INSTITUTUL DE MATEMATICĂ INSTITUTUL NAȚIONAL PENTRU CREAȚIE STIINȚIFICĂ ȘI TEHNICĂ

DERIVATIONS OF NEST

ALGEBRAS WITH VALUES IN K (H)

by

C. PELIGRAD

PREPRINT SERIES IN MATHEMATICS
No. 16/1978

BUCUREȘTI

Med 15474

DERIVATIONS OF NEST ALGEBRAS WITH VALUES IN K (H) by C. PELIGRAD*)

^{*)} Department of Mathematics, National Institute for Scientific and Technical Creation, B-dul Pacii 220, 77538 Bucharest, Romania.

by

C.Peligrad

National Institute for Scientific and Technical Creation, Bd.Păcii 220, 77538 Bucharest, Romania

ABSTRACT. It is shown that every derivation of a nest algebra $\mathfrak{BCB}(H)$ into $\mathfrak{K}(H)$ is ineer.

1. Introduction and statement of the results

Let H be a separable Hilbert space, B(H) the algebra of all bounded, linear operators on H and \mathbb{X} (H) the two sided ideal of compact operators.

In [2] there are considered the following properties which a von Neumann algebra $\mathcal{A}_{CB(H)}$ may have:

(P₁) If b&B(H) and ab-b.a $\in \mathcal{K}(H)$ for all a $\in \mathcal{A}$, then b $\in \mathcal{A}' + \mathcal{K}(H)$.

(P2) Every derivation from $\mathcal A$ into $\mathcal K(H)$ is inner.

It is easy to see that $(P_2) \Longrightarrow (P_1)$. In [2] it is shown that any von Neumann algebra $\mathcal{A} \subset B(H)$ which does not contains some Type Π_1 factors as a direct summand has (P_2) and so it has (P_1) too.

Theorem 1. Let $\mathcal{B}C$ B(H) be a nest algebra. Then, every derivation D: $\mathcal{B} \longmapsto \mathcal{K}(H)$ is inner.

This result will be deduced from the following theorem. Recall that an operator b(B(H) essentially commutes with $\mathcal B$ if ba-ab $\in \mathcal K$ (H) for all a $\in \mathcal B$.

We shall denote by Bess the essential commutant of B.

Theorem 2. Let $\mathfrak{BCB}(H)$ be a nest algebra. Then $\mathfrak{B}'_{ess} = \{\lambda \cdot 1 + C \mid \lambda \in \mathbb{C}, C \in \mathcal{K}(H)\}.$

Proof of Theorem 1. Since \mathcal{B} is a nest algebra, and hence reflexive, it follows that the maximal abelian von Neumann subalgebra \mathcal{R} of B(H) which contains Lat \mathcal{B} is included in \mathcal{B} . Let now D: $\mathcal{B} \leftarrow \mathcal{K}(H)$ be a derivation. Then D is a derivation from \mathcal{R} into $\mathcal{K}(H)$. By [2] Theorem 2.1, there exists $\mathbf{c}_{\mathbf{o}} \in \mathcal{K}(H)$ such that D = $\mathbf{c}_{\mathbf{o}}$. Let D = D - $\mathbf{c}_{\mathbf{o}}$. Then D = 0. We show that D (\mathbf{B}) $\mathbf{c}_{\mathbf{o}}$. Indeed, let a $\mathbf{c}_{\mathbf{o}}$ and pcLat $\mathbf{B} \subset \mathcal{R}$. Then ap=pap, and we have:

$$D_{o}(a.p)=a.D_{o}(p)+D_{o}(a)p=D_{o}(a).p$$

$$D_{o}(p.a.p)=pD_{o}(a)p+D_{o}(p)a.p+paD_{o}(p)=pD_{o}(a)p$$

Hence $D_o(a)p=p.D_o(a)p$ and so $D_o(a)\ell$ alg Lat $\mathcal{B}=\mathcal{B}$. Therefore $D_o:\mathcal{B}\mapsto\mathcal{B}\cap\mathcal{K}(H)$ By [1] Corollary 3.11 it follows that there exists $a_o\in\mathcal{B}$ such that $D_o=\delta a_o$. Since $D_o:\mathcal{B}\mapsto\mathcal{K}(H)$, we have $a_o\in\mathcal{B}_{ess}$. By Theorem 2 $a_o=\lambda 1+c_1$ for some $\lambda\in\mathcal{C}$ and $c_1\in\mathcal{K}(H)$. Thus $D=\sqrt[4]{c_0}+a_0=\delta c$ where $C=C_1+C_o\in\mathcal{K}(H)$ which completes the proof.

The proof of Theorem 2 occupies the whole of this paper. In the \S 2 we prove Theorem 2 in the special case when the diagonal $\mathcal{B} \cap \mathcal{B}^*$ is non-atomic, the \S 3 is concerned with the totally atomic case and in the \S 4 we give the proof of Theorem 2.

2. The non-atomic case

Let $R_+^{\bigstar}=(0,+\infty)$ be the multiplicative group of positive reals and μ the Haar measure on R_+^{\bigstar} .

2.1. Lemma. Let $h:(0,+\infty)\longmapsto\mathbb{C}$ be an essentially bounded, measurable function such that for every ξ , $0\langle\xi\langle 1\rangle$, we have $h(x)=h(\xi x)$ μ -a.e. Then h is constant a.e.

