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ABSTRACT. It is shown that every derivation of a nest

algebra BCB (H) into?Q(H) is- ineer.

A

/

1. Introduction and statement of the results
‘ |

N .

Let H be a separable Hilbert space, B{H) the aigebra of
all bounded, linear operators on i and ¥ (H) the two sided ideal'
of compact operators.

In LZJ there are considered the.following properties
which a von Neumann algebratﬂle(H) may have: ‘ %

(P ) If beB(H) and ab-b.a QSK(H) for all a&d%‘ then
b604"+](un

(P, ) Every derlvatlon from JQ into 5% 1) is inner.

It is easy to see that (P2)~;9(P1). In [2] it is shcwn
that any von Neumann algebraJﬂlC;B(H) which does not contains some

Type .Iﬂi factors as a direct summand has (P,) and so it has (®y)

too.



“In ithis papér (Theorem 1) we show that every derivation

from a nest algebra.ﬁ%intx>5¥(H} is inner. IﬁfB(:B(H)_is a subalgebra,
we denote by Lat€B the lattice .ofall dinvariant projections of GE 5
o[: is a lattice of projections, we denote alg:{: —{aeB'( JO(C Lat a}‘
subalgebra[%C R(H) is called re:’ex1ve 1f_3 =alg Latfg LA . A re-
lexive algebra j% is icalled a nes+ algebra if Lat»O is totally
rdered by 1nclus;Lon LS] A derivation from fg into ?{(H) is a
inear map D.j4,«~;ﬁ((H) with D(a -2, )=a D(a )+D(a e a, for all
a r @, in f{; SR e }((H) then bc: &2 > % (H), -defined by
5f(a)=ac—ca, aeqﬁ is a derivation; such derivations‘are Calléd
inner.
Theorem 1. Let :@C B(H) be a nest algebia. Then, every de-
riVétion D:% M%(H) is. dnner.
This result will be"'deduced from the following theorem.
. Recall that an operator berH) essentlally commutes with «ﬁﬁ
dEs bas ab€:3{(H fercall a&fg

We shall denote by Bess the essential commutant of /)J

Theorem 2. Let @CB(H) be a nest élgeb’ra. Then

B e e ce KU

Proof of Theorem 1. Since g%is a nest algebra, and hence

reflexive, it follows that the maximal abelian von Neumann subal-
gebra.jeof B(H) which contains Lat? % is included in ﬁ% . Let now
D: C%)hM%JY(H) be a derivation. Then j’jl igs a derivation from

3{ into Jx (H) .. By [2] Theorem 2.1, there exists coe35un such

! = (®; : )

== O T =)= The ‘ - b= ti} (ﬁY}

that Dk@ ¥ S%& . Let D‘O D OCO._lhen DOE@%O' We show that DO(JﬂQv@‘
Indeed, let a E(f?\ and peLat G‘)che Then ap=pap, and we have:



Do(a.p)=a.DO(p)+DO(a)p2DO(a).p

Do(p.a.p)=pDO(a)p+DO(p)a.p+paDo(p)=pDO(a)p

Hence Do(a)p=p.Do(a)p'and sc Do(a)ealg Lat§9=3% ihérefore
Do:ggk”g%ﬁ«ﬁhBy Elj Corollary'B.li it follows that there exists
aéééB such thatADo=g€o. Since DO:§% v%iRRH), we have aerE;;s.
By Theorem 2 ao=fll+ci for some }eC and CleﬁﬁH).‘Thus D=&b0+ a&xgb
where C=C1+CoeﬁK(H) which ccmpletes the proof. , |

The proef of Theorem 2 océupies the whole of this paper.
In the § 2 we prove Theorem 2.dn the special case'when'thg

~A
diagonal S%/\ﬁ% is non-atomic, the % 3 is concerned with the to-

.tally atomic case and in the § 4 we give the proof of Theorem 2.

