattex combinad wmtb (3 9)
yields _
'(3;21) il 'As(t)Bug'\ ‘ <8 t"f"? w5 - ;
(il) : L (Y S
for all t> 0 and u& Lo(T ), Hence Asmm‘p’uion IV holds with
Y(t) WVQ
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-

Remark 2. rItvshculd be emphasized that estimate (3.21) is
not optimel. Observing that the operator B maps LZ(I—) into

H3/2(£1) a sharper estimate can be obtained.

| Remerk 3. 1In the preceding examples the Leplacien can be
¥eplaced by any second crdexr symmetric and elliptic
differential opsrator on () .

- 3. INTEGRAL CONVEX COST CRITERIA. In this section we
consildex the following unconstreined boundary-distributed

control problem: minimize : :
(®) S Lo('bsysul»uz)d’c 5 g(y(‘O)QY(T))
. fe} , v =

in yEeC(0,138), uiéin(O,Q;Ui); i=1,2 subjecét ﬁé state

equation (2.1). -“ = ' ‘ S :
Here 1<p L o0 and Lj: [O,T] X EXU3 X Uy f-=~>§== mom g cmj s

'ng)(E.m—9>§ are given funcfibns which will be precised 1atém;

Prom now on we shall assume that the spaces E, Uy and Us

* 3 s e o ; i ¥ -
are reflexive and strictly convex together their duals E Ul

with

. We denote by U the product space U;X U, and denote by ||
(xesp. (];]i) the noxm ir E (resp. U). The pairing'betweennEﬁlE%z
end U , U™ will be denoted by (;,o) and <}, f>, . resﬁectively;

~ Finelly we denote by Ft E—~> B and 5 : U=>U" the
| duality mapping of.E andvU,:respectivaly.,It should be recalled

(see 8.8 [2], p;lB) that'under our assumptions Fand F pre
'single valued, injective and demicontinuous (i.e. strongly-
weakly continuous). - e } sy o
Ve shall assume also that Assumptions I/~{IV‘ are satisfied
sl e on .y o s (2,00 Bl Kl (0,T)

where

pp-L)1 Ly g o0, ¥
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Ag remarked eesrlier, the solution y to system (2.1) is
continuous on [O,T} and hence (F) makes sense. _
~ As seen in Section 2, the state system (2.1) can be
brought into the form (2.13) mhere u = (ul,uz) < U‘)(UA = U,
0 = g2, 10 25€ 0(A) and 4 is given by (2.12). Let
Lz [o T]X EXU —> R be defined by

L(LQy;u) = -L' (tgysulguz) fO:E u'm (ul;uz)
Then problen (P) can be equlvglenily expressed asy ‘minimize

(P) 5 L(‘ceysu)dw Lﬁ(y(o)ay(“‘))

in y¢ c(o,d.,r:) and ue Lp(o T;U) subject o

! -1

W= Aw + A_u C ot [

(461)
; y e Hw
Here f¢€ L (O T E) is a given function. The molutlon or (4 1)

must be unda;suood in b%e sense of (298),_&;@051

(40 ) y(t):s(f)y(§)+éﬂlls(tws) A_u(s)dé+g’5(t;s)f(s)ds, (o R
R Aséump;cion b T

imply that

(402) fIIS(t) 4 || 1(U, E)é E0E) . tomitie [0, zn]

where & ¢ 1P (0 cv), q/p + “/p =
Besgide the above asoumptic s onE, Uy 4 and B futher

- hypotheses on L and é/ must be imposed.

(A) The functions L(t) and é) eYe Towev selwcontlnuovﬁ
and convex on EXU (fox each_ﬁ)_anﬁ EX E; respectively.
Furw’:hemoresi the following conditions hold. £ :

(2) For cach (y,u)é EXU the functions L(i,y,v)e [0,7) —» &
and JL(t,y,v)s [OgT]-fw? EXU are Lebesgue meagsurable.