<u>Proof.</u> It is easy to see that h(x)=h(d.x) μ -a.e. for every $d\varepsilon(0,+\infty)$. Let M_h be the multiplication by h on $L^2(0,+\infty)$. Then M_h commutes with all operators $T\in B(L^2(0,+\infty))$ defined by:

$$(T_{\varepsilon} f)(x) = f(\varepsilon x)$$
 (\forall) $\varepsilon > 0$.

spectral projections of M_h . On the other hand, by the uniqueness of the Haar measure, it follows that the set of operators $\left\{T_{\mathcal{E}}\right\}_{\mathcal{E}>0}$ has no nontrivial invariant projections in $L^{\infty}(0,+\infty)$. Therefore, h is constant a.e.

For the definition and properties of triangular operator algebras we send to [3].

2.2. Proposition. Let $\mathcal{T}CB(H)$ be a weakly closed, maximal triangular operator algebra with non-atomic diagonal \mathcal{R} . Then $\mathcal{T}'_{\text{ess}} = \left\{ \lambda.1 + k \mid \lambda \in \mathbb{C} \right., \, k \in \mathcal{K}(H) \right\}.$

Proof. The hypotesis on \mathcal{T} and [6] implies that \mathcal{T} is hyperreducible. By [3] Theorem 3.3.1, all hyperreducible, maximal triangular algebras with non-atomic diagonals are unitarily equivalent. So we can assume that $\mathrm{H}=\mathrm{L}^2[(0,+\infty),\mu]$ and $\mathcal{T}=\mathrm{alg}\,\mathcal{L}$ where $\mathcal{L}=\left\{\mathrm{P}_{(\lambda,+\infty)}\mid\lambda\in[0,+\infty)\text{ and }\mathrm{P}_{(\lambda,+\infty)}\right\}$ is the projection due to multiplication by the characteristic function \mathcal{X}_{λ} of $(\lambda,+\infty)$. Obviously $\mathcal{R}=\mathcal{T}\cap\mathcal{T}^*=\mathrm{L}^\infty(0,+\infty)$. Let now be $\mathcal{T}_{\mathrm{ess}}$. In particular be $\mathcal{R}_{\mathrm{ess}}$. Since \mathcal{R} is a maximal abelian von Neumann algebra, by [2] Theorem 2.1 it follows that $\mathrm{b=r_1+k_1}$ where $\mathrm{r_1}\in\mathcal{R}$ and $\mathrm{k_1}\in\mathcal{K}(\mathrm{H})$. It is obvious that $\mathrm{r_1}\in\mathcal{T}^\prime_{\mathrm{ess}}$. Let $\mathrm{h_1}\in\mathrm{L}^\infty(0,+\infty)$ be such that $\mathrm{r_1}$ is equal to the multiplication $\mathrm{M}_{\mathrm{h_1}}$ by $\mathrm{h_1}$. We show that $\mathrm{h_1}$ is constant a.e. and therefore $\mathrm{r_1}=\lambda_1$.1 for some $\lambda_1\in\mathcal{C}$.

Suppose by contradiction that h_1 is not constant a.e. Then, by Lemma 2.1 there exists \mathcal{E} , $0<\mathcal{E}<1$ such that the function $h_2(x)=h_1(x)-h_1(\mathcal{E}x)$ is not negligeable. We consider the following operator $T_{\mathcal{E}}\in \mathbb{B}\left[L^2(0,+\infty)\right]$:

$$(T_{\xi}f)(x) = f(\xi x)$$

$$\left[(\mathbf{r}_{1} \mathbf{T}_{\xi} - \mathbf{T}_{\xi} \mathbf{r}_{1}) f \right] (\mathbf{x}) = \left[(\mathbf{M}_{h_{1}} \mathbf{T}_{\xi} - \mathbf{T}_{\xi} \mathbf{M}_{h_{1}}) f \right] (\mathbf{x}) = (\mathbf{h}_{1} (\mathbf{x}) - \mathbf{h}_{1} (\xi \mathbf{x})) f (\xi \mathbf{x}) =$$

$$= \mathbf{h}_{2} (\mathbf{x}) f (\xi \mathbf{x}).$$

The operator $S = r_1 T_E - T_E r_1$ is not compact. Indeed, since h_2 is not negligeable, there exists $\delta_0 > 0$ such that the set $A_0 = \{|h_2(x)| > \delta_0 \text{ is not negligeable. Then the set } A_0 \text{ is also not negligeable. An easy computation shows that the range of the operator <math>SM_{\chi_{A_0}}$ is $M_{\chi_{A_0}} \cdot L^2(0,\infty)$. Therefore S cannot be compact.

This contradiction shows that h_1 is constant a.e., so $r_1 = \lambda_1 \cdot 1$ for some $\lambda_1 \in \mathbb{C}$, which completes the proof.

2.3. Lemma. Let $\mathcal{B}_{CB}(H)$ be a reflexive algebra. Then $(\text{Lat}\,\mathcal{B})'=\mathcal{B}\cap\mathcal{B}^*$.

<u>Proof.</u> The inclusion $\mathcal{B}\cap\mathcal{B}^*_{\mathsf{C}}(\operatorname{Lat}\mathcal{B})'$ is obvious. Let now $b\in(\operatorname{Lat}\mathcal{B})'$. Then $\operatorname{Lat}\mathcal{B}\subset(\operatorname{Lat}b)\cap(\operatorname{Lat}b^*)$. Since \mathcal{B} is reflexive, it follows that $b,\ b^*\in\mathcal{B}$. Therefore $b\in\mathcal{B}\cap\mathcal{B}^*$.

