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A LINEAR FILTERING PROBLEM IN COMPLETE CORRELATED ACTIONS

by

Ion Suciu and Ilie Valusgescu

1l Inktreoduection

In this paper we shall concern with the following problem.

Suppose that a mesage is described by a stationary process {xaﬁw

-

in a complete correlated action {§, H, I} . We received this mesage
.under the form of a signal described also by a stationary process

{znroo in {g, #, 1}, which is the result of the transmision and

- QO

measurement perturbations of the mesage. The problem is to deter-

mine the best information about the. mesage {xnfw at the moment
-0

t = 0, from the knowledge cf the signal {znfm up to the moment

t|= 0.

\
\

)

In order to give clear meaning of the notions used above,

we shall briefly repeat, in Section 2, the basic facts about
stationary processes in complete correlated actions presented
inE s [6] . In addition we construct-the I =prthogonal
projection on " a submodule of the right L(§) - module { which
gives a nmore clear meaning of the term " the best information "
used in the paper.

In Section 3 we formulate the T~ optimum linear filtering
pfoblem and, under some theoretical relations between the processes

L

Jo0 P
{xn} and {z_} , we construct the sclution of this problem.
& an - 6O



In Section 4 we shall‘discus the problem of determination
of filter coefficients. We shall show that, as in the classical
fiitering theory, the coefficients of the TI'- optimum linear filter
satisfy the system of normal equations in which, the correlation
function of the input and the cross-correlation function between
the input and the desired output apear as known. Since, in general,
the cross-correlation function betwéen nasage and signal is not
- knowh, this method to determine the filter coeficients is not
availabfe (even theoretically). But, the formula of filter coeffi-
cients sugests that they can be constructed recursively using the
- techniques in construction of exact intertwining dilations deli-
vered in [1] . In some special situations (for example when the
mesage and the signal have the some autocorrelation function)
we succed to show that the autocorrelation of the signal and an
exact intertwining dilation of a contraction whiéh intertwines
two contractions, canonicaly related to the processes {xnfé and

{znfm , determine the coefficients of the TI- optimum filter.
We hope that this idea will permit to use the labeling of
the exact intertwining dilations given in {[1] , in order to cbtain

recursive methods in filtering theory.

2. Complete correlated actions

As was introduced in [5)] , a correlated action is a triplet

£, H, T} where £ is a separable Hilbert space, H is a right
3(8) - module, and_ [[ a map from # x # into L(8) with the properties:
(i) T [h,h] is a positive operator for any he {, and[[h,h] = 0
impliés h = 0.

(i1) I'l[h;gl = r[gvh]* v (h,g € #)



m
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The separable Hilbert space § is called the parameter space.

The action of L(§) onto the state space H is the map L(§) x H—H

which arise from the fact that H is a right L(&)-module. The

correlation of the action of L(§) onto H is given by the map

(2.1) (h,g)—T (h,q}, (h,g € #).

To any correlated action {¢, H, T} we can attach its measuring
space as the Hilbert space K obhtained using Aronszajn’s way in
construction of the reproducing kernel Hilbert space, starting from
the operatorial kernel I'. The Hilbert space K is uniquely determi-
ned by the following facts: there exists an injective morphism
h-——»Vh from the right L(§) - module -H into the right L (&) - module

L{& ,K) such that

_ .
(2+.2) r[hl,h2]= vy Ve

L (by, b, € H),

and

(2.3) K= ;&é V&

)

More precisely, the generators of X have the form

(st Vha = Y(a,h)'

where Y(a,h) is a map from & x H into € defined by

(2.5) Y(a,h) (o e} = (F[g,h}a,b)g.



We séggéﬁe correlated action {&,f,T}is complete, if this
injective morphism V is onto.
. TE Sl I} is ascenplete correlated action, we can define on
H ah"F—orthogonal projection on 7 a submodule f/; in bz

Indeed, we have

DPROPOSITION. Let #, be a submodule in the right L(€)- mcdule

s e TS

"H. For any he€ H there exists a unioue element thH such that for

anX acg

L

(276 V. laﬁsg;1VX ¢=K, and V, u aek .

h
1
Moreover, we have

.7 r[h_h1, h"hl} =iz§r’r[h—-hl,h-h1]=irjz I‘Lh-—x,h—-x} ;
1 =Ry

4h :
whefgvﬁafimum js taken in the set of positive operators in-di(s)..

