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ULTRAWEAKLY CLOSED OPERATOR ALCEBRAS

constantin Apostol

The “Invariant Subspace Problem" stays unsolved since
more than 30 years. The question to be answered is the following:
Does any bounded linear operator T acting in a separable complex
Hilbert space have a proper invariant subspace? Scott Brown [3]
answered "ves" this question in case T is subnormal (i,e. the -
restriction to an invariant subspace of a nornal operatorS.VThe
way he solved the éroblem js beautiful, but the most remafkable
fact is that his techniques are strong enough for significant
generalizations as we@l as for the study of the ultraweakly closeN
algebra generated by some operators. We already know three genera-=
lizations belonging to J.Agler fil %o S.ﬁrown, B.Chevreau and

e

c.Pearcy (4] and to J.Stampfli [13]. Given T, assume that we have

NE@N £a sup { JEM] he6lm) )

where azl is fixed and £ is any ration '. function with poles
outside a(T) . Then "yes" holds again as shown by J.Aéler for a=1
and bg JiStampfli forsarl. The” theorem of Agler will -apply to T
if, for instancey BTh=1 and €(T) is the closed unit disk. The
Brown-Chevreau-Pearcy’s result includes the case jj T{=1,
6%T)=u{A; e é])J:él} (0<r<l), but its exact staﬁement will be

given later. I mention (see the Remark after Theorem 2.3) that



D.Voiculescu discoverd by-himself a proof of Brown-Chevreau~
Pearcy’s result after he know the anouncement of J.Agler. His proof
was presented in May 1978, at a Colloguium of. Functional Analysis
in Timigocara, Romania.

In the sequel we shall use the following notation:

H: an infinite—-dimensional complex Hilbert. space,

BH: the open unit ball of H,

C(H) = thé algebra of all bounded linear operators acting
in H, .

g (H): the set of all trace-ciass operators acting in H,

S: the adjoint of a unilateral shift acting 1.,

A(T): the ultraweakly closéd algebra generated by all
polynomials in T, where T belongs tos&(H),

D: . the interior of the unit: disk.

35G: the closure of the absolutely convex hull.

Consider the bilinear functional on & (H) X T (H)
A, K —>» tr(aK), Aedli(n), Ke ¥(H).

This functional allows an identification of 2 () with
the conjugate space of & (H) and the corresponding w*?topology of
L(H) coincides with the ultraweak topology of &G(H). Recall that
the ultraweak topology in & (H) is the weakest topology which makes

the map

‘continuous for any '{Xn}n=l & H, {yngn:ﬁ:H; such- that

égi Hxnﬂﬂynﬂ<< oo ; where L.,« 7y denotes the scalar product: in

#. The equivalence of the two topologies can be found in L5].
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Let Te€L(H) be given. The set

{ KeT(H) : T(2K) =0, GHAEA(T) }

is a subspace in I (H) and the corresponding quotient spacerT(H)
is a predual of A(T), i.e. A (T) can be canonically identified
with the dual space of oF (H) The norm 1n°‘ (H) will be denoted

by n.ﬁ*.. Box any x,yeH define x @ ye Y %" (H) by the ecquation

(x ®y)h=h,y>x , héH
T a
and denote by x ®y the image of XDy in ET () IEf & .and g
are subsets in H then the sets 6@4&:"]‘&1) and E) m(/‘.) wil
be pointwiée defined. |
Let H” denote the disk algebra of all bounded holomorphic

functions defined in D and endowed with the norm

]

20

WEW = sup {IE(A)| :™eDL feH
Do

The wx;topology in Y will be determined by the predual GE T
as defined in [8}, ch.9. If T is a completely nonunitary comtracs "
tion (i.e. no subspace reduces T to a unitary operator) then by

£

foif, ch.iI1, Theoxrem 2.1 we may consider the operator (D ater
p .

[1.:2]
any f€H . More precisely, we have

E(n): = s=1im fr(T) A
r-»1-0

where fr(K)zf(r%), Now if T is a completely non-unitary contrac-

tion we may consider the maps



AL r
P H v A(T) , & 1% W™ AT, W)
defined by the equations

ot (£)=£(T), &y (E)=E(T) feH .