(b) There exist erLE(omE), ¢ L7(0,%;0) and
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1 (o.my | S ion Lo
goé;L (O T) such that for all (y,u)é EXU,
L(ts5su) (v,r (t) W s’ (1> +g5(8),  aee. teRon
g For each ygéfn thers 1s & nei ghbourhood (7/) of ya,
functions « €IP'(0,7), g€ LP(O,T) and a mapping
¢ [0,y @@U such that

(4. )y, 3,y)) £ a( ) mes. $E€10,L
(4 4) i Z(tsv)ﬁ < p(E) Be€o L€ JO,T[
for gld . yc @

Here J (tgy,u) = (y . L) denotes the solution to equation J
(see 8eZo [?] s Do 41) |
(4 5) {F(y -y)9 ::(u wu)j +udL(t Y ou )

where fD L(t)*E‘<U-—9 x_'W is the oUbdlff@f&hii&& of (t);

~ We uotlcc that condition (a) ¢mp1168 that L(t,y(t),u(t))
is a Lebesgue measuraule,funcﬁlJn of % whenever y(.) and u(.)
are lebebgue measuﬁable functions (thl% maj be seen from
formula (5.4) below). It can be shown that if spaces E and U
ere separable then (a) is satisfied iff L is & convex normal
integrand in the sense of Rockafe3lam (sée [15]). I£ L 48 =
independent of t then conditions (a) and (b) automafmcelly hold.

. As regards (c) it is satisfied in particulam if the

Hemiltonisn asssociated with L ig finite on EX U \cthor

situstions in which (c) holds are d"scusqed in L4]9 n«?l?)

An end goint paix (yl,yz)gg EXE ie called attawnahle fou

problem (P) if there exist functlon& ye;ﬁ(QQT;h) and

ué;Lp(O ) satisxymng system (4e 1) and such that
(406) IJ(tsy u)éL (O T)@ y(o) we yls J(T> 53 y2°

The set of all attainable pairs will be denoted by Cyo
Bty i il ' | &
Denote also by 'D({ ) = {(ypyz)({- EXEj f(ylgyz) L+ ooj
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the effective domagin of 6 o Our next assumption is

(B) There is (ylgyz}é GL/\D(f?) such that one of the

following two conditions hold

(4:7) yy€int] xem; (3, €n(f))
(4:8) Fp€int {xems (yl,x)éc,lr.
STt mlght be noticed that 1n general (4.8) falls fox .
inflnlte"digen81onal systems bacause it requires vhe complets
controllsbllity. o e ._ S HE R

~ The main result of this_papér, Thgoremul balcw_ﬁay bea
regaqud as a meximum principle for our boundarymdistributeé

control problem.

THEOREM 1. Suppoge that sll above hypotheses on system (2.1)

and functiong I, K axe satisfied. Then a given pair (yésua}

ig optimal in %rob7em (P) if end only if there exist the funcitions
o € €00, 7E%) i 1P (0,7 sD(A" IT)) and qq € 7t (o yT3E") which

setisfy along with yo and uo gystem i

: ¢ : P, bES A
e 8 Wy = AW, + Au, + T2, on [0,1]
A 'YO é: HWO i
o . i e :
(4elQ} D e A Do f fo 00 [OsTJ

(4:11) (2o (8)s A" (#) 1€ OL(t,y () 4u (t)) aces t€]0,2L

end trsnsversalily conditions

(4;12) (p(;(Q)a“pO(T)lle(J’ (O>sy0('j:))

(Y
| Here UL(%)&EXU—«@»E Xt and(a‘g »EYD»«@»E)&E
stand for @ubd“ff@rentlals of L(t) and.‘éf, reapectively.

Of course equation (4.9) must be considered in the sense

of (4 1) © ia(}g,
-i:

yo(t)-S\T)yo(o)+ g ITS(tms) Al (s)ds+ ‘f S(u»s)r(s)ds,
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while (4.10) is teken in the “mild® seﬁae, 1s6s,
2 2 :
(413)  po(%) = s (T-.mpou)n Js (5-t)q,()de, 0L t4 T
where 8°(.) is the semigroup generated by the adjoint A" of A.
By A) " we have denoted the adjoints of 4 and @I
respectively. o N et e :
~ Some insight into_ the problem and ’I‘he’cr‘em can be gained

