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FACTORIZATION THEOREMS FOR OPERATOR VALUED

FUNCTIONS ON MULTIPLY CONNECTED DOMAINS

by

Ion Suciu

Introduction

The classical problem of factorization by means of
analytic functions was insistently studied in'the operator valued
case due to its relevance in many aspects of operator theory as
well as in the applications of operatorial methods in scattering
theory, prediction -and filtering theory, etc. If we refer to-the
unRit diisk. where,‘in the scalar valued case, the famous theorems
of Szego and Kolmogorov-Krein give a complete description of this
problem, in the operator valued case, as Kolomogorov and Wienér
remarked at the bfgining, the principal tool in abqrding thié
problem is the Wold decomposition of an isometry. Wold obtained
its deconposition in the context of the prediction theory for' :
stationary stochastic process Bﬁ] but, in operator terms, the
result is essentially the same as von Neumann characterization of
an isometry by a direct sum of a unitary Opérator withva unilateral
shift of an appropriate multiplicity [2%]. Ugdng this result
Various_typés of factorization theorems for opergggrfvalued
functions on the unit circle were obtained (7]« Wl ] [16h
[}Q], [}3}. In @%}, Z?g] quite general factorization theorems

of Szego, Kolmogorov-Krein type for semispectral measures



supported on the unit circle were proved.

There are not but technical difficulties to‘extend such
results‘from the unit disk to a simply connected Jordan domain,
or to disemi-plane. When the domain has holesdthesproblemibecames
complicated even in the scalar valued case [3]. The difficulties
vare amplified in the operator valued case by the absence of an
adequate Wold decomposition associated with such domains.

Recently M.B. Abrahamse and R.G.Douglas [2] prouved a

Wold decomposition for the subnormal operator whose spectrum is
contained in the closure of a bounded, open, and connected subset
{2 of the complex plane such that aS?_ consists of ‘finite number
ot nonintersecting.analytic Jordan curves, and the normal spec-—
trum is contained in S0 They proved that any sucﬁ operator is

a direct sum of a normal operator having spectrum in a[l_ with
an appropiate b&ndle shift. Since they give also a Funetional
model for the bundle shift as the multiplication by coordinate
function on a space of analytic cross sections of a fibre bundle
oVerirz. , their Wold decomposition furnishes a guite éatisfactory
gquantity of analyticity which can be exploited in factorization
theoremns.

In this paper, using Wold decomposition of Abrahamse

and Douglas, we shall prove a Szegd, Kolmogorov-Krein type Facton
rization theorem for semi-spectral measures supported by ajl_ .
Following 2 in Section 1 we shortly describe the basic facts
about bundle shifts. In Section 2 we discuss the operator Valued»
automorphic analytic function. We introduce the notion of L2~
poundedness for such functions and give an intrinsec characteriza-
tions of the operators (bounded or not) which appear as pointwise

Zuds ; 2 2
multiplication on H —spaces by an LS-bounded operatcr=valued



[69)

/ analytie funetion (Théorem 1) . The intertwining property which
appear in this characterization extends to the non-bounded case

. the usual intertwining property of a bounded operétors relative
to bundle:shifts (cf, [2], [2OI¢ [?I]). In section 3 we prove our
factorization theorems. We follow a way similar to Ehat adopted
by B.Sz.-Nagy - C.Foiaﬁl[gq}, EWK in proving Lowdenslage? facto-
rization theorem [}8]‘ for operator-valued bounded functién on
the unit disk or circlejworking’instead of usual Wold decompositiog
with the Wold decomposition of Abrahamse and Douglas. The main

"result is Theorem 3 which attaches to any semi-spectral measure

F on BSQ_ its maximal outer function. Inner-outer factorization
(Theorem 4) comes out from this result in a standard way. Theorem
5 whiéh relates the maximai outer funetion: withithe Szego operatoﬁ
of F, contains some elements from Szegé—KolmogorOVﬁKrein factori-
zatidn theorem.

The'scalar valued case, in a litle. mofe general and
abstract setting of hypo-Dirichlet algebras, was successful}y
studied by Ahern and Sarason in [3] - (see also [33]). We hope
that other aspects of the last guotted paper, especially the
connection betwéen the dual extremal problem and factorization
(see algo EH@) can be extended to the operator-valued case.-Some'
elements of such study were already given by J.A. Ball in [4].