2. The non-atomic case

Let Rf=(0,+%) be the multiplicative group of positive reals

and,/L the Haar Ieasure on Rf.

2.1, Lemma. Let h: (0,+0) +—> € be an essentially bounded,
measurable function such that for every ¢, 0<{£<1, we have
h(x)=h(€x)'}t—a.e. Then h is constant a.e.

Egggg. It is easy to see that h(x)=h(d.x) ;L?a.e. for every

de (0,+%) . Let M, be the multiplication by h on L2(0,+ﬂ$, Then Mh

h
commutes with all operators Tg B(L2(0,+m$)defined by:s

(T £) (%) =£ (€x) (¥) € >0.

By Fuglede's Theorem, the operators T, commute with the



spectral projections of Mh' On. the other hand, by the uniqueness
of the Haar measure, it follows that the set of operators {TE}5>0

oG
has no nontrivial invariant projections in L (0,+=). Therefore,

h is constant a.e. ;
For the definition and properties of triangular operator

algebras we send to [3].

2.2. Proposdi tion. Let SﬁfB(H) be a weakly closed, maximal

trlangular operator algebra w1th ‘non- aton:c dﬁagonaLJ? Then

xg’ - faack | aet ke X(H) }

(“J 1 )
Proof. The hypotesis on o and [6] implies that 7 is
hyperreducible. By £3] Theorem 3.3.1, all hyperreducible, maximal
triangular algebras with non-atomic diagonals are unitarily equi-

e

@ o
valent. So we can assume tiat H=L [(O +oF ,/i and S =a alg s, where

o

pllcatlon by the charactpristlc function- 7} (o %w) . Obviously

éfo,%u)-andfp(3 e is the projection due to multi-

| v
QQ 3J "L (0,+%) . Let now bé&ess' In particular bé G? . Since :ﬁz

is a maximal abelian von Neumann algébra, by [2] Theorem 2.1 it
follows that b=r +Ll where r QJQ and k erRQH) It is obvious that
~s/

16( o Let hleL (0,+~) be such that rl is equal to the multi-

plication Mh by hl. We show that hl is constant a.e. and there-
. 1 j
fore r =A .1 for some MAEC.
LR 1
Suppose by contradiction that hl is not constant a.e.
Then, by Lemma 2.1 there exists £, 0<£<1 such that the function

hz(x)=hl(x)—h1(5x) is not negligeable. We consider the following

operator TEEB £L2(0,4od]:

(T, £) (x)=£ (¢ x)

-

It is easy to see that q%'egf . Moreover:



1 Y mv 4 Py 7 e
[‘rlT%—Tgrl)fJ(x)z UMhl‘E"T%Mhl)g](X)"(nl(X)—hl(“X))f(zh)"
=h2(x)f(£x).

The operator §;=r Dol x

1°¢

isunot negligeable, there exists 50>O swich that the set

] is not compact. Indeed, since h2

Aé: {[hz(xﬁj%é;o is not negligeable. Then the set Aj is also
not negligeable. An easy computation shows that the range of the

2 o ’
operator SMZW% is iithA'Lh(O'“”‘ Therefore S cannot be compact..
.t o o . :

This contradiction shows that hl is congstant a.e., so r;=}1.1 for
I - 4

some ﬁléc, which completes the proof.

2.3. Lemma. Let ﬁch(H) be a reflexive algebra. Then

N *
(LatR) = BB .

)]

: o ,
Proof. The inclusion ggﬂﬂﬁa(LatQEY' ie obvious. Let now
o L4 53 n, .
b€ (Lat B)!. Then LathC(Lat bB¥YLat b ). Slncefﬁ is reflexive,

: : # _0) B 4 (’:;) /"i (g*
e follews.thatib, bemﬁ. Therefore b & Joi P Jo

2.4. Lemma. Let.QBCEMH) be a reflexive algebra, and p&f@
a projection. Then p3p=alg {pep}e{LaﬁB} 4
Proof. By Lemma 2.3. we have pe=ep for every celiotD . Let

13693 and eeLatgg. We have:

- pbpep=pbep=pebep=pepbpep . Hence
Pf%?é?lg{pep‘eeLatﬁﬂ.