f¥om the following simple example. Minimize

‘(4;14) 5 g(x;&(x,i))dgdm gh(u(c ,&;))(u

ixi &(-‘G(O;'.’E;Lg(_(l)) aﬁd 1:1(« LP(O;T;Lz(.CL)) sabgcc* %‘:0'
(%;15) %—%» A&-:o in Qr:u.Q.‘KLO 7]
(4;16) : :}=iz v inZ:i‘)qi_O'l‘
(4»1() ' Jax,o) ¥ (x) x¢ (0

where voé .,:2(,(7.10 The functlon gzﬁx R w~»~>R is continuous and

convex in y, measurable in x and satisfies

o e e
{g(x,y)l Clyl™ + ¢(x) aeee x¢, yeR
where Cé (fl )e As regaras the function hiR -mm;»H LL will
be assumed convex, lower semicontinuous and cofinite i.o.,

(4.18)  1im h(u)/jul = + 0.
i '}u‘fﬁbcxg =

In pavticular we m teke function h as
8y

g hO(u) uée U

h(uv) = ' e
; + o0 ‘ otherwise

Where hy is g c;intinuoua convex function on veal axis and Uy

is a bounded and closea in“tcrvale 5 ‘ o :
Cleaxly Assumptions (4) and (B) are satisfied where

B o= I8(Q), U= Uy = 17()

L(T;,ygu)—- S- g(x,y(x))dx+ _gh(u(a )ido - |
‘ il

i
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and [ 1is defined by : |
\ Zﬁ(y1gyd,~o ir y1~y1 and = 4+ o0 1f ¥1 # Yo+
In this cese we have also & =II =4 , D(A) = Hy (il)f\ iE e
and D = =B where B: 1° £5) —~7>I (1) is defined by equation T

Then aé easily seen by (3 5) the adaomnﬁ BY in given by

B*y {B (4 ) ly for all y¢ e (AZ)
¢ o on
so that SJstem Calay, (4 11) becomes
e 0p. : i
(4'e19) (-«b 4 “i“ Ape »- ‘0 in Q
{4020) Q€ q)yggx;yo) - inQ
R EP (3 it
(4021) /§~—~ E = h(u ) in 3

-

while h*anSVbﬂSleLy conditions (4 14) veduce to
(4@24) yc(xso) = y°(x), pc(&gi) = aeeeIXG,fl;

Since condition (2.9) holds with a function 7€ L(0,T)
where 1< x< 8/7, we mué%’cbbose p in the control épace
LP(os g Ae G ) e thet p> 8, ”

Thus by ‘Theoxrem 1 a given paix (yO,u ) is optimal in
problem (4:14) 1ff there exist p ¢ €(0,T5L (ll))fj :P?(ngaj
'H%({L)/\ H?(ﬁl)) and qé ¢ Ll(O,T;LQ(jl)) satisfying :
(4019) v (4022). ' | '

: 4, PROOF OF THEOREM 1. Since ‘the gsufficiency is S'braight-—
forwaxd we coniine ourseIVes to pxove ihe gggggg¢ty of ‘ ‘
conditions (4@9\f4 (4¢1?) for optimelity. The idea of the preof
comes from the author work 3] (see also [4], Chaptesr ).

Let L, and 2# e M>0, denote the funcitions

(5u0) D (%sy»u)”inf{ %Zf ('Y¥§kg+ Hu=Bi2) 4 TlH,5,8) 3

(y,n;é Erin = L(i;a (vgu))+ wz ﬂ'b L (mgygu}”



: 5 A B
(52) @ (¥15¥5) = inf{ e <ay1-§312+ |y2~§§iz)+~€<§i,§;>;
(Ylsyg)F EXE ‘g( J (Ylsyg))*' ""’"H ()g (YleQ)f

We recall (see [4], De 107) that Ly(t) and e are Géteaux
differenﬁiable on EXU and EXE, respectively. Their dlfferent¢al
(}L‘u(t) and ’Bgu are given by

(54 5y Al (tsyau)
(5¢4) rag (Y19Y2

whexe Gy = (F, ') and G, = (F, F) are the duality mapping;s of

el

(Gl(y,u) j (’csy»u))

S |

g (Gz(ylsy2)~ j (3193’2))