2.4. Lemma. Let $\mathcal{B} \in \mathcal{B}(H)$ be a reflexive algebra, and $p \in \mathcal{B}$ a projection. Then p\$p=alg $\{pep \mid e \in \text{Lat} \mathcal{B}\}$.

Proof. By Lemma 2.3. we have pe=ep for every e {Lat \mathfrak{B} . Let $b \in \mathcal{B}$ and e {Lat \mathfrak{B} . We have:

pbpep=pbep=pebep=pepbpep. Hence $p\mathcal{B}$ pcalg{pep|e \in Lat \mathcal{B} }.

Let now C(B(H)) such that $pcp \in alg \neq pep \mid e \in Lat \mathcal{B}$. Then, we have:

pcpep=pepcpep for every eclat B.

Therefore

pcpe=epcpe, so pcp p@p.

2.5. Lemma. Let $\sqrt{c} B(H)$ be a von Neumann algebra with commutative commutant. Then \sqrt{c} has minimal projections if and only if \sqrt{c} has atoms.

<u>Proof.</u> Let $e \in \mathcal{N}$ be a minimal porjection, and $\mathbf{Z}(e)$ the central support of e. It is easy to see that $\mathbf{Z}(e)$ is an atom in \mathcal{N} . Conversely let $\mathbf{Z} \in \mathcal{N}$ be an atom. Then $\mathbf{Z} \cdot \mathcal{N} = \mathbf{Z} \cdot \mathbf{Z} = \mathbf{Z} \cdot \mathbf{Z}$. Hence $\mathbf{Z} \cdot \mathcal{N} = \mathbf{Z} \cdot \mathbf{Z} = \mathbf{Z} \cdot \mathbf{Z}$

2.6. Proposition. Let $\mathcal{BCB}(H)$ be a nest algebra such that its diagonal \mathcal{BAB}^* has no minimal projections. Then $\mathcal{B}_{\text{ess}} = \{\lambda 1 + c \mid \lambda \in \mathbb{C}, c \in \mathcal{K}(H)\}$.

proof. Since B is reflexive and Lat B is commutative, it follows that B contains the maximal abelian von Neumann algebra R generated by Lat B. Obviously, $\mathcal{R} \subset \mathcal{B} \cap \mathcal{B}^*$. Let be \mathcal{R}_{ess} . In particular, be $(\mathcal{R} \cap \mathcal{B})'_{\text{ess}}$. By [2] \$\frac{1}{2}\$ 2, 3 there exist $r_1 \in (\mathcal{B} \cap \mathcal{B})'$ and $c \in \mathcal{K}(H)$ such that $b = r_1 + c$. Since be $\mathcal{B}_{\text{ess}}'$ it follows easily that $r_1 \in \mathcal{B}_{\text{ess}}'$. Let \mathcal{R}_1 be the von Neumann algebra generated by Lat B, x the a cyclic vector for R and $p \in \mathcal{R}_1'$ the projection onto $\overline{sp} \{rx_0 | r \in \mathcal{R}_1'\}$. By Lemma 2.3, $\mathcal{R}_1' = \mathcal{B} \cap \mathcal{B}'$. Therefore, by Lemma 2.5 pR₁p has no atoms. Since x_0 is cyclic for pR₁p, it follows that pR₁p is maximal abelian in B(pH). It is obvious that the von Neumann algebra generated by $\{pep | e \in \text{Lat } \mathcal{B}\}$ is pR₁p. By Lemma 2.4 pBp=alg $\{pep | e \in \text{Lat } \mathcal{B}\}$. Using [3] Theorem 3.1.1 it follows that pB p is a weakly closed maximal triangular algebra in B(pH) with diagonal p \mathcal{R}_1 p. Now, we show that $r_1 = \lambda \cdot 1$ for some $\lambda \in \mathbb{C}$ Suppose by contradiction that λ_4 is not a multiple of the

Since $r_1 \in \mathcal{R}_1 \subset \mathcal{R}$ and x_0 is cyclic for \mathcal{R} it results that $r_1 = \lambda.1$. Hence $r_1 \cdot p \notin \mathbb{C}$.p.

By Proposition 2.2, there exists copy such that $\text{pr}_1\text{pcp--pcpr}_1\text{p}\notin\mathcal{K}(\text{pH})$. Therefore $\text{r}_1(\text{pcp})-(\text{pcp})\text{r}_1\notin\mathcal{K}(\text{H})$. This last fact contradicts $\text{r}_1\in\mathcal{B}_{\text{ess}}'$. Hence $\text{r}_1=J.1$ for some $J\in\mathbb{C}$.

3. The totally atomic case

3.1. Proposition. Let $\mathcal{T} \subset \mathcal{B}(H)$ be a weakly closed, maximal triangular algebra with totally atomic diagonal \mathcal{R} . Then $\mathcal{T}'_{\text{ess}} = \left\{ \lambda.1 + k \mid \lambda \in \mathbb{C}, \ k \notin K(H) \right\}.$

For the proof of this propostion we need the following two Lemmas:

3.2. Lemma. Let F be an infinite, countable, totally ordered set. Suppose that I, J are infinite, disjoint subsets of F. Then, there exist two infinite subsets $I_1 \subset I$, $J_1 \subset J$ and a one-to-one mapping $\varphi: I_1 \longrightarrow J_1$ such that wither $\varphi(i) \leqslant i$ for every $i \in I_1$, or $\varphi(i) \geqslant i$ for every $i \in I_1$.