Finally, we want to recall the major reason for
inkteresi in:these results in.preparing a way Foistudy "the com§
pression to a semi-invariant subspace of a normal operator with
spectrum in the boundary of.f?, . The factori%ation theorem for
semi-spectral measure may be a step in the natural attempt to

generalize the Sz.Nagy — C.FOiag model theory for contradections



1. Bundle Shift and Wold decomposition

-

Let §l_ be a bounded, open, and connected subset of the
complex plane whose boundary 2l consists of n+l nonintersecting
analytic Jordan curves. In all what follows z willbe & fixed
point in.rL and m the harmonic measure supported by afl of the.
point z- Denote by A the algebra of all complex valued functions
which are analytic inJ:L and continuous on 9l . Any elementvof
A can be uniformly approximated,cnlaﬁlby'rational functions with
poles offjﬁ; (Mergelyan tkeorem). If we consider A as function
algebra on 9fL then it is an hypo-Dirichlet algebra (cf. {}]) and
m isthe unique logmodular .representing measure for the complex
homomorphism of A given by the evaluations on the point 'z . We

shall denote AO={erx : f(z y=0 },

Iet jfoﬂﬂ_) be the fundamental group forlil it is
known that jfo(ﬂ_) isia free abelian group whith n generators.
For a separable Hilbert space %7 let Hom (ﬁgtﬁL), 1L(§3) be the
group of all group homomorphisms of 37001) intc the group W&
ofi unitary operators cn Ef .

Let Cll...,C be n. cuts Ln_EL such that if C is the
union of Ci,_fZ—-C: is simply connected. For a fUWCulb% h which
is holomorphic in_flf(f, having analytic continuations along any

curves inf]l , and Awaﬂ;ﬁfl) we shall denote by (he?2)(z) the

values in Z (1) of the analytic cont tinvation of h 116ﬂq the closed

curve 3"1n A which begins dﬂd ends in 7e.§L~ Let CK,G:Hom(ﬁ;LQ),
1L(§‘ ‘ We say that an gf—valued functlon h which is hdlomorphic

1n.£]_ C and admits analytic continuation along any “curve inSL
produces an o -—automorphic multiferm flunction onSL. if for any

Ae j]'o(;Q,) and z€ ..(l-—-c we have



/(1.1) (hoA) (z) = & (A)h(z)

/ Brom: (1.1) it zesults that HWh{zjll is a ‘well defined

| subharmonic function on{l . We shall denote by H% () the space
of all EF -valued functions h onﬂhc which produces an o -auto-
morphic multiform function on {1 such that there exists a pozitive
harmonic function u inJ{]_ verifying \h (z)! 22 u(z), z €§LL i

we put for any h ¢ Hg’%, ()

(1.2) nhuz=inf5_ u(z ), wu harmonic infl, u(z)zih(2) 2, ze_Q_a
IS J

1 5 2
| we obtain a norm on H

e

a “Hilbert space. It can be showed that any element heH;(x) has

©0) with respect to which Hsz__(o(;) becomes

well-defined non-tangential boundary limits at B_Q_, , almost

everywhere with respect to the measure m. These limits define a

; function N adn L;(m) and h ——5 th is, an, isemetric imbe_'dding
of H;—'(OU into Lz(dm): ’ |
(193) nhuz—_fj lIh (2)][*an(z), heH:ir(oQ
asL : '

: ! : D
Whenever it is necessar, we shall consider Hg(oc) as a

subspace of Ié(m} , via above described imbeddimg. dhfioe i s ithe

identity 4 of Hom (T/’O(A’l),z((%) we shall write Hé(ﬂ_) instead of
H;(,l). The elements in F;LQ) of ‘thetformibi(z)=tlz) a b whenif runs
over A and a runs over F , span a dense/subspace any Hf;z.(,fb 5

150l [2} M.B. Abrahamse and R.G.Douglas realized }g ()
as a spéce of analytic cross sections of a flat unitary vector
bundle, with fiber F , overl , cannonicaly attached to o . They .
introduced the . bundle shift operator T, on H%Oﬁ() as the operator

-

' : s : 2
given by multiplication with the identical function z on Hg__(c() :