Let now €G¢B(H) such that.pcpéalg;ipepleéLat@ﬁ}. Then, we have:

1
\

pcpep=pepcpep for every eeLatéBG



Therefore

pcpe=epcpe, 50 pcp P@P

: T A) i . ',
2.5. Lemma. Let A ¢ B(H) be a von Neumann algebra with
1] ) )
commutative commutant. Then & has minimal projections if and only

H
if ' has atoms.

Proof. Let ee¢N° be a minimal porjection, and Z(e) .
the central support of e. It is easy to see that 7(e) is an atom
.‘»;\; / ¥

in ()\/’. Conversely let 2Z¢€ A”" be an atom. Then 7“/\7 =02 . Hence

ZJ\ Z =B (zH) C \)\ , so JX' has minimal projections. -

2.6. Proposition. Let ?BCB(I-I) be a nest algebra such that

its diagonal y/‘%ﬂ %" has no minimal projections. Then
=7 e . | L 5 P
T s :i«\‘ﬂ +e | aeC, ce X(H )}
Proof. Since ()?) igs reflexive and Lat% is comnutative, it
foilows that f% contains the maximal abelian von Neumann algebra
R generated by Lat . Obvi ously, /’2 & “//3(’\ b - Let b& Jjess In

X ¢ . .
particular, be(‘:%{’)ﬁ « . BY Ea) §<§ 2y 3 there exist r.& (. /‘a‘T )’
- 5 1

) 14
ess
] : / ,
and ¢ e¢X(H) such that b=x +C . Since bé& @)ecs it follows easily

i
“that rl-e; {% T Let ge be the von Neumann algebra generated by
Lat(% 3 X c:H a cyclic vector for J’L -and p.;-,il’ the projection onto
sp {rx lrtﬁﬂ By Lemma 2.3, JQ (}%ﬂﬁ. Therefore, by Lemma 2.5
pﬁ,lp has no atoms. Since %5 ig, eyelie for p?{lp, it follows that
pﬁlp is maximal abelian in B(pH). It is obvious that the von
Neumann algebra generated by {pep]eeLat%} is pﬂlp. By Lemma

L_) $ \ : [ k . ~ =
2.4 php=alg { pep \ et Lat;%} . Using 3| Theorem 3.1.1 it follows

( - :
that pvg p is a weakly clcsed maximal triangular algebra inB(-pH)’
with diagonal p (:R‘ p. Now, we show that ry= A+l for some deill

Suppose by contradiction that’ Q,i is not a multiple O‘{' lhe

gl T o G = bt e J‘C wAT pal yv..\;'!'x‘hj(? hi - .



B
——

| . Indeed 1f'rl.p=}.p for some )e €; then in partlcular.rlxo=ﬁxO.

Since rleﬁl(.‘@ and X is cyclic fexr A it results that rl==;,l.l. Hence

rl.péc.p.
By Proposition 2.2, there exists ceﬁﬂp such that pr,pcp-

_pcprlp£3CQﬁn‘ Therefore rl(pcp)—(pcp)r1¢§fﬂﬂ; This last fact
/

i S ( : -:.-. It 2
contradicts ri€ Dogse Hence r, 4 for some Ag:@f

3. The totally atomic case

3. 1. Propeosition. Let. 9 ¢ B(H) be a weakly closed, maximal

triangular algebra with totally atdmic-diagonalfg, Then
o {a 1k |de€, kex(m) )
ess Q \«/f: ’ K { Ik
For the proof of this propostion we need the following

two Lemmas: /
> f
[

‘3,2, Lemma. Let |F be an infinite, countable, totally or-
dered set. Suppose that I, F are infinite, disjoint subsets of F.
Then, there exist two infinite subsets I]CI, chJ and a one-to-one

mapping @:I,~>J, such that wither @(i)gi for every iel,, or
P e | 1 ; iPeoie . i

@(i)»i for every i&Il.