EXU and EX E, raspactlvelye I% should be onservedj;hg't in
virtue of Assumption (4) end equality (59151'“(%;’,3:'(1;),@('2)) ig
a Lebesgus measurable function of t whenever y(s) and u.(;) are
Lebeggue msasurable.. _ :

Let (yo,u ) be any opt.mmal pair of pmblem (P) and let

W, = II lyo. Congidex the app:coxn.ma’cing problemnm
. T

(5.5) int joj (Lu(toygu)«*-p“ Nu-ﬂ-uoﬂ p)dw g (y<o)szf<'l”>‘)' +
% F <o>myo<o>12j

where the infimum is taken ovexr all uéLp(O T;U) and
y€ C(0,T5E) satisfying sysuem (4.1) - By condition (b) in

Assumption (A4) and by (5.1), (5e3) we see that for all yEE and
uec U, we have |

('5@6) Iigt,y,u) (rogy)+ /soga>-e-go é,_eee'téjo;iﬂ
w‘iere gO{-Ll(O 7) is :s.ndependent of Xz 4

In partlcujar it follows by (3,6) that nroblem (50 5) has
fou each uy>o & solutwn (y W, ) (unique because U is
‘s‘crlctly convex). Using the fact that I (t), @ and the norms
An U and E are Gateaux dlflerentn.ablw we find thet \yy,u#)

satisfy

Mool 48544



-
(507) 5(( dylu(tsyuau )wy)“'(f) L (t»JMau )+ llu "'ugi\pna ) <a{u”‘
| ~uo)s uy )cWr(ra Lu (T, (0),y (1) )48 (y,, (0= .‘;’0\0))957(0)) +

+ (/B g(y (O)SY (T))sa'(T))

for ell uGELp(O T;U) and y satlsfying (4 1) :
We see by (5.3) and (506) that 1D,Lu(t,xl,u#) € 1F (G 38 2% and
(9 Lu(t 2V 0y, & Lp(O IJ) Lat Py € G(0,T3E") be defined by

(5.8) p, (4)=5 (‘l‘»"‘)p (1)- fs e o (s,y (s),a (e

wheras
(569) -, (T) ~/92 gy(yﬂ(o)gyy(i‘))
( Q&é? denotes the dixferentlal relative to cecond argument ) .
We observe that by (4.2) the operator .‘A*F%K%)ITV is
continuous‘from E*'to i for each t¢ rog gnd :
10 e R A o ) tox € [opn] .
L(E*,0*) .

Inasmuch as S°(4)I* = [*S*(t) on D(4*) we may infex that

(5.20) [ A" 8% ()] S 0hE), e Tond

0

In paxticular, iﬁ fqlldws‘that ‘ifjf§> L (O Pl ;; Thus
substituting y by (4;1)f in (5.7) we g;t aftexr some calculations
involving Fubini's theorem that

'(5 11) 1 pi,ﬁ Huo-u,LNp Ge s O wu]ﬁ DuLyCu,yﬁ,uﬁ), I ‘ﬁ‘*709 L
and using (5.9) we find the transversality equations

(5012) { p,k(o)f:f'ﬁ‘(yo(o)wy#(o)‘)9-pﬁ(‘1‘)} fg*f;ﬂia@(o};;f,{ ().

By (5;5) we have
(5613) é( (L,A’cgy'usuﬁ)w”lﬂ »-uonf’mw {9,«5:9‘ (o), ('*‘)) +

¢ 2y, (0)yyto) 22 05' L(bs5,yu )b 5@0(@)%(@»
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because I%4Q=L and-é&@gf fox all/ﬁ)@.‘ln particular, it follows
that 2 qu} is bounded in Lp(Q,T;U) and by (461)"this implies
that { yyhj <is'bounded_in C(0,T3E). Thue extrecting; a

subsequence if necessary, we may assume that

. W@ weskly in 17(0,7;1)

(5¢14) T = § | | weakly-stax in fy?O ME) .
; ﬁ(t) —»%ay(t) weakly in B for each t(f[O TJ
Glear1y (ygu)€§ C(0,T3 sE) % (O T3U) sat;sfy equatlon (4 J)
: On the othex hand, we have
e Rl Al