The operator T is unigquely determined (up -to asunitary

oL



O

equivalence) by the unitary equivalence class of ol . Moreover,

using the Grauert-Bungart theorem on the trivia liiEvilof “analytdc
bundles overﬁl ; they proved that for any d.e.Hom (ﬁé@ﬂ), QI(EQ}W*
is similar with 5L=Tl. Each qx_ ig the'regtrictionte g;(q) of

the normal operator QQ_ defined as the multiplication by 2z on
AH;(m). Tor. ié pure subnormal operator having NST as minimal
extension. If T is pure sub-normal operator on a separable Hilbert
space H, such that GT(T)ciﬁ_and the spectrum § (N) of its minimal
normal extension N is contained in-af)s, then there exist a Hilbert
space F and an element ot € Hom (j/‘;(ﬁ), W (&) suchH that T is
unitarily equivalent to Q( . As a conseguence they obtained. the

Wold decomposition we state here in a form which will be convenient

 £urther.

Theorem 0. Let N be a normal operator on a éggarable

Hilbert space K such that G (N)c2fl . Let % .= K be_an invariant

subspace for N. Suppose that N is the minimal normal extension

of N —NIG{ . Then there exists a unitary representation ot Of

QQ) on a separable Hilbert space £ (possible ) such that.S(

can be isometricaly 1dent1f1ed Wluh g directssum = (HL C)j% in

such that N becames a direct sum of Nﬂ. with a normal operator

; : 2
N, on X , having spectrum in oSls) }{+_ becegmes H}_(O(_) ®j{4 and N_
becemes T @ N
In [2] a functional model for T, in terms of autcmorphic
functions on the universal covering space, was also given. The con-

struction of the covering space forSL produces the following:

S
SR

1. A group G of linear feactional transformations that

map the unit disk D onto D.



2 An.open G-invariant subset f?° of 9D of zero Lebesg
| measure.

3. A simply connected open G-invariant subset D’ conta
ning DUR. |

4. An open set_ﬂ.‘. containingi 7

5. A holomorphic covering map @ £from D’ onto.fq;such
that ?T(D)é_fLWTT(P)=aLL, and G is the group of all linear
fractional transformat4ons A having the property ToA= i,

We can suppose also ﬁ(°)=zof

In fact the group G is isomorphic with® (). This
isomorphism is given by the so called lifting -to the universal
cover procedure which we briefly describe. For 2 &€ D and.P;ejF(ﬂ
letigr be a representant of A which begins and ends in z= T (&).
Define A% to be (i oa’ y(2) where 7 lo 9~ is the analytlc
contlnuatlon of T ol along the curve 7 . -

The normallzed Lebesgue measure Pg on b lifts. to thc
universal cover the measure m in the sense that for any fe 1t (m)

we have

(1.4) J.‘)D(féﬁ)(:&)dp(l‘ﬁj £z dnz) -
DAY

Consider now thé subspace H2(D;oL) of oL—éutomorphié

. : 2 F :
functions in %¥4D>: _ -
(1.5) 12 (Dik) = heHz:,Tr,(D) : h(AM={(AYh(2), 2eD, AeGﬁ

If £ =1 we shall denote Ez(D, ol Yoby Hz(D:G). Let"ﬁ'ml
‘ £3 27 ‘s
be the holomorphic function in{\— G obtained by the analytlc

£ = i) . 0 .
continuation of 7T - along the curves inO—~C. which begin in Z,

For any heai(DﬁX.) the function hoﬁz‘ produces an QL -automorph
: J e}



multiform holomorphic function on SL - Ueing (1.4) it-results

that hoTT;le. Z(d) and nhu:uhoTT;lﬂ . In fact the map h—s ho F;l

H
i g : , g
is an izometric isomorphism between H;(D;ot) and %;GX) which
make T, unitarily equivalent to the multiplication hy 7T on
HZ(D;OL)-
F ,

In that follows we shall use freely one or the other

functional model for T, in a way which will be convenient in the

context, having in mind the identifications briefly described in

this section.



¥

2. Operator valued (0(.,-]%) fi_gtomorghic analytic

functions

Let nbwg,- ? be two separable Hilbert spaces. Following

)

B.Sz.-Nagy - C.Foias L?.éj we shall denote by the triplet ig,‘};@"?g
an g((g,?)-valued analytic function on D. Let ® be a representation

of G on F and ;5 a representation of G on & . The analytic func-

tion{g ,SE,@( )'j on D will be called (c!.,‘B)—automorphic if for

| any A€ D and A in G we have
(2ial ® (Ax)=oc(A)@<;t)F>(A)*

We shall writed —automorphic instead ofv (cx,,’})—automor—
phic in'case B =L and [3 5{--automorphic in case o =1.