Proof. Let | :%ﬁ}u{l){F;XF ! §4é~£_£ We denotes:
: LT R TSR ’

g { ﬁ’c(} xj)(’] f! W) (63), (i, e B with
« ‘ e el

' e el et Al A

- i ~ : . :
If F=¢ then JIxI C | and hence every one-to~one mapping



=J.

(P:I v—>J satisfies @ (i)yi for every ieI; In this case I,=I, Jl

8

: c 3 Crs R 3 ) 5 : 5 :
Suppose now # #@. We show that * is inductively oxrdered by inclusion.

e A g
Let {F;imﬁq C % ©be a totally ordered family. Since E ¢ (IxI)N[

we have kJch;(IxJ)f\fe Let (i,j), (4,307 € §H E:, with
(dpd)# (il 3" ) . Bince {Ei} is.totally‘ordered, there ¢xists

ol 6A such that (.4), (1',7%)¢ Ei;" Therefore i#i’ and 3#3’ whence
ngE;égr; so % is inductively ordered. By Zorn's Lemma,izyhas a

, ’, . . . ] 0 0] k3
maximal element FO. if FO is infinite, then it is the graph of

5

a function  with the required properties. In this case Iizprlr

A
and J prJFo.

e g R .
L FO is finite, then every one-to-one mapping

ol / 5 e S SR (MR | Y
FP E IFo V—’L4rJFo satlgr¢es PLi)pi for every i Q[PIIbo°

: / s e
In this case e 0T o and Wg = prg .

3.3. Lemma. Let E be a separable Hilbert space and {kb}q@;‘
: re———aamrt ] . D B i

-an orthonormal basis. Let ér y be a bounded sequence of -complex

qf‘zl
numbers. Then the operator r defined by TRFL X is gompact if and

only if the set {r 1 has zero as the only limit point.

s |

EEQQE' Let B:N —>3% be a one-to-one mapping. Then the
operator U:ﬁ%w—aH defined by WO . al, 0,...)=Xgir) is unitary
and UﬂlrU is the multiplication by tge bounded seguence 2r9(n)§
on 22..In this case the result is well-known.

Let nowa'be a weakly closed, maximal triangular algebra
with totally atomic diagonal R. If £eB(H) is a projectioﬁ, we
denote by H(£) (the hull of £ inT" (3]) the intersection of all
ecLat % such that fze.

By (3] Theorem 3.2.1 the total ordering of Lat t S induces

o

a total ordering on the atoms Je i o 0f i by means of the mapping

,—A..,
t’"
fw

from projections to their hulls, which is one~to-one on the atoms.

O



. . S o ; : £ :
Let "<& this ordering on 25 . Prom the preof of L3] Theorem 3.2.1
e T £01 , Sy e i O )
we have h(es)=ues, forievery. . sel . Since Latd < R, it follows
§'<«<s
that every eeLat¥ is a supremum of a family ;h(éc)} s
~ =]

Proof of Proposition 3.1. Let .ées'ﬂ .= be. the atoms of

¢ Yyse),
: = f il : = ;
Q. If be § ., then in particular b¢ :/? . By (2] Theorem 2.1,
ess = ess "/
b=r+k1 where r¢R and k({:?{(ﬂ) . Obviously, ré':j’ess. We show that

r= Jyl-t—kz where 2¢C€.and kze:(/.(i—l) . Suppose by centradiction that »

5 . 5 - g :
i net ef this ferm. Then, by Lemma 3.3, the set 51:8\{ Sszhere

P i Y J . : i ) 2 3
T gegmr e, for every se2., has at least two different limit points
: s ;

® . s . .. . < i l{ ey
:)\l#,f‘xz. Then, f;here exists two infinite subsets Zl—“—{snj(_z,
2 Sl : "

o= ; Rl o e
p {Sn (C2, and £ 50 such that:

(11) 1lim r_1=) and lim r 2=

S e S
n=292 n n=e n

(iii) !si*s}i‘ i'),{o for every mn,k e V.