Proof. Let $\Gamma = \{(f_1, f_2) \in F \times F \mid f_4 \leq f_2\}$ We denote: $\mathcal{F} = \{F'C(I \times J) \cap \Gamma \mid (\forall) \ (i,j), (i',j') \in F' \quad \text{with} \quad (i,j) \neq (i',j') \quad \text{implies} \quad i \neq i' \text{ and } j \neq j'\}.$

 $\varphi: I \longrightarrow J$ satisfies $\varphi(i)$, i for every ieI. In this case $I_1=I$, $J_1=J$. Suppose now $\mathcal{F} \neq \emptyset$. We show that \mathcal{F} is inductively ordered by inclusion. Let $\left\{F_\alpha'\right\}_{\alpha\in A}\subset \mathcal{F}$ be a totally ordered family. Since $F_\alpha'\subset (IxJ)\cap \Gamma$, we have $\bigvee_\alpha F_\alpha'\subset (IxJ)\cap \Gamma$. Let (i,j), $(i',j')\in \bigvee_\alpha F_\alpha'$, with $(i,j)\neq (i',j')$. Since $\left\{F_\alpha'\right\}$ is totally ordered, there exists $\alpha_0\in A$ such that (i,j), $(i',j')\in F_\alpha'$. Therefore $i\neq i'$ and $j\neq j'$ whence $\bigvee_\alpha F_\alpha'\in \mathcal{F}$, so \mathcal{F} is inductively ordered. By Zorn's Lemma, \mathcal{F} has a maximal element F_0' . If F_0' is infinite, then it is the graph of a function φ with the required properties. In this case $I_1=pr_1F_0'$ and $J_1=pr_JF_0'$.

If F_{O}' is finite, then every one-to-one mapping $\varphi : \left[\operatorname{pr}_{I} F_{O}' \mapsto \int_{\Gamma} \operatorname{pr}_{J} F_{O}' \right] \text{ satisfies } \varphi(i) \text{ in this case } I_{1} = \operatorname{pr}_{I} F_{O}' \text{ and } J_{1} = \operatorname{pr}_{J} F_{O}'.$

3.3. Lemma. Let H be a separable Hilbert space and $\{x_s\}_{s\in\Sigma}$ an orthonormal basis. Let $\{r_s\}_{s\in\Sigma}$ be a bounded sequence of complex numbers. Then the operator r defined by $rx_s=r_sx_s$ is compact if and only if the set $\{r_s\}$ has zero as the only limit point.

<u>Proof.</u> Let $\theta:\mathbb{N} \longrightarrow \Sigma$ be a one-to-one mapping. Then the operator $U: \boldsymbol{\ell}^2 \longrightarrow H$ defined by $U(0,\ldots 1,\ 0,\ldots) = X_{\theta(k)}$ is unitary and $U^{-1}rU$ is the multiplication by the bounded sequence $\left\{r_{\theta(n)}\right\}$ on $\boldsymbol{\ell}^2$. In this case the result is well-known.

Let now \mathcal{T} be a weakly closed, maximal triangular algebra with totally atomic diagonal \Re . If feB(H) is a projection, we denote by h(f) ("the hull of f in \mathcal{T} " [3]) the intersection of all e(Lat \mathcal{T} such that f<e.

By [3] Theorem 3.2.1 the total ordering of Lat $\mathcal T$ induces a total ordering on the atoms $\{e_s\}_{s\in\Sigma}$ of $\mathcal R$ by means of the mapping from projections to their hulls, which is one-to-one on the atoms.

Let \ll this ordering on Σ . From the proof of [3] Theorem 3.2.1 we have $h(e_s) = \sum_{0 < s} e_s$, for every $s \in \Sigma$. Since Lat $\mathcal{T} \in \mathcal{R}$, it follows that every $e \in \text{Lat} \mathcal{T}$ is a supremum of a family $\left\{h(e_s)\right\}$.

Proof of Proposition 3.1. Let $\{e_s\}_{s\in\Sigma}$ be, the atoms of \Re . If $b\in\mathcal{T}'_{ess}$, then in particular $b\in\mathcal{R}'_{ess}$. By [2] Theorem 2.1, $b=r+k_1$ where $r\in\mathbb{R}$ and $k_1\in\mathcal{K}(H)$. Obviously, $r\in\mathcal{T}'_{ess}$. We show that $r=\lambda\cdot 1+k_2$ where $\lambda\in\mathbb{C}$ and $k_2\in\mathcal{K}(H)$. Suppose by contradiction that r is not of this form. Then, by Lemma 3.3, the set $\{r_s\}_{s\in\Sigma}$ where $\{e_s=r_se_s\}$ for every $s\in\Sigma$, has at least two different limit points $\lambda_1\neq\lambda_2$. Then, there exists two infinite subsets $\sum_1=\{s_1^1\}\subset\sum$, $\sum_2=\{s_1^2\}\subset\sum$ and $\{e_i\}$ 0 such that:

(i)
$$\Sigma_1 \cap \Sigma_2 = \emptyset$$

(ii)
$$\lim_{n\to\infty} r_{s_n} = \lambda_1$$
 and $\lim_{n\to\infty} r_{s_n}^2 = \lambda_2$

(iii)
$$|s_n^1 - s_k^2| \gg \xi_0$$
 for every $n, k \in \mathbb{N}$.