The properties of %T and @gﬁ are listed in 9 , Ch.III, Theorem
2.1 and 4 ', Theorem 3.2. We mention only the following conseqguence
of the prmof of»{4], Theorem 3.2, (g): ;éﬁﬁT is bounded from below

then g5 DS hO:*‘morDth (H ; W*) onﬁo «A(T), w*). In case §'£

is a homeanorphism we shall denote bV'& the w -continuous multi-
plicative functional in A(T) determined by the eguation
f§N T f: where A eD and ’EN is the evaluation at in B, As
seen in the proof of [4], Lemma 4.2, to any w%;contiﬁuous linear
functional in A(T) we can associate an element in?TT(H).

In the present paper we use the technigues of Scott
Brown to put in evidence some prope rties of the predual of A(S)
(51), whence we shall derive a generalization of the result of_
S.Brown, B.Chevreau and C.Pearcy (see Theorem 2.3). Moreover we
reduce the invariant subspace problem for a contraction T with
&(T) >2D, to the case whén @z_ is a homeomorphism (see Theorem

2220

1. Properties of O° (H).

Because by C2], Theorem 7, A(S) is isometric iscomorp h

2 . S :
with 5*, we may consider the functional % , AeD. If

— T

e e—ker (S=A), leyl =1, we have

(e;\,g €, YE(S)= (S)e;\, es. =f (A) , feHw,




S
" dencte

= X e .
(S=N).. If Aet(H

S
consequently
Let X be an invariant subspace OL S and let P,

the orthogonal projections of H ontoX , resp. ker
denote by A the image of A in the Calkin algebra.

is given we
Recall that a set [Mc D is called dominant in the sense of L.A.
e _ .

Rubel and A.Shields [10], if
sup 4 1 £ENM)] ¢ Mg Tl E e o BeH
For any 0¢a<l we put
[l(X)={nreb: WP (L= 2}
a = i o )’v“ 7 N = : »
T—'a(X)z {_/\JGD: Rgﬁ;\,)j Shillen )l/z}.
; 2 ~d
It is plain that we have = (X)Dra(K) ;
1.1. Proposition. Let O<a<l be such thati”;CK is a
dominant set. Then we have
S
4 e T ® (1) : (il=1- a} c aco(By @ B,) .
Proof Letcﬁger(H) be given. For any{ﬂ'ﬁgﬁleI:f;CY)ﬁ.
m
o cker(s-A ) such that 2 i<t IS Ui,
k=1

complex numbers, 1§

m
45(]<'.l"‘k=l
4ueku=l, \XPekb(l—az)l/?‘, we have
W S oo S Fo . =~ e Peid e
““?'E'“k e, & Fe i
b+ Z’% l )‘{Pe@e I,

e st
= e - i_&& =N
| S £ k
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o

25
:Z“‘Q'“ dL 7?ﬁ

£ 3 s KI-POgl <
=1 s

=t &3

< iR ' e .
flac® ;Z;,,vi%’ﬂ“*' a e,

] s :
since by 141, Proposition 248, e —=23_ %%EQ* can be made

k=1

~—"

arbitrarily small we derive

aligl (P4 z{;‘e‘s (zzxggx)) id e .

We shall prove by induction the relation

e
@e)ohfr{K%?~—g£4%iﬂ*. fLe a'1‘1cO[E%K®l%K)}" e

Because we already proved (%) for n=l, assume (¥ holds true for

: bl S0, S :
nzm and pick fZé o 'aﬁd(éxAglsx) . lekemy 2. = 0 But we
" have
: - s o ). &es (B as ))e’-anf—-?“b-‘env
.5£[5f(r9&-£%yﬂi ).”"F-'é%ztijg NG X o E:;*L'*

.consequently we can find Y., € \€—L %iﬂ*azs(Iéxgai%() such

that

‘W‘ ~YL
E (A+S G
e i;a ké*d Bl %4‘-{1[\*

1(0

Since £>0 is arbitrarily small and the induction hypothesis (%)

follows for n=m+l. Now we observe that we have

5wty =iy 2 e’ & Py (k=AY
[T S = »®
k=4 w=1



v o = :
whence . Ei, ¥€J< & (f—et) 411\6}%&'55 (BD(\'@ B.)Q> and this implies
3 - I 3 7= e
Thus if }(ke ;(* L s we have

o i s
Y (4~a)’l//t€//% Zzco {EX @5){) C @co QKX®[§() )

1.2, Lemma. For any ‘heH the function

O S G G T x e,

>

is weakly sequentially continuous.