The result about similarity in CZ] can. be fofmulaﬁed
in terms of automorphic functions as follows: There exists a
bounded analytic function {?’, 3‘:" ?‘i())} which is & -—automorphic,
having as inverse a bounded analytic function {?, F, {f-“x()-)j which

: g :
is ¢ "-automorphic, such that:

] =) b |
(2.2) i{:v ;F(D e) Hg:(D ;0L)

?OLHS(. (D;ot)=H§_,(D;G> o

v

Tl &« :
where and are the operators of pointwise multiplications
p P

by ﬂb‘z(g) and ”\f () on Hg_(D)

The existence of the functions {j ? §L } and
{SE ,?,%’ (}j comes from the Grauert-Bungart theorem on the
triviality of Enalytic vector bundles over_Q_ r and it seems to

i 3 3 s 4 ] (] a ——q"
be very difficult to precise more about them. The operators f:?



and ‘%) realise a similarity between bundle shifts %& and Tq

shall call them an ol spair of similarity.

/

|

o=

Remark 1. For any a e & there ex1stsl16£%;(D;ok) such

\ i

\ that h(0)=a. Indeed, $V (0) ,-considered as constant fﬁnction
\on D belongs to HF(D (; . Then h= é? LP (0) A belongs to

52 (p;®) and h(O)—?(O) o) a= oo Sha

If {g e ,@(})} is (a,B)-automorphic in D then it

|

\

lifts o the covering space the @&;p&—automorphic multiform

2funétion defined by

o
i

K2l3) CDI(Z (Ooll Ytz (z ey

anversely, any «x,ﬁ)—automorphic multiform holomorphic
function on S ~with values in K (€,F) gives rise by lifting
prOcedure, toan Qx,F)—automorphic function analytic on D.

We shall'work only with &x,p)—automorphic function on
D but using above considerations, we obtain interpretations for
some results in terms of‘ﬁultiform functions onf] ; or in terms
of bundle maps. |

There are ﬁo difficulties "te define the boundedness
for the (qvp)—automorphic funéﬁions; Buf, when we want to define
Lz—boundedness (in the strong sense) some difficulties arise.

In the case{g . @ (Q)j is ¢ -automorphic the
corresponding QL~automorph1c multiform function :@) on.!l_
produces & subharmonic (uniform) function z—> !C?\Z>U on L.
We say that{g p g-, ® (,‘1)3 is Lz—bounded ifisfor any A€ £ there

exists an harmonic function g on (L such that for any z Pole): o
; ; |
1® <zmi/gupjz>iiaﬂl

It we put



(2.4) (v@a>m=@mm ( %eD, ac€k)

we obtain a bounded operator W:> from & into Hﬁ(a&. Indeed
Botor

2 : /
[{\{@&{{H;(OQZJ I® m&x!é‘jdfm)j /I@(zm(gtzam(z) =
9D a0

”auz.

&

a

< J uafz)ﬂallq‘-zdm(z) £M
el
Standard arguments imply that vt) is bounded.
In case ﬁ #1 such arguments are not more applicable.
But they sugest the following deffinitions.
We say that an (oL,,g )- automorphic function {g, cg) @(A)j
is Lz-bounded if there exists a F =pairiaof similarity fﬁj \.}/5

such that the formula
(2.5) (%2 =g jBBma
©

s
£ i :
o from £ into Hg(cc)

Iff3 =1 clearly this definition is the preceding one.

defines a bounded operator V

Let D(CL) be the subspace of Hz(Dqg) consisting from
all funetions héHé(D;ﬁ) feor which X ——s@El(a)h(2) - Belongs to
2. :
H_(D,00) . Define { , on Dﬁ@i) by

-

(2.6) [® +rﬂ > =@@nn) (xeD, hed(@]))

We shall see that C)+ is a dense domaih closed operatOr.
#FOm Hé(D;ﬁ) into Hé(D;dJ. Our aim is to characterifs the operators
from HE{D;@) inte Hé(D;dJ which are representabléigs é{+ for an
Lz—bounaed «L,ﬁ) automorphic analytic function {glgjéaﬁv§'

Let Q be an operator defined on a subspace D(Q) of
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H&(D p}) with values into HZ\D;&,) We say that Q ‘intertwine_sﬁ_glqe_

K7
polnt—evaluat.uons on Hg(D ﬁ and H,,((D «) if the following condi-

f

tlons are satisfied.

il e a) %ﬁch(Q) and Q\CP g is bounded.

| b) For any thé(D,;% for which the function

A —> L&?ﬁﬁll)é)j&]@bel.ongs to H;(D;D(_) we have heD(Q) .