By Lemma 3.2, there exist two infinite subsets $\Sigma_{11} \subset \Sigma_1$, $\Sigma_{22} \subset \Sigma_2$ and a one-to-one mapping $\varphi \colon \Sigma_{11} \longrightarrow \Sigma_{22}$ such that $\varphi(s) \ll s$ for every $s \in \Sigma_{11}$. (If the situation $\varphi(s) \gg s$ hold, then we consider the inverse map $\varphi^{-1} \colon \Sigma_{22} \longmapsto \Sigma_{11}$).

We now define the mapping $: \varphi : \Sigma \mapsto \Sigma$ in the following way:

$$\widehat{\varphi}(s) = \begin{cases} \varphi(s) & \text{if } s \in \Sigma_{11} \\ s & \text{if } s \notin \Sigma_{11} \end{cases}$$

Obviously: $\widetilde{\varphi}(s) \leq s$ for every $s \in \Sigma$, $\widetilde{\varphi}(s) \ll s$ if $s \in \Sigma_{11}$, $\widetilde{\varphi}|_{\Sigma_{44}}$ is injective and $\widetilde{\varphi}(\Sigma_{11}) = \Sigma_{22}$.

Let $x_s \in g_H$, $\|x_s\| = 1$ for every $s \in \Sigma$. We define the operator $T_{\widetilde{G}} \in B(H)$ by:

$$\text{Tr}\left[\left(\lambda_{s} x_{s}\right)\right] = \left(\lambda_{\widetilde{\varphi}(s)} \chi_{\widetilde{\varphi}(s)}\right) \quad \text{for every } (\lambda_{s} x_{s}) \in H.$$

We show that $T_{\widetilde{\varphi}} \in \mathcal{T}$. Since $\widetilde{\mathcal{T}}$ is reflexive, then it suffices to show that Lat $\widetilde{\mathcal{T}} \subset L$ Lat $T_{\widetilde{\varphi}}$. Since every exLat $\widetilde{\mathcal{T}}$ is a supremum of a family $\left\{h(e_s)\right\}$, we must show that $h(e_s)\in L$ Lat $T_{\widetilde{\varphi}}$ for every $s\in \Sigma$. By the remark before the proof of Proposition 3.1 we have $h(e_s)=\sum_{s' \in S}\mathcal{E}_{s'}$ Since $\widetilde{\varphi}$ (s) $\leq s$ for every $s\in \Sigma$, it is easy to see that $h(e_s)\in L$ at $T_{\widetilde{\varphi}}$. Therefore $T_{\widetilde{\varphi}}\in \mathcal{T}$.

We show, now that the operator $rT_{\phi}-T_{\phi}$ r is not compact. Indeed, we have:

$$(\mathbf{r} \mathsf{T} \ddot{\varphi} - \mathsf{T} \ddot{\varphi} \mathbf{r}) [(\lambda_s \mathsf{x}_s)] = ((\mathbf{r}_s - \mathsf{T} \ddot{\varphi}(s)) \lambda \ddot{\varphi}(s) \mathsf{x} \ddot{\varphi}(s)).$$

Let $S=rT_{\widetilde{\varphi}}-T_{\widetilde{\varphi}}$ r and $p_s=r_s-r_{\widetilde{\varphi}}(s)$ for every $s\in \Sigma$. By the property (iii) above $|p_s| > 0$ for every $s\in \Sigma_{11}$. Let p_1 be the projection of H onto the subspace generated by $\{e_sH\}_{s\in \Sigma_{11}}$ and p_2 be the projection of H onto the subspace generated by $\{e_sH\}_{s\in \Sigma_{12}}$

Since Σ_{11} and Σ_{22} are infinite subsets of Σ , it results that p_1^H and p_2^H are infinite dimensional. It is easy to see that the range of the operator Sp_2 is p_1^H and so S cannot be compact. This contradiction shows that r is of the form $r=\lambda\cdot 1+k_2$ and hence $b=\lambda\cdot 1+k$ where $\lambda\in\mathbb{C}$ and $k=k_1+k_2\in\mathbb{K}(H)$.

4. The general case

The proof of the following Lemma is similar with the proof of 3 Lemma 2.3.4.

- 4.1. Lemma. Let $\mathcal L$ be a maximal, totally ordered lattice of projections in B(H) and $\mathcal R_1$ the von Neumann algebra generated by $\mathcal L$. If $e \in \mathcal R_1$ is an atom and h(e) the hull of e in $\mathcal L$, then:
 - (i) h(e)-e €£
 - (ii) h(e)-e immediately precedes h(e) in $\mathcal L$.

Proof. We prove at first the following assertion:

a) If $e_1 \in \mathcal{L}$ and if there exists $e_2 \in \mathcal{L}$, $e_2 \in e_1$ such that e_2 immediately precedes e_1 , then $e_1 - e_2$ is an atom of \mathcal{R}_1 . Indeed, suppose that $e_1 - e_2$ is not minimal in \mathcal{R}_1 . Let $e_3 \in \mathcal{R}_1$ be a projection such that $0 \neq e_3 \in e_1 - e_2$. Then $e_2 \in e_2 + e_3 \in e_1$. Since \mathcal{L} is maximal; we have that $e_2 + e_3 \in \mathcal{L}$. This contradicts the fact that e_2 immediately precedes e_1 in \mathcal{L} . Therefore $e_1 - e_2$ is an atom of \mathcal{R}_1 .