Proof. Since H=span { ker (S=A) 15(\ AD {Erguffices Lo

asswﬂe_heker(S—K) for some A€D. But in this case we have
- - ’g y ] :
n/{@x;[% — /éuf{l< 39(3)&)36>1: feBHm}:

=il £, x>\ sup {\:f?()\:\: geBH« &_—:

= |<R,= >

and the continuity becomes abvious.

1.3. Lemma. Let 0O<a<l, Ye ‘73(/4/)) x);[é}/ be such that

-

-— : f S ‘ :
]a (X ) is a dominant set and put % — x@}“x— S . Then we

have

S = %
4&52‘. (¥ (x_/.\/;;’]gx)®(gy+$/ZEX))5 @ Vs (/(/}"”14-5)_2-

1f, moreover, the function

S =
Ar R e OGRS

is weakly sequentially continuous for any h e X then




Proof. Let {)‘L} Crr(X,) {“k}ﬁ.—q be given. Because
.
we have SKF’ >‘L“ > (4 i) &‘ we can find }'ké fav(S -~ Mg ER LR
such that (see Rasl )

Y

| Pg 8 > Gt = s U Pym L (1-P)z , k55

If we put
» k52 Sp——
LL:—‘ZV—;—Z : v“r-?:"{% ’Xf_-Pa:>é[/_—:PU“A
b=r L=
e
xng/: xfgw: w By — -Per &V
S

Hence we derive
S

5"
c/—c;c,cx)G@CGv(j’)“‘/’ X@yy' ’@gy-x%z XY =

-
= xgy Zq/,g’)+//;>)u@(vg) xgg

Let @ > o be fixed. Applylng AT Pr0position 2.8 we may sSuppose

g{,,«"‘ = L and i\“@ x@g Zo(kf- H < But it is easy to
see that we may choose y 'orthogonal to any given finite -dimensional

subspace, thus by Lemma 1.2, we may also sSuUppese ZIXC)(; ” e

conseguently we may determine x', v'e X such that
= S
e it iy 1D If*< 2k I (I-PY®R @ WL, 5

: _
N = VE 5 U &% \w’méul_e b+_u:}_m% s

-WL

B =PI l* = i_ 1o ) WIT - P >z &b
=4



and this implies

S
o{a-st(LP)cx+VZ“BX)® gu N/Z%/))ﬁ czl/Z"(//fy,-/a%_Ay’é‘

' 1f the function
. &Y
e —> X @E 4 Jfé‘X
is weakly sequentially continuous for any heX, then as before we
may suppose (Fu @Y [ < 4 thus
s | 54
b — (1'-/:1‘/)@ (J_,_j/) “*4 3\? ‘+ N(I-—uw @\fn&__ﬁ 3'?-,'—045

and the proof is concluded.

~
1.4. Theorem. B C;[)C) is dominant for any 0<a<l

then we_have

>

| e e T
fepeitn Gt = L =5y B -

Proof. Let‘Pé—E”%?%)be given. Applying Lemma 1.3 we
find by inducti ' e P B
can £in y induc 1?n fwo seguences {=¢ P {éﬁ;§50¢:

such that

.
: 2 2 -
xd:%:o) /;z_ﬁf‘ "f&ﬁ Vé: (//22_// %é} 5 //2‘4{_. )2.//44/_,2 o //yf wq‘é('/é LZZ)