By Lemma 3.2, there exist two infinite subsets le C 2,1,

s

=22

SN
for every s€/Z

e g = ; ]
(“2"2 and a one-to-one mapping kp:g‘llw«';vzzz such that P(s) K s

11+ (If the situation P(5)HS hold, then we consider

: ‘ e
the inverse map ¢ : 2 0% le) :

~ f

We now define the mapping :(‘17.‘}3""%‘.2 in the following way:

i ¢ (s) e ae
s i s;lf_zll

¢
o ’

Obviously: ¥ (s)« s for every S{{Z,QF('S)«S 3 sﬁgll, Q}){Z
ik

. . N B
Let x_te fix \l=1 for every s¢2 . We define the operator

T\?; ¢ B(H) by:



o5 e

o
|

= A il
T‘;);)L( a}] ﬁ@'&}(s)xq}{si)

—r

- Gr . Tk - :
We show that T S gince o is reflexive, then it suffices

(’\J

N
bR e : : | &’ 2

to show that Lat J<C Lat L?. Since every ec¢Latfis a supremum of a

family {h(p )}, we must show that h(es)eLat T% for every S¢ 2y

By the remark before the proof of Proposition 3.1 we have h(eg)~,) %

; o~
Since ¥ (S)é&u oL levery S, L is easy to see that h(e )¢ Lat Tw :

Therefore T /79

We show, now that the operator rTx-Tg r is not pom)“ct.
: ; e

3

Indeed, we have:

Co R R o L e e
\ T , /’I_b’\b‘s)] = \\(ls'“lé:‘r')(g)).)\\é['i‘} y\qa'(‘:'}' :

ey

o 4 =rT ~T Xl =Y e for ever s DBl e
Let S Tg T 1 an? Rasl . F(s) every = v th
property (iiij above ip~7§ >0 for every s&.,,. Let p, be the
; S0 : : # 1 S5
- projection of H onto the subgpace generatéd by eSH}q,§1 © and Py
ez A

be the projection of H onto the subspace jenerated by .
: k Y

22
i <t e L -
Since L, anddgzz are infinite subsets of Z, , it results that p,H

and pZH are infinite dimensional. It is easy to see that the range
of the operator Sp, is le and so S cannot be compact. This con-
tradiction shows that r is of the form r=.}d+k2 and hence

b=tl+k where M € and k=kl+]<2f,,':]§(1-l) :

The proof cf the following Lemma is similar with the proof

of {3} TLemma 2.3.4.



e

415 Lemma. Let o(, be a maximal, totally ordered lattice

of projections in B(H) and ’Jz] the veon Neumann algebra generated

byoC. of eef@l is ancatomiand hie) the hull of e incg’/‘, then:

(1) hle)-e ¢l

(ii) h(e)-e immediately precedes h(e) in i

Proof. We prove at first the following assertion:

e elEoL and if there exists ezéa(,, CRER such that
immediately precedes €y then e;e, is an atom of "Ql Indeed,

Suppose that e,~e, is not minimal in f}Zl Let e3€§31 be a projection

S # e, he e ke L L is maximal; we
such that Ofes<e;-e,. Then e,ce,teyce,. Since o, is maximal; we