Let now $e \in \mathbb{R}_1$ be an atom and h(e) the hull of e in \mathbb{L} . If $f \in \mathbb{L}$ is a projection which does not contains e, then from minimality of e, we have f.e=0, Since \mathbb{L} is totally ordered it follows that $f \in h(e)$. Therefore, $f \in h(e)-e$. Let $f_0=V\{f \in \mathbb{L} \mid f \in h(e)-e\}$. Then, $f_0 \in \mathbb{L}$ and $f_0 \in h(e)-e$. Obviously f_0 immediately precedes h(e) in \mathbb{L} . By a) it follows that $h(e)-f_0$ is an atom of \mathbb{R}_1 . Since $f_0 \in h(e)-e$, we have $e \in h(e)-f_0$. Therefore $e=h(e)-f_0$, so $f_0=h(e)-e \in \mathbb{L}$ and immediately precedes h(e) in \mathbb{L} .

4.2. Lemma. Let $\mathcal{B}_{\mathsf{CB}}(\mathsf{H})$ be a nest algebra, \mathcal{R} a maximal abelian von Neumann algebra which contains Lat \mathcal{B} and $\mathsf{L}\supset \mathsf{Lat}\,\mathcal{B}$, a maximal totally ordered lattice of projections in \mathcal{R} . Suppose that the von Neumann algebra \mathcal{R}_1 generated by is totally atomic. Then $\mathcal{R}_1 = \mathcal{R}$.

<u>Proof.</u> Since the inclusion \mathcal{R}_1 C \mathcal{R} is obvious, we must show that \mathcal{RQ}_1 . Let $\left\{e_n\right\}_{n=1}^\infty$ be the atomis of \mathcal{R}_1 . We show that

e_n is an atom of $\mathbb R$ for every neN. Let $h(e_n)$ be the hull of e_n in $\mathcal L$. If $h(e_n)=e_n$ then e_n is minimal in $\mathbb R$ because of the maximality of $\mathcal L$ in $\mathbb R$. Suppose $h(e_n)>e_n$. By Lemma 4.1, $h(e_n)-e_n\in \mathcal L$ and immediately precedes $h(e_n)$ in $\mathcal L$. By Lemma 4.1, $h(e_n)-e_n\in \mathcal L$ and immediately precedes $h(e_n)$ in $\mathcal L$. By Lemma 4.1, $h(e_n)-e_n\in \mathcal L$ and immediately precedes $h(e_n)$ in $\mathcal L$. From the maximality of $\mathcal L$ in $\mathcal R$, it follows that e_n is minimal in $\mathcal R$. If $e\in \mathcal R$ is an arbitrary projection, then $e=\sum_{n=1}^\infty e_n$. Hence $e\in \mathcal R_1$. Therefore $\mathcal R\in \mathcal R_1$.

The following Lemma is an easy consequence of the fact that a nest algebra is reflexive.

- 4.3. Lemma. Let \mathcal{B} CB(H) be a nest algebra. If eclat \mathcal{B} , then eB(H)(1-e)C \mathfrak{B} .
- 4.4. Lemma. Let $\Re CB(H)$ be a maximal abelian von Neumann algebra, and $\Im LCR$ a maximal, totally ordered lattice of projections. If $p \in \Re$ is a projection, then $\Im Lp = \{e, p \mid e \in \Im\}$ is a maximal totally ordered lattice of projections in $\Re Lp$.

<u>Proof.</u> Suppose by contradiction that there exists $e_0 \cdot p \in \mathbb{R}_p$, $e_0 \cdot p \notin \mathcal{L} \cdot p$ such that $\{e_0 \cdot p\} \cup \mathcal{L} \cdot p$ be totally ordered. We denote:

$$d_1 = \{e \in L \mid e \neq b \neq e \neq b\}$$
, $e_1 = \wedge d_1$
 $d_2 = \{e \in L \mid e \neq b \neq e \neq b\}$, $e_2 = \vee d_2$

Since $e_0 \cdot p \notin \mathcal{L} \cdot p$ it follows that $e_1 p \rangle e_0 \cdot p$ and $e_2 \cdot p \langle e_0 \cdot p \rangle$. On the other hand, since $\{e_0 \cdot p\} \cup \mathcal{L} \cdot p$ is totally ordered, we have $\mathcal{L} = \mathcal{L} \setminus \mathcal{L} \cdot L$. Let $f \in \mathcal{L} \setminus A$ and $e \in \mathcal{L} \setminus A$. Then $e \in A \setminus A$. Indeed, if $f \in A \setminus A$ then $f \in A \setminus A$ which is a contradiction. Hence f > e.

Further, we show that $e_0 \cdot p + e_2(1-p)$ is comparable with every projection fel:

- a) If $f \in \mathcal{L}_1$ then f.p > \mathbb{C}_0 .p and, by a remark above f>e_2 so $f(1-p) > e_2(1-p)$. Hence f>e_0.p+e_2(1-p).
- b) If $f \in \mathcal{Q}_2$, then $f.p < e_0.p$ and $f(1-p) < e_2(1-p)$. Hence $f < e_0.p + e_2(1-p)$.

Hence $\{e_0.p+e_2(1-p)\}\cup\mathcal{L}$ is totally ordered. It is obvious that $e_0.p+e_2(1-p)\notin\mathcal{L}$. This contradicts the maximality of . Therefore .p is a maximal, totally ordered lattice of projections in $\Re p$.