< po %
where AA =/P- 5By [, , o<t £ {e }L:I converges enough
- g 1.
fast to zero then ’z~”ﬁ7£%323¢;f3 =x&y and |ﬂxﬂ~ﬂ¥ﬂu*) 5
\H;}_;pfﬁf;( can be made arbitrarily small, This implies the

inclusion "e" and because the opposite inclusion is triwvial, the

proof is concluded. i
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1.5. Theorem, Let Oza<l be such that i’ ¢X )y 1s,a dominamnt

set. If the function

-
7%@*& %.&uX

>

x

is weakly sequentially continuous for any heX, then we have

s
et TSy e, <t-al c @E}('

Proof. Let ‘Gé-37§04)be given. Applying Lemma 1.3 we
can find two sequences ‘{:ql}k:o ,{é}k}kzoc::( such tﬁat

S ©n %
i it ke : %
X = Yo =& 5 W =@y o< a el , (}73 \ngs(an\ﬂn*) 5 i&g,&JéJs(au@n*) -

Itiis easy to see:that we may also suppose xk+f—XiéL @*V“ﬁg‘

i ksi,thus we deduce ‘
Se o i) i

“"Pﬂxcﬁ
X, = ék i <>
, ! :
qu:-zjl Wil — ey B 5

o)

-1 G
"é“L = 2,_ b T é,ky’*g_ (A—ay IR,

H

Now the inclusion in our Theorem becomes obvious.

In the remainder of this ection ﬁéfshall denote:by A
the restriction of S to X . Since A is a completely nonunitary
operator we may consider the maps

S e T e (R o
We already mentioned that in case §5A ' is bounded from below, §;

becomes a homeomorphism.

1.6+ Theorem. (i) If /,(X) is dominant for some 0<a<l

then we have

W @A 5 d-ad W Fr L Le HT
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; A : :
consequently @{_ is a homeomorphism.

(i) If TIEX) is domimant for.any Oza<l then .for any

—

AeD there exists e X, //&//_“ such that

A
’&)\:: &@X

(iii).IE T (X ) is dominant for some Oca<l and the 'func—

tion

is continuous for any heX, then for any 4e¢D there exists seqetsd
Wx =4 such that
A A
’2_)\ = KD Ity
Proof° (i) Let fen” be glven and let LPe‘_’fS(H}, <> o be
such that Mu = f‘{’[#’(S’J)/%S > 0l . Now using Proposition
1.1 wei can: Eind K& T X, ety = (&—a) such that ttr(FfCSHK|+E >~
v

H{Hm . Using the relation

v (}_D(,gf)/(P) = f*r(}p[ﬁ\)f()

we derive

U FCA Z (H=ed | & £DKD] > (- (Kfla=<)

whence it follows

eI uva-M:{

e S '
(ii) By Theorem 1.4 we know that we have ‘EA <&y for

some X, Y c¢X . Let B denote the restriction of A %o~ the invariant
2 Ak }M S %’S‘ Fondey = 4 ' A

subspace opan{ %}, Since %, ((Sra) J=o = <5l d 7 v

and <x,y>=1 it follows that the range of B-A 1is not dense. If we

take xg & ke lB-2xJ, ix,i=4 then for any polynomial p we have
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A : : e T
(36 ®3%6 ) (pCAY = L (A% > 8 > = Zip B P )

A A
Since by (i) ‘E& is well defined and coincides with G ® %

A A
on the set of all polynomials we infer ﬁ%@ =B

(iii) We proceed as in (ii).

149 Cbrollary. If either the condition (ii) or the

condition (iii) of Theorem 1.6 is fulfilled then A has a proper

invariant subspace.

proof. Let A¢D be given. By Theorem 1.6 wescan £ind
: A A
xiérﬁfj Ny it =1 sueh. that 'éxtz%i@fg_' If we put J(A-:
&
.:gpan{M—JQthv’ then X, L X, ,thus X is an invariant
subspace .and X, # X . In case X, = {=}r the proper invariant

subspace of A looked for is X, j if Xy =4k, xXx is an

eigenvector and A has a one-dimensional invariant subspace.