1

'8 0 . i * .
have that e.,+e3(gol, - This contradicts the faect that e, imnediately
£

l in . Therefore e,~e, is an atom of iﬁl.
Let now e¢®R, be an’atom and h(e) the hull of e in ol T
‘f:%ol:' is a projection whizh .does not contains e, then from minimality

i

of e, we have f.er—O,Sinée o e totally ordered it follows that

precedes e

/

f<h(e). Therefore, fgh(e) -e. Let fo=y{f«’=‘o[ ] fsh(e) —e}- . Then, fOE ch,

and fo:g h(e)-e. Obviously fo immediately precedes h{e) ine , By
ay it follows that h(e)ffo is an atom of CQ Since fosh(e)~e,
we have esh(e)-fo. Therefore e=h(e)-—fo, SO fo——-h(e)-e QLL and

immediately precedes h(e) in —i

: ) .
4.2. Lemma. LetbcB(H) be a nest algebra, ,.(R, a maximal
abelian von Neumann algebra which contains Lat@) and J;Z)La,t‘;/g,
a maximal totally ordered lattice of projections in {R Suppose

that the von Neumann algebra “(Rl generated by is totally atecmic.

Then le——{Q

0 : e o ;
Proof. Since the inclusion :f{l(; g:\) is obvious, we must

(f : (2%} C
show that J{C@l. Let %enw} be the atomis of JQI‘ We show that
ke Sn=1 s 3

{



e Dl S

4

e, is an atom of fR, for every neN. Let h(e ) be the hull of = inel .

IE h(en)=en then e, is minimal in j because of Lhe maximality of

A

L in R. Suppose h(e )}e‘_ . By Lemma 4,1, h(e )»e ng and immedia-

tely precedes h e )m.:f B ZIppma 742257 h The - g Léo\/ ahd’ ifnkdd dE1y

E%ig?ﬁﬁﬁ_@z’n/)_/w. From the maximality of of in R, it follows
that e, is minimal inR. 1f el is an arbitrary projectioﬁ, then
e= Z@n ¢ . Hence eef?l'. Therefore @C(Ql.

\{a"eg‘#r/}'ﬂhe V

following Lemma is an easy consequence of the fact

that a nest algebra is reflexive.

4.2 Lemma. Let J BcB(H) be a nest algebza. I£ ceLat B , then

eB (H) (1-e)c B.

4.4. Lemma. Let RcB(H) be a maximal abelian von Neumann
algebra, and Ll a maximal, totally ordered lattice of projections.
Tf peRiis a projection, then cfsz{enp}e€x£f is a maximal totally

orderedilattice ofi projections in g{.p.

Proof. Suppose by contradiction that there exists eo'pé@f‘?’

Eo.p g";c[.p such: that {eo.p} Uo\[‘P be totally ordered. We denote:

Li=feed leprer)  e=nl

\

:{fiéi \ngr:‘;F} | 3 ffé?\/iz,

Since eo.,p‘gv,fi.p it follows that elp7eo.p and ez.p(eo,p,

On the other hand, since S@o }\_}J:.p is totally ordered, we have

c[, o[uf Let fQD[ and e &

\.CJ\.Q’

fpge.pqe@.p which is a contradiction. Hence £e.

Then e<f. Indeed, if £ge, then

Further, we show that eo*p+e?(l~p) is comparable with

every projection fé&J :



a) it f&c[l then f,p‘>ﬁ%.p and, by a remark above f)e?
1o} f(l-p):&ez(l-p). Hence f?eo.p+e2(l~p).

b)Y LE feuiz, then f.p<feo.p and f(l—pygez(l—p). Hence
f{eo.p+e2(1"p).