Proof of Theorem 2. Let $\Re \mathcal{B}$ be a maximal abelian von Neumann algebra which contains Lat \mathcal{B} , $J \supset \text{Lat } \mathcal{B}$ a maximal totally ordered lattice of projections in \Re and $\Re_1 \mathcal{C} \Re$ the von Neumann algebra generated by J. We denote by $\text{ps} \Re_1$ the sum of all atoms of \Re_1 and q=1-p. Obviously \Re_1 p is totally atomic, and \Re_1 q is non atomic. Let $\mathcal{B}_0 = \text{alg } J$; Since $J \supset \text{Lat } \mathcal{B}$, we have $\mathcal{B}_0 \subset \mathcal{B}$. Let now be $\mathcal{B}'_{\text{ess}}$. Then be $\mathcal{B}'_{\text{oess}}$. In particular be $(\mathcal{B}_0 \cap \mathcal{B}'_0)'$ and $\text{ke} \Re (\mathcal{H})$ such that b=r+k. By Lemma 2.3, $(\Re_0 \cap \mathcal{B}'_0)' = \Re_1$. Hence $\text{re} \Re_1$. Since be $\mathcal{B}'_{\text{oess}}$ it follows that $\text{re} \mathcal{B}'_{\text{oess}}$. Using Lemma 2.4, Lemma 2.5 and Proposition 2.6 it follows that $\text{re} \mathcal{B}'_{\text{oess}}$.

On the other hand, by Lemma 4.4, λ .p is a maximal totally ordered lattice of projections in \mathbb{R} .p. Using Lemma 4.2 we obtain \mathbb{R}_1 .p= \mathbb{R} .p. Therefore the algebra \mathbb{R}_0 p is a weakly closed, maximal triangular algebra with totally atomic diagonal \mathbb{R} .p. By Proposition 3.1, $r.p=\lambda_2 p+k_2$ where $\lambda_2 \in \mathbb{C}$ and $k_2 \in \mathbb{R}(\mathbb{H})$.

We consider the two possible conditions on the dimension of pH:

I.dim pH $< \infty$. Then we have:

r=rp+rq= λ_2 p+ k_2 + λ_1 9= λ_1 1+ $(\lambda_2-\lambda_1)$ p+ k_2 = λ_1 1+k, where $k=(\lambda_1-\lambda_1)$ b+k, $\in \mathcal{K}(H)$.

II.dim pH= . Since $r=\lambda_1\cdot 1+(\lambda_2-\lambda_1)p+k_2=\lambda_2\cdot 1+(\lambda_1-\lambda_2)q+k_2$, from $r\in\mathcal{B}'_{oess}$ it follows that $(\lambda_2-\lambda_1)p$, $(\lambda_1-\lambda_2)q\in\mathcal{B}'_{oess}$. If $\lambda_1\neq\lambda_2$ then, obviously p, $q\in\mathcal{B}'_{oess}$. We shall show that this is not the case and so $\lambda_1=\lambda_2$. We examine the following two possibilities:

1) For every eff with getq we have p.e=0.

In this case, we denote $e_o = V\{e \in \mathcal{L} \mid e \leqslant q\} \in \mathcal{L}$. Obviously $e_o \leqslant q$ from the maximality of \mathcal{L} it follows that $e_o \neq 0$. Since $e_o \in \mathcal{R}_1 q$ and $\mathcal{R}_1 q$ is non-atomic, it follows that $\dim e_o H = \infty$. We have also $\dim (1-e_o) H = \infty$. (for $1-e_o \neq 0$ and $\dim pH = \infty$).

By Lemma 4.3, $e_0B(H)(1-e_0) \subset \mathcal{B}_0$. Let $\mathbf{C} \in B(H)(1-e_0)$ be a non-compact operator (for exemple the partial isometry $\mathbf{C} : \mathrm{pH} \mapsto e_0H$). We have:

Hence:

Therefore q# Boess

- 2) There exists e cd with qe cq and p.e \$\neq 0\$.
- 2a) Suppose dim $pe_0H < \infty$. Then, since dim $pH = \infty$, we have dim $p(1-e_0)H = \infty$. By Lemma 4.3, $e_0B(H)(1-e_0)CB_0$. Let $c \in e_0GB(H)p(1-e_0)$ be a non compact operator (for example the partial isometry $c : p(1-e_0)H \longrightarrow qe_0H$). We have:

Hence:

$$qc-c.q=q.c-qcq=qcp \notin K(H)$$
.

Therefore $q \notin \mathcal{B}'_{oess}$.

2b) Suppose dim peoH=∞Let CeeopB(H)q(1-eo) be a non compact operator. We have:

Hence

Therefore pf9 oess. So, we have shown that in any case, the situation p, $q \in \mathcal{B}_{oess}$ is impossible, such that $\lambda_1 = \lambda_2$. Then, $r = \lambda_1 \cdot 1 + k_2$ where $\lambda_1 \in \mathbb{C}$ and $k_2 \in \mathbb{K}(\mathbb{H})$, whence $b = \lambda_1 \cdot 1 + k + k_2$ which completes the proof.

References

- E.Christensen, Derivations of nest algebras, Math.Ann., 225, (1977), 155-161.
- 2 B.E.Johnson, and S.K.Parrott, Operators commuting with a von

 Neumann algebra modulo the set of compact ope-,

 rators, J.Functional Analysis, 11 (1972),

 39-61.
- R.V.Kadison and I.M.Singer, Triangular operator algebras,
 Amer.J.Math., 82 (1960), 227-259.
- 4 H.Radjavi and P.Rosenthal, Invariant subspaces, Berlin, Heiderberg, New York, Springer 1973.
- J.R. Ringrose, On some algebras of operators, Proc.London Math.Soc. 15 (1965), 61-83.
- P.Rosenthal, Weakly closed maximal triangular operator algebras are hyperreducible, Proc.Amer.Math. Soc., 24 (1970), p.220.