2. Invariant subspaces

Throughout this section we shall denote by T a fixed

contraction acting in H. For any 0O<a<l put

==, R
Tl el Tl 1 U e 2T ey His Gy O
[ %

4 = ~ '_:‘:-3 "'"1
o o Car TR e
&

Recall th:t T is by definition a contraction of class C__ AL

i (sce L9, Ch:IT, $4).

2.1. Lemma. Lf 6(T) > 9D and J,(T) is not dominant for

 some O<a<l then T has a proper hyperinvariant'sﬁbépace (ite. there

exists a proper subspace in H invariant for all operators which

———r—

commute WiEhET )
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Proof. It is easy to see that the set

Zc; (77) =D (6T {Ae p7D: xita g tr= 32032 )

is not dominant. Arguing as in [3], Lemma 3.1 we can find a measu-

rable set G <« 2D of positive Lebesgue measure such that for any

/b._ ¢ © we have

} z7 = { e s Soatind b e DN T

/

~

for some 0 < %cf 1% Eurther we observe that because & is not coun-
table and D\ I/¢7°) being open has at m&st countable many connected
components, there exists é connected component G of D '~ 3;6'77) such
that

e G kS /&éég ol T ‘47'*2/'

g | ‘
L'é, 0é<9,<%<é§494277 and if we put

=
h
~F
It
i

&z_{efg 96&;(6)} {ﬁ: '@49-&&4})
_[/é::{f/z: E#£<fc_/¢-é/:&})

then we can f£ind two simple rectifiable closed curves 1:2 s QZ

enjoying the properties:
17 DD IR 2 [y D= Aprh s N N5y ST

I'TZ/)DCG- .DCC /;.,V//; Fap f:g Z/:

J;jzl s Surrounded by ‘7_;:2 1 ];;: d Surrounded by ]5;?'1(,\
Since GCf(T) and @ 1A -y e (t—jaiy s X €G the
operators

=L fl\ fu)éi B AT, B, = =5t Jea- - 0- -7
M2 By



are well defined and the inclusion 92> 77, U /7, implies (via
Gelfand Representation Theorem) B #0, B #0 ,
; 2 2,3
Let {) denote the unbounded domain whose boundary is
17, camd et H’ denote the linear manifold of all vectors h H

such that the function

A : (;t__c/—f)”'% 2 i

has an analytic extension in (2. It is plain that H’ lets inva-
riant any operator which commutes with T and the norm-closure g
enjoys the same property. Let xe H' be'given,gx be the analytic

extension in {2 of the function

-1
B ey Cn i T R s 11 > 1.
Because ngcrjl we have
>

: ; ] i
Ekuxzj;rf& ﬂﬂd-ﬂwggudi—o

44
thus M’ < kerB,, <+// . On the other hand if y¢ker B, , and we
] 14

put z=B y then the function

1gi2

. ~2 =
cjz“) :2—5’;- f(/w—/q)(/l—fzzg(/z—/u [/ﬁ—'f’)o\/‘//‘&
T2 : :

is analytic in £2 and

" ; e 0 8 )e/ L= T
-7 G =5/>'?rf7(ﬂ Fraghepagip-rdep t

72

This shows that g is an analytic extention in 2 of the function

[ BN LU 5

2 5 Gk

and zeH"#{0}. It follows that H' is a proper subspace and the

véro»of is concluded. i =i
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Remark. The idea of proof used in the above Lemma involves
a functional calculus similar with the technicues of [12].

2.2. Theorem. If &(T)> 2D and T has no proper hyperinva-

riant subspace then &7 is well defined and 1Al =nd i, » §éEHQi

7
consequently ¢, is_a homeomorphism.