Hence {eosp+e2(l—p)}kjéu is totally ordered. It is obvious
that &%.p+e2(l-p)¢cL . This contradicts the maximality of . Theres
fore .p is a maximal, totally ordered lattice of projections

1 g&p,

e Proof of Theorem 2. Letfﬂﬁ% be a maximal abelian von

Neumann algebra which contains Létfgfiif)Lath a méximal totally
ordered 1étticé of projections in.@,and‘ﬁfﬂﬁlthe‘von Neumann al-
gebra generated by. . We denote by p&ﬂl the sum of all atoms of
{Rl and ézl—p. Obviocusly @1.p is totally atomic, and.@acq is non

atomic. Letf%o=algid; since & O Lat®, we havef@éﬂBQ Let now
/

/. o~ 5 & : :
béisess' Then béfﬁ In particular b¢ CEOFﬂB 1 . Brem {2]

oess”’ o’ ess

§§ 2, 3 it follows that there exist ré;(@ofﬂgZ)’ and keX(H) such

= : ¢ oK __‘f‘} " (; g G
that b=r+k. By Lemma 2.3)(v%0(}?%)’~k1. Hence réﬁl. Since bﬁﬁoessf

it follows that re$§’ . Using Lemma 2.4, Lemma 2.5 and Proposi-

Yoess

tion 2.6 it follows that r.g=),.q for some } & C.

On the other hand, by Lemma 4.4, J.p is a maximal totally

ordered lattice of projections in_ﬁ&pu Using Lemma 4.2 we obtain

aQ
B
triangular algebra with totally atomic diagonal {!.p. By Proposi-

péﬁ.p, Therefore the algebra ﬁBOp is a weakly closed, maximal

tion- 3.l rop=A2p+k2'where kze-c and k?ﬁK(H).

¢

We consider the two possible conditions on the dimension
OFf pH:
Lidim pH <« o0 . Then we have:

rerprrg=l, p 4 Kyt Mg = A1+ (A=) p + K= A1tk

5 of s N\
Whei"e k<l dJB 1€ ﬂiH/’ :



IT.dim pH= . Since r=A1.;+(A2~,%l)p+k2=A2.1+(Al‘—12)q+k2,
z / / A
from rEfBoess it follows that (Az—ll)p, (}1—A2)q€§%ess' If]l#Az

then,. obviously p, qe%ée%s‘ We shall show that this is not the

~case and so A1=12. We examine the following two_possibilities:

1) For every ecd. with qeéq.we have p.e=0.

In this case, we denotg eO=V{e&J;Ye4q}§J; Cbviously E%qu
From the maximality of L it follows that ﬁ%#O. Since eonlq andf%lq
is non-atomic, it follows that dim eoﬂzou.We have also dim (lQEO)H%w
Hffor l~e 7p and dim pH=ed) ,

5]

By Lemma 4.3, eOB(H)(l“eO)ﬁfB .

ot (1) s i
s Let GeeoB‘H{(l co) be a

non-compact operator (for exemple the partial iscmetry c:pr4>eOH),
We have:

= C"'-— Y rymm D=CE ey
qep=qe c(i-e jp=e, Cf ¢X(H)

Hence:

q.ch.q=q.c¥q.c.q=qc.p¢j<ﬂﬂ.

Thereforegq#%éess.
2) There exists eéQJLWith qeb(q and peeO#O.
2a) Suppose dim peOH<oo. Then, since dim sz«a‘we have
‘dim p(l-eo)H=~z By Lemma A3, eOB(H)(1~eO)CﬁO. Let CequB(H)p(l*eO)
be a non compact operator (for exambie the'partial isometry-

"c:p(l-e )Hy+——ge H). We have:
o) o)
qcp=qeoc(l~eo)pmcéxxﬂ)

Hence:

q0wccqzq.c~ch=qcm>¢ LY .



/
£ {
Therefore qégoess'
2b) Suppose dim peOH=°QLet CeeopB(H)q(l—eo) be a non. com-

pact operator. We have:

pcq=peOC(l—eO)q=GﬁK(H)

Hence
po-c.p=pc-p .cp=pcqd K (i)
 Therefore pé%éesc. So,we. have shown that in any case,
! / bl > :
" the gituation py qeﬁ%éeés is impossible, such that Ai=}2. Then,

rzﬁi.l+k where Jlé,C and kzeﬁK(H)) whence b=ﬁl‘l+k+kq which

2

completes the proof.
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