INSTITUTUL DE MATEMATICĂ

INSTITUTUL NAȚIONAL PENTRU CREAȚIE ȘTIINȚIFICĂ ȘI TEHNICĂ

PREPRINT SERIES IN MATHEMATICS 1977 ISSUES

1.H.Bercovici and D.Voiculescu: TENSOR OPERATIONS ON CHARACTERISTIC FUNCTIONS OF C_0 CONTRACTIONS.

2.C.Vârsan: OPTIMAL BANG-BANG FEEDBACK CONTROL FOR LINEAR STOCHASTIC SYSTEMS.

3.N.Popa: SUR LES APPLICATIONS DU TYPE $\leq p$ et $\geq p$.

4.H.I.Ene and Elena Ungureanu—David: ON THE ELECTROHYDRODYNAMIC EQUATIONS OF THE PERMEABLE MEDIA.

5.Gr.Arsene and S.Strătilă: A BIBLIOGRAPHY ON OPERATOR ALGEBRAS AND RELATED TOPICS. SUPPLEMENT NO. 2.

6.H.Moscovici and A.Verona: COCYCLE REPRESENTATIONS OF SOLVABLE LIE GROUPS.

7.D.Burghelea and R.Lashof: THE HOMOTOPY STRUCTURE OF THE GROUPS OF AUTOMORPHISMS IN STABLE RANGES AND NEW HOMOTOPY FUNCTORS,

8.S.Teleman: ON THE IRREDUCIBLE DISINTEGRATION OF THE REPRESENTATIONS OF C*-ALGEBRAS.

9.M.Pimsner and S.Popa: ON THE EXT-GROUPS OF AN AF-ALGEBRA.

10.Ioana Ciorănescu: ABSTRACT BEURLING SPACES OF CLASS (M_p) AND ULTRA-DISTRIBUTION SEMI-GROUPS.

11.F.-H. Vasilescu: A UNIQUENESS RESULT IN OPERATOR THEORY.

12.C.Bănică and V.Brînzănescu: HILBERT-SAMUEL POLYNOMIALS OF PROPER MORPHISM.

13.M.Pimsner and S.Popa: EXT-GROUPS OF SOME NON-COMMUTATIVE C* - ALGEBRAS.

14.N.Boboc, Gh.Bucur, A.Cornea: HILBERTIAN AND LATTICE THEORETICAL METHODS IN POTENTIAL THEORY.

15.C.Peligrad: ON TRANSITIVE AND REDUCTIVE ALGEBRAS.

16.H.Moscovici and A.Verona: COHERENT STATES AND SQUARE INTEGRABLE REPRESENTATIONS.

17. Ioana Ciorănescu et L. Zsido : 1.4 THEORIE DES ω - ULTRADISTRIBUTIONS.

18.R.Iordănescu and I.Popovici SOME BASIC PROPERTIES OF ROTATION AND LORENTZ GROUPS.

19.C. Vârsan: DEGENERATE STOCHASTIC CONTROL SYSTEMS; OPTIMAL FEEDBACK LAWS. 20.S. Teleman: ON THE CHOQUET AND BISHOP - DE LEEUW THEOREMS.

21.L.Zsido: ON THE EQUALITY OF TWO WEIGHTS.

22.F.-H.Vasilescu: A MARTINELLI TYPE FORMULA FOR THE ANALYTIC FUNCTIONAL CALCULUS.

23.S.Strătilă and D.Voiculescu: ON A CLASS OF KMS STATES FOR THE UNITARY GROUP U (∞),

24.Gr.Arsene and S.Strătilă: A BIBLIOGRAPHY ON OPERATOR ALGEBRAS AND RELATED TOPICS.

25. Horia I. Ene: SUR LES EQUATIONS DU MOUVEMENT DANS LES MILIEUX POREUX DEFORMABLES.

26. Nicolae Popa: SOME IDEALS OF OPERATORS ON la

27.Ion Suciu and Ilie Valușescu: FATOU AND SZEGO THEOREMS FOR OPERATOR VALUED FUNCTIONS.

28. Zoia Ceaușescu and Ciprian Foiaș: ON INTERTWINING DILATIONS. V.

29.M.Pimsner, S.Popa and D.Voiculescu: HOMOGENEOUS C*-EXTENSIONS OF C(X) & K(H).

PART I.

30.Ion Suciu and Ilie Valusescu: LINEAR PREDICTOR FOR STATIONARY PROCESSES IN COMPLETE CORRELATED ACTIONS.

31. Zoia Ceaușescu and Ciprian Foiaș: ON INTERTWINING DILATIONS. VI.

32. Constantin Niculescu: ABSOLUTE CONTINUITY IN BANACH SPACE THEORY.

33.S.Strătilă and D.Voiculescu : A SURVEY ON REPRESENTATIONS OF THE UNITARY GROUP U (∞).

34. Valeriu St. Udrescu: A STRONGER BERTRAND'S POSTULATE.

35.Adelina Georgescu: VARIATIONAL FORMULATION OF SOME NON-SELFADJOINT PROBLEMS OCCURING IN BENARD INSTABILITY THEORY.I.