!‘ \ c) For any heD(Q) and XxeD we have:

(2.7) (an] = [o égtﬁmh(/x)j (A

i Proposition 1. If Q intertwines the point-evaluations on

H (D #) and HJ(D ;) then Q is dense domain closed operator from

Hg(D,P) into f(D 00) « LEQ is bounded then (27015 egulvalent to

(278) QTp = TOLQ.

Proof. Since the set of all functions h of the form
h(a)=£(7 (*))4a when £ runs cwver all complex valued functions which
are analytic in a neigborhood of_Q’ and a runs over E, spans a
dense subspace in Hg(D :6Y, in‘order ftLoERLOVC 675) =H8(D'B e

- sufficient to show that, for such h. %pheD(Q) But

L@ %f P (§7R) chf\) [{,1 5 \1) 3 C"MA] )=

-TQ C’fg_ /wﬂ o= )(? ) [&@ C/‘\)ﬁtj - ﬁéo" &? @1&9.

We used the properties a), b) and c) of . Since fou
is bounded on D thHen clearly (fO i) Q@ a belongs to H;(D;OO . Hencelp

from b) it results that ?% heD (Q) -

7 : 2
Suppose now that hn€D(Q) ' hn—-—>h in H&(D;{B) and Qh. —5id
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/
/
[

/

in h (D d) Then

ra 38y 0 et [& $ “yc;\)LmA 1o capies
= L [ 3 PP b ] on = /@mc Qb J2 = g2

We used a), b), ¢)’ and “the. continuity: of the point-evaluations

; 2 , - %
operators on H spaces. From b) it results that heD(Q) and from

c) Qh=g.

Suppose now that Q is bounded operator erm %;(qu) into

HZ(DF{). We have
gz

-

- b
Loy L oo | Gk o [af 9w ’7"“_%“)]?’9:

T @ ‘%BH)SC%) hewTJen = Fe) Lkl = [T%@\Lg D

2.
We used D =H (D; and c¢). Hence QT o
(Q) g( :5) ) Qﬁo(
Conversely 1£-(2.8) holds, then for any h of the form
h(a) gs(ﬂ JE(w (x))a, with £ complex valued and apalytwc in a

neigborhood ole » we have:

LalIe = [& 8% pomal o ~ Lo 3% » -

=l ey )&@,&Iu} e (ﬁoﬁ)(})[@\ b Palcy =
~[@ & pmmafr = [a FP9Peplanled,

We used usual properties of functional calculus with functions
Whlch are analytic in a neigborhood of the spect“um;ox %8 and 2(»
Clearly now that (2.8) results for any h %E\D ﬁ

The proof of the proposition is complete.
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Intertwining point-evaluations on Hé(D;f;) and H;(D;o(_)‘
appears as an extension to the non-bounded operators of usual

intertwining of bundle shifts property.

2
&

H;(D;o(,) is representable as om for an 'Lz—k__v_gunded (o(,?)-gg_@g_rgorphic

Theorem 1. The operator Q from D(Q)cH (D;g) into

analytic function {g,:?, @(2)5 if and only if Q intertwines the

point-evaluations on Hg(D;‘ﬁ} and Hj(:(D;c() - Dhe function {8}%} @/ﬂ)&

is_bounded if and only if Q is bounded.

Proof. Let {g g & (%)3 be an Lz—bounded (e, g) automor-
phic analytic function. From the definitions of Lz—boundedness

and D(,) it results that verifies a) and b). For any heD(®,)
+ + Y +

we have

£@+<i—>&‘f5<)) W) J e = '@(})Eé;’gﬁuscmj CA) =
= @ PP PP koo = @) b = L. L] .

i.-e.@ - verifies ¢) too.
Let now Q be an operator which intertwiness point-eva-
luations on HZ(D;ﬁ\) and H;_{D;o(_) ’