Proof Ef K.= \/ VXS, and PK is the orihogonal projection of
L il

K on Kl' putting

(2.8) vh =B Y/

1 1 2

then clearly V, aezKl, for any ae&, and
1 ;

a=V, a-V

¥ h® Vh

€
= &= = P & .
b a th PKIVha (I Kl)vh eKl

1 1

Let h2 be ancther element in H with the properties (2.6).

Then for any a€f we have



It follows that tha = PK Vh hla, hence h2= 1

We have also

(r [h-h,,h-h;] a,a) =”Vh—h aj? =
2]
J(x-p, )v,al’=inf|v a-k | =
| 5 > oy £] 12
1n£ V. a- V L =i V,a-V & al “=
h e Vpaisa o
= lnf(r[h ZAk K’ h~- ZAk k} a, a) =

1nf (T [h= x,h~x] a,a),
redf,

i

where for any finite sistem a ,...,aneﬂ we choose Al""'AnEL(g)

1

such that Akazak,

The Proposition is proved.

k’-“l,;..,l’l.

If we putﬁa h=h 17 then clearly we obtain an endomorphism of

H such that 591 l' P[fﬁ h,g} rfh ng] , and one can interpret
ﬁg as a "orthogonal plOJeCtlon en ! o,
I : ]
In the context of a correlated action {§,H,I'}we define a

I'-stationary process as a sequence {fp}t: of elements in #, such

that r[fn,fm] depends only of the difference m-n and not on m and
n separately. In the measuring space K we consider now the

: )
following subspaces, relative to the stationary process {fn} s

(2.9) K \/v

g

oo
(2.10) Ki=va e

FoREan

E and

Also, for the stationary process {f.j we exhibid in the

stdte space H the linear manifold:
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Keo

f_\/(] ; il
Hence we have Kn— h8, or using (2.4) kn" \/Y(a,h)'

eyt aeg
= he T

It is known that for any stationary process {fn1”°there

exists a unitary operator Uf on Ki , SO called the shift operator

attached to the process {fn}+m sosuchethat

Such a way, in a complete correlated action {S,H,P}We can

express the process{an: s
(2 2] fn=u§vf,

where szvfg.

z G 5 + 00
For the stationary process {fn}ﬂmwe define {gn} as

(2A30a == e it

n’
n=1

so called the innovation part of the process U;th.'

A stationary process {hn}fwis called a white noise process
it r[hn,hm]zo for m#n. It is easy to see that the innovation part

{g " of {f }*” defined by (2.13), is a white noise process'and
N -oe N-wo,y Y

(vl gl =:-,"in{f¥1‘ [fn-—h,fn-—h]z G-
e

G, is called the predistion -error operator of the stationary

£
4 eo

process {fn}_w .



Tf the prediction - error eperator Gf is invertible, then

setting
(2&5)h{£?@n

we obtain a white noise stationary process {hn}j: such that
(?.16) mlagn =1 .

doo | ; . :
The process {hn}-.ls called the normalised innovation process of

S

n 8
$oo + o0 - 4 ~
Let {£ }'_ and {g }'T be stationary processes. If RiE o]

depends only of the difference m-n and not on n and m separately,

then {fn}“j and {gnffo are called stationary crossmcorrelated

processes, and the map nharfg(n) from % into L(&) given by

rfg(n)=F[fk,gk+n]1s called the cross-correlation function of
{fn{t:and {gn{t:._On the space Kf?: KﬁNkZa there exists a unitary

operator U, so called the extended shift of the stationary processes

S s e S o g
{fn}dgand {gn[wﬁ secuehithat Uf—U]kx, Ug»U{KM .
For a stationary process {fn}“m, the L(§) - valued positive

definite function on Z given by n+l (n) =F['fo,fn ] , 1s called the

autocorrelation function of {fn}*“ . Using Naimark dilation theorem,

- o

there exists an L(§) -.valued semi-spectral measure F on the unit
torus T such that
2

(2.17) T(n) = Jé"i“tdF(t).

o

This semi-spectral measure F is called the spectral distribu~

. 4o = ‘ .
tion of the process {f}" . In [ 6] was proved a factorization
—m‘v - 00

theorem by analytic functions and was found a characterization of



Gf in this terms.