Proof. Using [9], Ch.II, Theorem 5.4 we may suppose

either Teco or T*'_c , thus anyway T is a completely non—unitéry

; I ;s } ﬂ’ s
contraction and &  will be well defined. Because fa and @ could
be isometries only simultaneously we may suppose TeCO_ and by (91
Ch.II, Theorem 2.1, T will be unitarily equivalent with A= S %
as defined at the end of § 1. To avoid the existence of proper
hyperinvariant subspaces for T we have to assume & (T )= 6%(7*):

::G%gr):Gﬂfﬁ:quLNow we have to prove that @ﬁ“ is an isometry. To

this aim put

SO = - aF Bra- Sae g g e aeD

and observe that S(A) is a right inverse of A -S}S(A)H ig orthogonal

to * kee(S-n) and S(*) (A-S)=I-B, . This implies
wg =tMJ>-Q)§GDéiuz,nsux;uan[{ubx~33kﬁ:A¢lmx{faQ)nLurf}%
= n§@ogudn§{noﬂ—8)ﬂun:n&nrﬁ} =

= RSedygita—) , OueH,
thus NS&>{ = 1-a1 . Since for any A& €(A) we obviously have

-1 -7
Cnf {1a-Aoxf: xe Xy uxu=t § = e -AY

we infer that Eor-any - & e  FLT) the inequality _=

) \
N R R S

holds. It follows



o 16 =
NPRI*= BRENY s Aua{IBx 1% xeX , uru=t} =

= A~ EnfdU-poxi®*; xe X uxu =1} =

]

s dn:/{i{S‘(JQCJ\-g)x-u): eSO s

W

1. :
4 —aSeoi ’-"’J[{MX—A)M)": x &3 U< =13 >

> A=—a®

which means - A £:fL(X) and I, 072 c IZ6X). Bl - Flor) s

dominant for any O<a<l, by Lemma 2.1, thus by Theorem 1.6 (i)
,‘;55""(_,{3}]; (it oL UCeHMJ Bt e d

and the proof is concluded.

2.3. Theorem. If 3&(%} is dominant for any 0O<a<l, then

T has a proper invéfiant subspace.

ggggi. Making the same reductions as i the prook  of
Theorem 2.2 Wé'know invparticular that Tiis unitarily equivalent
I e K;ﬁﬁ?) be given. Then it is easy to see
that there exists an orthonormal sequence { = }:Zﬂ‘:~§(_ such

that

Lim MCA—A)Xnu o a(1-1a)

and hence

o
s

NPENT= (B Py Lz NB e 1T = A Lérn IH(T=5D >

50O =02 y

e s 2
g Lo Sy (&~ A) 20 125 1= 4 S i, HA-Ays >
oo

Nn-—>v ___‘.:'7-

~ /-—02‘7‘.
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/ This shows that we have 'Skﬂ;)<: éiﬂ%) consequently
X Pfoﬂ

/ T (X) is dominant for any Ozl Teiconclude the) we apply

/ Corollary LTl :

Remark. If DN &(T) is dominant then T has a proper

invariant subspace by the Theorem of Brown-Chevreau-Pearcy f47),

2.4. corollary. If &(T)>32apand Ha Ty =1 -T) A cem)
and |

then T has a proper invariant subspace.

gggggw'Because we may suppose G(T)::GZU?J:egﬂﬁywe derive
ST 3;093) Qieasliad BE WK (=) is not dominant for some O<ca<l
we apply Lemma 2.1 and in the contrary case wé apply Theofem_2.3,

2.5. Theorem If TeC_ . Tﬁsco. and 'Eﬁﬁ;)lls dominant

for some 0<a<l then T has_a proper invariant subspace.

Proof. As seen in the proof of Theorem 2.3 we may supposé
that T is unitarily eguivalent with A=S|{X and IJ(X) is a dominant
set. Because by f9],.¢h.iL, Theorem 2.1, the isometric dilation

W of A is a unilateral shift, if we put

~ oo e 2 h:
Fos = Zar i LTy fon = o ek ]

n=90 .

we have for any x, he X

A o : 3 e
(<x®f)ﬁA)l:l<19£A3xJPx>l=—\<><,f(/U’iﬂ—’-
2 * W : K/*)&
e SR = Al R
Applying Lemma 1.2 we infer that the functien

e

X e X&f

is weakly sequentially continuous and the proo% is concluded if

we use Corrolary 1l.7.

wranl ; |
:;v[\/l‘/’"jk Uﬂ}t)\
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