Jnct.y,mm Lo, 5an; S 50t3000)at4 £ (750033, (21)
end : ‘

oy m e
(5.15) ,}"fg g.nf gLﬂ(t,y{,u )dt éf:t;@gi}ga’)dt

(5c16) lim J.ni‘ { (J’ \o),y,.{\T)) ’g (3(0),7(1))
R L J 2
which in cowauct;on with (5 13) and (5. 14) umply

l

(5o37) Aﬂ.mwva u . strongly in Lp(O T3U)
(5e18) §¢ e yo : strongly in C(O TE)

The Jusiixlcatlon of inequullties (5 751, (3916) is geen by
invoking relations (5.1) v (5 4) and the weak lowex
semicontinuity of—Z on EXE and of convex Integrand

T :

fL(t,y,u)dt on Lp(o,T;E)Xzﬁ (o,T;U).
o . 5 Pl e R

We have in mind to pass to limit in equations (5 8), (9¢&13

and (5. 1?)0 To thns purpose some & priori estimates on ewara

necegsary. The first is given by

TEMA 1 {p, (£)3 o4p 4 1) is a bounded subset of T .

- Proof. Since the proof 18 esseﬁtiaLWJ the same as that of
Bemma 2. in LB} (sec alao[l] P6230) it w111 be onTy’ouTiin@d%

Firet we assume that condition (407) holds i.0., thers
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exist y¢ C(O,T3E) and uéLp(O,T;U)' satisfying (4.1)! and such
Jcha‘t . A = A - e .
l).
W7, € B0, ym € nt{ x65 (viod,mn e a(lH).
Therefors, there is 030 and C>o0 such that i

g K(Y(O:y(i‘)dﬁeh)((}‘ for all h¢E, lhlLl.
- Next by (5 l"), we have '

(5»19) \p%(o),yﬁ(O)ﬁv(o)) (pﬁ(T) er(T)e-y(’i‘) 0 h) +
i(r(ycwe«yﬁcon,aﬂco) (o)) f,uy,@(o),yﬁmn .
M(y(o)py(’l‘)%— 0 h) . ]

whmle by (4 R T (b 8) and (_)oll) we see that
P

(pi,b(O)syi,(O)w(O)) (p,,{(f)qyf,b(T)wy(T))\ J (Lr{(m,y ,u,4> +

s
o™ i =) )t - S (B(tey,0) + p” su~uogsP,ut,
Q 5

Gomblning "hhe latter with (b:..(.9) we get

(5020) » [, () 4 € for all )A

I

ag cl 1mnd (In the sequel we shall dcnote by € several positive
constents independent of e )

Let (P ¢ EXE m«-«% R be the convex function defined by
s 7

Cj')(hlgh ).-mfi 5 (L(tgygu)-»pp Nu p)d’t;y(o) =Ny 5 y(T) = hys
(y,u) gatisfies (4 l)j
Glearly ﬁf is lowev sem:’.conhnuous and ws effective domain is

the very se‘c‘C*L. T2 cond:.t:z.on»(/h&%) holds, then ‘9here exigl
Y€ C(0,T3E) and u€ LP(0,T3U) satisfying (4.1)' and such thet

SO(Y(O)g y(T)+ oeh) L ¢ for e.ll lhl&el |,

Then proceedmg as in'[1]" we find that {épH(&“)ll isg bounuago
‘ We continue the proof of theorem by ‘noticing that in virtue
~of Assumption (A) there exist a(:Lp (0,1), peIP (0,2), e>o0

-

and vng [057] =-> U such that | Vh(‘t’! b ,3(17) Be0e t€] 0,7
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end for all he¢E , lnlL1, '

(5.21) L(ts7,(t) +eb,v, (1)L a(t) a6 %€ J0,7[
®)

Next by (5.11) and definition of C/er we have ,

((By L‘!).(tsy}k ,urk)yyr{" yo"Qh) + <Aﬁnﬁplu H E(uo., ur')“ 110-‘{1%“ P
u, - ?’h>>‘1‘r‘(t"yyt”u&> - aft) , a.e. %€ JO,7[ .