If the spectral distribution F of {fn}i:verifies the condition:
(2.18) cdt<dF<c ldt,
where c is a positive constant, then (see [4] ) there exists a

unique bounded outer analytic function (8,6, 82)}, so callediithe

" maximal outer funetion of the process {fn}f:; which has a bounded

analytic invense 8, 6,9 ()} and
(2.19) dp =8(ei®) “e(eltias,
(2.20) G =a(0).
Moreover, if
ey e S s

and

|

. LA = k
(2.22) 8(A) = G~ +2 2"
/(?-1
are the Taylor expansions of the functions {¢6,6,8(x)} and
{8,&,Q(A)}7respectively, then between the initial process {fn}f:
+eoo
and his normalised innovation process {hnhocthere exist the fol-

lowing relatiocns:

(2.23) £ = Zﬂkhn__k

=D

and



o9
(22t ;Zakfn_k,

where the series are supposed to be convergent in the strong topoclo-

gy of L(B,K) .

As a remark, in this case we have the following identification

for the geometrical model of prediction [K,V,U}:

)
K= L2 (5)
(2250 (vah ey~ siett)a, aes
(uk) (t)=e %% (v), ke L2 (2).

4 om0

r ~ .r » . . » d LS
Hence the process {xn} and his normalised innovation {hn}
e - S

. 2 :
.can be seen as operators from & into L°(§), respectively:

(2.26) (£ a) (t)=e PFa(e*t)a

and
nt

e el eE BT,

3. T- cptimum linear filter

An input - output system in a correlated action {&,H,T} is

called a linear filter, if there exists a sequence {Aﬂ}:o

of operators in L(&) such that the outputs {xn}j: are related with

the inputs {zn}j: by the formula

(351) xn='§:Akzn~k'

k=o

The series in (3.1) being strongly convergent in L(&,K).



O

In this paper we shall be concerned with the following fil-

tering problem: consider that the mesage model is given by a static-
nary process {xr}t: in the correlated action {¢,H,I'} and the obsexr-

vation or the measurement model is given by the stationary process

in {&,H,T}. Under some theoretical reldtions between {xn{:j

{z)}o,

and {zn }”o, to determine the sequence {An}j of operators in L (&)
such that using {zn} as inputs, in the linear filtexr given by{ An}f
: P

the obtained outputs
o0
A .
(3.2) X =72 Az g
f=0
are the best information we can obtain about {xn} acting on the
observation model up to the moment n. This means that

A AR, ity
(3.3) F[xn-xn,xn—xﬂl— ;gﬁlr[xn-h,xn helo.

The infimum in (3.3) is taken in the partialy ordered set of

positive operators in L(§) with the meaning that: for any hEHZ

the

\

we have
B T h h.
[xy Xn’xnmxnjé [Xn +%,7h]

as operators in L(€), and if B is a positive operator in L{&), such

- 3 e ‘. i il SRt e
that for any hell” we have Bel [x ~h,x -h7] , then BSIW}n X 0%y Xn]”

The positive operator

is called the filtering - error operator.

A
The 1 o B - q R i) ’
lh\, eXl.:teﬂce Oi? X LAY f( wl‘ll(:h veri faep (33 3) —ri” E..._ m



the existence of the TI'- orthogonal projection on H . Indeed, if

we take

‘then according to (2.7) ¥ verifies (3.3).

Since, moreover, VQ = Ki we have a kind of closness of Qn
to Hi, but the problem to describe this closness by an approximation
procedure, or more precisely to construct the linear filter of
action {A\}j such that {ﬁh} to arise as response of this filter

to the imputs {zn} , seems to be in general very difficult.

We shal determine this filter under some theoretical relations

jie

. S 420
which we impose to {xn}.”and{zn_N

e

: c 5 . age) o yahee
Firstly we suppose that the processes {xnldoand {zn are .

- O

stationary cross-correlated. Hence they have a common operatorial

model of the forms:

where U is a unitary operator (the extended shift) on the subspace
K:\/K’i3 of K. Without lossing the generality, we can suppose that
KX=kZ=f.

Let F and F, be the spectral distributions of {xn}fj: and

{z_}'", respectively. We shall suppose. that P

and F_ are Harnack
n—-o,. L 2

equivalent with the normalized Lebesgue measure dt on T, i.e,, there
exist the positive constants coco such that:

A

. ‘ ~1
(3.6) c dt é_dl‘xgacx dit



ko
and
-1
(3.7) czdtész <c, dt.
It follows [5] that

(3.8) K=M(F)=M(F ),

I
=
=

%
(3.9) K°
and
Rl
(8L Ao s =t )
where
B e xS
(Be 1) FX~K06U KO
and ;

= * 2
(3.12)_FZ~AOCDU Ko

. . : - o2 + o0
are the innovation spaces of the processes {xn}“aand{znldw ; res=

pectively. As in [7])for a wandering subspace 5 of U*,we denoted
e M(F)z%t}*nF and M, (F)=8u™F,

. From (3.6) and (3.7) clearly it results the existence of a
positi?e.constant Cio such that

(3.:1:3) cxzdeé didS=cle gl .