Define {g 5 @(J«)} by
s Db [@9?5?3(%&}(» @ébﬂzeg) ‘

For a fixed 3¢ D, #(X) is a bounded operator from A
; o= : crdil.
fntoRt This comes from :che boundedeness of O and of .thé point
evaluation operators on 3’5&& and Hz(D) respectively. The

analyticity comes from the analiticity of '{’ and the boundedness
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of Q? on ‘the iconstant fundtions: ‘For any AeG we have

@ | @ %9 canalr- qunfa 3y m;;smg@

= o CR) DA BOAD o

Hence [gf (9(%5 is (”L'ﬁ —automorphic. Since
@0 FPwa=[QPa

/‘
Hchev Lz-boundedeness of {g,% @(})} results: from: the property

a) of Q. Now, clearly, from b) and c¢) which hold for both @
and.-Q.it results that Q= @ LE l/g @(ﬂj is bounded then.
Q= @+ is bounded. Suppose now that Q is bounded.

Eeor anvea e let h Be the finctien in ZLQ_ which
Y ‘%

cemes from the function A —» LG— % 7} fi)ﬁ'}&\) e T (“) ®f) by
applylng L]) and the described isomorphism between Hé_(D,G) and
H (Sl L Honsany Complex valued function f which is analytic in a

neighborhood of_:(—l. we have \

| | £c2 ‘2 ik CZ) o((mcz) =/ bl deaili (23;12 domceDd =
J()_SL | F J«-DJL o
S }(G’on)(}) 7) (D [_Q ? (}][;k),a_](’q) d/\.LC/\)
D
‘ o0 ' N dope (2 2
< yran j I {guj;)gi P cA),a}mu "

‘L
fO!’)Li%)f dfﬁvﬂ /@ &V Al [{’@ﬁmv) az, )

Rt T
' L

S&D
It restilis ithatfor any fron oJfl 'which 45 unfform limit ont 55

oOF, rational functions with poles off. 2 we have

J 12ro (AN \ermz) "-MJ 20251 d anc2) (5“9;)

2
7



/ e =

Since any positive continuous function Y on ASL is
‘uniform limit of modulus of such functions f ( approximating in

modulus property of R(R) (cf. 2493) we have

1), %
j PO d””?%)éM.((]P(‘E)dMCé> e ; (y»e C@l), ‘f’;o).

IS 2
It results that
“hﬂ(z)]/éMIIA(/ m=dte., ‘en oL,
i.e. : ‘ <
0l hﬁéz){{gM el (EL zel) .

Hence, for any Xe¢ D and ae § we have

@ su[&%&&rﬁ&mj GVl

(1 B | Y Ca $ Py w afewll 2 |l F¥ b oz 1, vay,

i.e;{g ,EF,,@()‘)} is bounded.
- The proof of the theorem is complete.
. The correspondence between the non bounded opeiator
@+ and the function{g ,?,@'(9\)3 depends, in general, by the
p, = palre’ ot s milani ty @p, SUF In the bounced case, however,
this correspondence does not depend of 9’_55 . Moreover, in this
case there exist boundary strong limits, in the Fatou sense,
for @ (x) and @+ can be realized as pointwise multiplication
on Hé(?) considered as the space of functions on 9D or Q7 <
In the non boﬁnded case, in general, we have not such ; Eoundary
Idmit For @) ().

We say that the (oL,F)-automorphic function [Z/Ji @/*/_j



Lt R

is inner if it is bounded and the corresponding @ > is an isometry
2 ] -
from Hg(,g) into HIZGL)’ @learly then the boundary limits of @ (2)
i }\A ‘~a.e. isometric ondD (or m—a.e. on 9JSL).
The Lz—bounded (el y-automorphic £ & g: (9/}?
/ﬁ - norphic function )&, /J

is-ecallediouter if “the co¥responding @+ has dense range in Hz(o() g

‘Since for any f€A and aef, 9’3 (foZ YaeD({F) ) and
@+§f(fo{7)a=fv@a fit resilts that[g,g, @(2)} is.outer if and
only if : ’

hatle) N s Bt
fe a @ F

Remark 2. If {g ) ():)3 ig an (pc',,Q) —automorphic outer
function then for any 2eD, @ (*) & is dense in“f . Indeed let
beF such'thgit (@(O),Q, b)? =0 for any aeg. Then for any ,Qég

and f£2A we have:

=£ (2,) (6(0) Ly’gcma,,-bg;o

(EV,& (b)

) B2 Gy

TE
From (2.10)'it results bL%;&X). TE he%;@&) such that h(0)=b
(see Remark 1) then