Invoking (5.6) and (5.18) the latter yields for a sufflouenﬁIJ
small '«'\ )

(52 rL<»ah-yrt,ur>\ LoCluhe £)CNug = we 177 4

+ I\Anp ) d8) omwe. € 00
§
where o€ LP (0, 1) Vo sot 9 ="9 1%('&5;3:“,% )o Now taking into

account Lemma 1 and (5¢8),05:10), (5 21) we Chﬁa&&
L4

(5.22) I A'*H%Prh(ﬁ)ﬁ £ o( §'(T-‘a) + 3 Cls~t) (1 | uf(s)i\ )

=F

O P 1 MO RS CREPENENS P~lygsel for a1i € [o0,1].

Next by Young’s‘inequality we have

=i
i N 5 nt .. \p? g
( S( § §(s«t)l\ur(b)h I A*]j{%k(ﬁjn as)? at)/P -
o _
qu‘} _ :
( S l%(t)lp at /> S\\u (s)ll ﬁ_Afjj“p#{s)ﬁ de o
0
T; 1] ]
x(mw)(g A n‘pﬁ(iz')‘\\ P'ag )P’ for 02 GLT
where tllm x (%) = 0. We may there fore conclude from (5022) that
- 0
T
i S i A ik p i _3 is bound@d whera v 1ls some positive cons-
T » i ‘

tant. By (5.8) we see %that { \p (t)g_} are uniformly bounded on
[T.naz TT o NGW reasoning as above with T replaced by T - v we

get after some steps that. {,4 H'.%&%} ig bounded in

%
- 120,730 ) end

(5.23) - lprh(t‘)!éc for € [OT],

"It should be observed that (5.21) also implies *thak
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{ S(;I:(O T;E ) is equibounded'and the measures {01@) =
= S a (+)dt, © mesgsurable subset of [O,T]B are uniformly
absolutelv continuous. Then according to Dunford—Pettié criterion
in Banach spaces (see | 5]), the set ﬁ 5 is weakly cdmpacﬁ in
Ll(o T3 E ). Hence there exists a °ubsequence (agaln denoted qﬂ)
such that fo:f & «-«-%o, e '
f"e’qo weakly in L (0 ”‘E )

(5«24) L

Extractlnb further subsequences, we may also assume that
(5»25) V(T) > Dpp weakly R - 3
(5326) : %& > D wegkly=stax 1n-ﬁﬁ(03$;E*),
(50 ,1 [[%(muw-——é AT Pis ‘weskly in ipf(OgT;U)e

I fOl]qu from (5.25) and (5°8) that for each t€[0,T] ,

2 o g
pﬁk(t)‘@po(‘t) =8 (Tw"t)pT - é S™(8=)q, (s)ds
in the week topology of w¥, _ _ _
Since . (o) ey () uniformly on . [nO 7] and B ods .
demicontlnuous on E we may pass to llmit s 0 55 19) to obtain

(agsl: - <po<o>,~po(m>>(a£<y0<o> To (D).

The justification of the final aSSﬂrtlon ig seen by ﬁecalling
~ that /\f (yﬁ(o)s yP(T))Cqé)(J (y (0)’yt*
that(73€ is demiclosed in FX.E (Jue €ole [2], Chapuar II)

TY)) and'the ch%

To concluue the proof it remains to verlfy equat"on (4311)

By ()cll) and definition of "Bl~ we have
rk(%yﬁsuia G Lr(tsugu)+ q, 9yﬁ”‘7‘3“}°</1 1 pr;%-l!u Nu,tﬂp 2

. e e : ‘H(u “’“}*) n "’u>
for all ut LP(0,T3U) end all y € G(0,T;E ). AR
Integrating over [0,7] and letting p tend to zero we

obtain
(5029)  § L(ty¥0u,)at4 § L(t,5,u)dt + ) ((a7:5,-F) +
o el e iy



= 2o e
+<A IE90, i U = Uy Ya%
(We have used here xelations (591))‘\j(q918)y (5021) and ohe
demicontinuity of the duality mepping I o) Shnece in (5049) the

pair (y,n)€ €(0,T38 ) X LP(O,T;U)'is axbltrary we may conclude

by a standard argumenu that
(au(8), A% D, (8¢ %u,yo( otg(t))  aves €10, T

thereby completing the proof.
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