Then [ 4] there exists a linear bounded invertible operator

S -on % such that
(3.14) SU*= U*S
and
A(3.15) SVZ=VX.
Since clearly SKg=K§ we have
(316 SM+(FZk:M+(Fx)
Suppose now that the innovation space Fx and F? are related by
(3L FX= UFZ
Then denoting
(B rgens=uis
‘ * *
we have BU =U B, BM+(F2)¢:M+(FZ) and
(3.19? VX=UBVZ.

Let now {£,6,8())}be the maximal outer function of the process

(z_}'. Identifying K with L2(g) as in (2.25), we have:
T

2 - e
K=L" (&) ; sza i knmgae & .

Rt ), keLZ (8) .



SR 0

o)
m
™

(v, a) (t) =6(e*%)a,

Clearly B appears as an operator on L2(8) which commutes

with the multiplication by elt in L2(8) and

2 2
BIEHENET (5

It results that B can be represented as the pointwise mul-
tiplication by the boundary function B(elt) of a bounded analytic

function {§,&,B())}.Let

(3.20) B(1)=a 8, , (A& D)
: Keo

be the Taylor expansion of B.

Now, using (2.19) we have

(V. 3) (£)=(UBV,a) (t)=e "B (e )8 (e ") a=
\\ &e-—ltzelktBkSIelst 8 8=
\ K=o ﬁs;o '
e =ik Gt i
e tB080a+§§e }_Bk 8a
p=c ktsepr

#

; oo +4 5
-it ot ﬁi )
el 0 jg:e g Bkap~k+l)a =
P-—O 2 A:O

~-it Z ot
e Boeoa a7 e Easy

D= o

P

where

(Buzll m E_B};Gp_k+l .
=0

Hence



L dnde £
(Vxna)(t)—e (an)(t) =

Caeii(nd 1y il i(p=n)
= e tBOGOa+g;f tEpa,

Clearly then

e <5 ilp=nlt.
(V§ a)(L)-—(PKzVX a)(t%—i?f bpa.
n n n F=o
P
iln}”,o

-+ . . . .
If {hn} *® io the normalized innovation process of
-

then the last relation can:be written in time domain as:

and using

C= 0
A 1
- el e
e
0. TP
4=0 S=o

\ We conclude that

where
4 St
Aj=2£§23—stzdgﬁos—k+l°
| K=o

oo 9. g
with the

o

In this way we constructed a linear filter {Aj%

coefficients given by



=N =

i S+
(3.24) Ay mizgj-sBk@s—}wl’

s=0 K=0 »
which solve our [ - optimum filtering problem.

The filitering = error operator GX is given by

Z

(3.25) G =0(0)B(0)*B(0)E(0).

REMARK 1. The prediction problem for a stationary process
.{fnwa whose spectral distribution F is Harnack equivalent with
the normalized Lebesgue measure on T, can ke solved as a particu-

lar case of the filtering problem here considered. Indeed, if we

take xi=Ff . andszii=f

o ,=f .+ then it is easy to verify that {xn%i:’

and {zmﬁ*“° satisfy all the conditions imposed above.
- 00
Moreover, in this case we have S=U and consequently B=IK.
Hence Bong ; Bk=0 for k=0. Thus the coefficients of the prediction

filter are given by

J
(3. 26) Ajzsz,%—s S'*‘l 7

which are the coefficients of the Wiener filter for prediction ob-

talned Jansiliodliy

4. The computation of filter coefficients

In the classical filtering theory the coefficients of the

optimum filter are obtained as the solution of the linear system

of the normal equation. The unknowns of this system are the coeffi-
cients of the filter, the known data being the coefficients of
the autocorrelation function of the input and the coefficients of

the cross-correlation function between input and desired output.



Sigly s et

The coefficients of our ['- optimum filter satisfies also
the system of normal equations. Indeed, in the precedent section

we obtained the formula:

(4.1) % =B Boh,_y +§2A'jzn—j

jeo ;

53 m' 0 . .
where {h § is the normalised innovation process ofi fz 3"
oo -

Since jﬂ[;k, hn+l] = 0 for k¢<n, from (4.1) we obtain:

F[zk, Xn] =Zr{zk, Zn-j] Aj 2
e

Thus the coefficients {Ajzf" satisfy the following (infinite)
L2l

system of normal equations:

R ol o Yool cmn ot e A s b v 0 o T £ o, S\ S o e O I o

where[;(k)ﬁjﬁ?n,zn+k] and I;'X(k)= F[?n(xn+k] are the autocorrela-
tion function.of the input &znipznd the cross-correlation function .