=(h(0),b) =Jbli°

O:(hrb) 2
L‘}_(QD) 3:-

i.e. b=0.
Since for any 7S ¢D there exists A ¢G such that AO0= X
and @ (%) =A(A) @ (O)/ﬁ(A)*i ‘it zesults @ (%) & is dense in &F

For anysiaie B

Proposition 2. An L'-bounded (¢ ®)-automorphic function

{E 'Fr @ W} is simultaneously inner and outer if and only if

JUUM /L "3/:‘/02/
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it is a unitary constant function. Its constant value U. realizes

a unitary eguivalence‘bgggggg ;5 and { -

Proof. In both cases @ _ is a unitary operator from
2 7 el SR
HZ(P onto ﬂg(o{) such that
C)+?§ g 2{69+

As in the proof of Theorem 6 in [2] we can show that @, is the

multiplication with a unitary constant function.



3. Factorization theorems

We shall recall firstly some basic facts about semi-
spectral measures (cf..[égt [253 i
Let X be a compact Hansdorff space and H be a separable

Hilbert space. An;;t(H)—valued semi-spectral measure on X is a -map

e

O —> F(@) of the family B(X) of Borel subsets of X such that for
any heH the map § — (F(gHh,h) is a (positive) Radon measure on
X« The semi=-spectralimessure F is called spec ral>if F(X)=L,,
and F(G‘lnﬁ—z)=F(5-l>F(5‘2) for any By = ﬁ—ZEB(Y).

Let K be a Hilbert space, V a hounded operator from

H into 3{ and E an,gﬁ(KJ—valued spectral measure on ¥. Setting for

any o~ ¢ B(¥)

63l F () =V"E (6) v

we obtain an &i(H)—valued semi-spectral measure on X. Conversely,
the celebrated Naymark dilation theorem asserts that for any
;{(H)—valued semi-spectral measure on ¥ there exist é Hilbert
space ¥ , a bounded linear operator Vsl s capdian 3:(JW"

valued spectral measure on X such that for any 6~ € B(¥)

@2y F () =V"E (0)V

The triplet?X/ Vs, E} is called a spectral dilation of

F. Under some natural condition of minimality this triplet is well

Y

1

defined by F up to a unitarity which preserves the operators V.

From Naimark theorem it results that any semi-spectral

measure. F gives rise to.a completely positive map from C(X) into

;ﬁ(H) Loesnifeor anyf . . F e C(X) "andish ...heH we have
1 n d n

\
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(3.3) 2 K%(GCJ% Ci (F(Z)/fxg/l\z>

41<

I£. F and F' are two jL(H)—valued semi-gpectral measure
on X then we shall write F4F’ if F'"-F is a semi-spectral measure
on X. From (3.3) it results that the inegquality EeF’ implies “the

inequality in completely positivity sense:

(3.4) ,/Lgﬁf{)(z) d( J e ) o {/Zzlgé(%)%g{é:/n)fy,éz)

»

In case X is a compact set in complex plane then.the
spectral theory for normal operators establishes a correspondence
between the ;1 CZ)—valued spectral measures E on X and the normal

operators N on }<~having gspectrum in X via the formula
(3.5 o g(N g %) dE (%), L Reni()

Let now _SL and m be as in the preceding sections. For

, <7 2
a Hilbert space 4 we shall denote by E” the spectral measure

o4 s

on JSL whose values are projections on I-.(dm) defined by

(¥

X . 2
(3.6) B (0) = h, heL’ (m), G e B (XY
& 20' 3
where )QT denotes the characteristic function of 5~ .
For an Qx,ﬁ)—automorphic function{é‘,§;égiﬁz} which

is Lé—bounded the corresponding operator W@ from <£ into %;&x)

can be considered as operator from 8, 1nto ;J m) . We shall
define ew1;t'(£ )-valued semi- specfral measure Q@ on EUQL by
(3.7) E (g =Vt BV -, e B(2O))

@ ® ®



The semi-spectral measure F@ ~admits the triplet
/ 2 i
/{Lg(m), WAL E.}: as spectral dilation. Conversely, if F is an
e ;
|

[ L (€)-valued semi-spectral measure onc'}fl which admits as spectral
L

dilation the triplet {L;,(m) AL I‘;S such that Vg C;H;z:(c() then

for any ‘& é Hom(]/’o(_Q) U (E)) there exists an (&;p—automorphic

: < ey 2
function {g,},@()—)j which is L -blounded suehsthat V=V@

| » F=F@. We have only to choose an 13 ~pair of ‘similarity, @3 ,LVB

and define

/
!