<

6f the input {Znatjand the desired output {xngj:jﬁ
In the univariate case) the pelebrated Levinson algorithm

[2] , [8] permits us to determine the filter coefficients {Aj}:

" in a recursive way, the computational work involved being less than

usual from the special form of the matrix of the system (all the

elements of any given diagonal are equal) . Similar algorithm was

obtained fo¢o the matrix valued case bv Robinson and Treitel

A

A1 P/.[J( /[ ‘S’({gﬁ



Ao s

(cf. [3]), but here the task became already more difficult because
the algorithm involves matrix inversions. Complicated problems arise
also relativ to the stability of the solution, becaﬁse the system

is infinite.

In the operator valued case, such considerations have, however,
only theoretical signifiance; But even from this point of wiew, the
normal equations (4.2) are not satisfactor& in our filtering problem,
since the values of cross-correlation function [;'X(k) are supposed
to be known, while we have no informations about them. In such
situations the solutions of the filtering problem is determined re-
cursively, starting with an initial estimation based on a .prior sta-
tistics. Following this idea we shall show that the pure operatorial
method used in [1] for the recursive construction of intertwining
dilation can be aplied here to determine recursively,in some spe-
cial cases, the solution  of our filtering problem. This particuiar
case sugests that the labeling of contractive intertwining dilation
presented in [1] , and the recursive method used there, can be
aplied to construct'our [- optimum filter in more general situations.

\ Firstly, let us remark that the coefficientsé?k and @,
which apear in (3.24) are well determined by the autocorrelation
funeticn f;(n)_of'the known input {zng and, they can be obtained
{at least theoreticaly) by the standard deconvolution methods. We
shall concern on the determination of the coefficients B, in
(8.24)., Jor, |lof the ioperator S.

Our supplementary assumption is

(A3 rsliih e,
O O

- e LR R R -
Let us denote U , = U/KO, Dz+"U{Ko and
o2 o
= S = * i et ey Yy v - X
e YUX+\X., i \D/Um_\/zg; . Using (4.3), for any kekX



we have:

e

ks e s v e s k)

mzo

=(}iunvzan,s*k)

n2e

my0

nyo

(S'EZU Vzan,k) =

'7\//0

= (Elunvxan,k) -

M0

it

I3
i

g :Z Ux+ x%n’ 298

2o

We used (4.3)

Thus

and the fact that U;; = P, ZUKZ

n ¥ vy
- T
S:E:Lz+ e WS

M0

and it follows that

(4.4) s HZ = H

N0

\ It results.that S*Hic:n;a Putting

»* K X
(4.5) ,S+ S Ko
we have
* A
(4.6) S+ Ux+ = [
and

' e 2o
(4.7) S+(ko€9Hx)C:KOGBHZ



= 20 =
Let now Tx and T, be the contractions defined hy

(4 8) s am ~PXUX

X X

and
(4.9) T_=P U H_
- where Px and P, are the projections from K§0nto H_ and from K“ ontc
Hz, respectively.
If A is the operator defined from H into H, by
~p g*
(4.10) A=P_S. o
then
(4. 10)pB =D S,
Sl s oy
Indeed, for any keK§ we have
AP JeR SEP keR STk-P SU(I-P. )keP sk,
b4 27

Moreover, for any he:&x we have

= # =
ATxhwhp U h B S}Uk+b PZU248+h

= g « - M7
=P U +ezs+h ZUZ+APXh ;zAh.

Hence



(4.12) ATX = TZA.

Thus S:'appear as an exact intertwining dilation of the
operator A which intertwines T  and T, (see [1] ).

If we suppose that S is a unitary operator, which is the case
when the mesage model &an and the observation model {znﬁ have

the same spectral distribution, then S itself appears as the unique

exact intertwining dilation of the contraction A defined on H, by

(4. 13)Fens= SHITH

Let AO be the operator on & defined by

4 :7*

(4,14) Ao \/ZAVZ.
Then we have

L B x 7 u*
VZAO Vzvz A\IZ VZVz SVz VZVZ VX

Such a way, in the time domain, we have

where 92 is the " ['- orthogonal projection on " the éubmodule'
generated in H by z -
This gives to Ao a clear meaning of initial estimator.
Hence, at least in this particular case, we can determine the
coefficients of the fL optimum filter, based on the autocorrelation

function of the signal {zni and prior statistics which produce the

initial estimator AO-
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