| 5 WP ' el sl
T I

; Indeed, with {5 ,c'fj; @(ﬂﬁ defined as in (3.8) we
have

DR =[PP 83 42 =D YPepena = otea) Bropare.,

and

i e
[%&}O‘) :o'@&‘) i) (XD pc = LUEeY

Je shall call F the semi-spectral measure attached

-

to {g o @(}\)J.,

-~

Theorem 2. Let {g ’gl’ p l(})} be (o(l,”g) -automorphic
and {g ' F-z; @ 2(;\)} be (c(z,ﬁ)uautomorphic and outer. Suppose
that E £ 08 . Then there exists a contractive ; B (})é.
= 0w i ”{%9[1@ J

which is . {2,—§_.utomorphic, such that

@y sl b @ ool (1eD).
7 LG
ERID SHe - Shenl G, ,’9 1 is inner. If moreov
=B ) then {Jy\ JC{ & (}_)j is inner. If moreover
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{g gf :

constant value U verifies
————_’——-‘.

@4_ (})} is outer then @(}) is unitary constant. Its
. tcs

(A)U=UO(2 (A) for any 2eG.

PEeolf. Let fl"""f €A and al,.,.,aez. We have

M P o
L2t s .= | gfz)fCe) d(F C%)&,/%)é <
2= o A Lo‘,, ;ZJ ?Sz_
| alf,
¢ 2 f@lcw dlF, cwz,&) Z e e ey
//7; 59_
Hence -
Z“ L
2 v ll Vi Al
(39107 H /(2 7614 ( Z” " ‘IPIC @9_
Since {Z ,?2, @ (5:)} is outer it résults that we can define

: )
i i % into H
a contraction Q from H:;C(o('{) into ng(o\l) bv

3
(¢g]
(3.11) Q %:/ ) \/@‘%&,L = MZ:,/,; W, 4
h and

Since for any h{—D(@2+) we clearly have Q@+h= iy

.[Q@%.h} (%) {@th >) =@, (2 h(2)

B.p
F $ ())hu)j (a)=

{H?ﬁ‘;"%})huj (2)= LQ@-“*(? ,

[ i’ 200 ZJ |

it results that Q intertwines the point evaluations on H” (D o{_2
2 [ .
"
and HSC(D;(;(-L) . Hence Qz‘@+ where lcfﬁ,, ‘;}‘1,@/ (5\)3 is a contractive
L oo
: 1
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| (ql,oLz)-—automorphic function on D, We have
& Oda =Ta, PPYrmalw -agthialo -
:A(@W[@f P el - AW GR&

TR then clearly in (3.10) we have equality.
®, ©

It results that Q is an isometry and consequently (ﬁ)f is isometry.

Hence {gzr gl’ @(})} is innef. If méreover{é”gf-l’@l(})}‘ ig

outer dthen clearly Q=@7+ has dense range and consequently
{3:2, ‘;l, @()‘)3 is outer. From Proposition 2-we conclude that

‘ @ (TS unj;tary constant and its constant value U verifies
-Al(A)Uz'Ue(Z(A) for any A eG.
The proof at the Theorem 2 ig compléte.
Let now F be an Y ()-valued semi-spectral measure onQQ
We are interested in the following problem. Does there exist an

(o(,lg) automorphic function {6“, F, & (.})} such that E(‘a ¢ F 2
Let us remark that we can suppose f} =1, Indeed, if {g 7 55‘, @(})j

is an® -automorphic function such that F_¢ F then the (a,ﬁ)-auto~

, : :
morphic function {5,37, @/()j defined by @(})z@(}) (]U;s(,%) ver.ifies
W= 1 =0 '
® o' ¢ O
' Let{%, V,ES be the minimal spectral dilation of F and

N be the normal operator corresponding .to E. De‘note by’}(+ the

subspace of K defined by

(13212 j/\_r = ;\/ U e
; € A



Then® , is an invariant subspace for N. The operator

N+=N{%+_ is a subnormal operator with spectrum in {1 and normal

spectrum ingQ . We call N, the subnormal operator attached to F.

/ :
We prove now the main theorem of the paper:

Thicorenm 3. Tet E be an;("(a—_valued semi-spectral measure

on JQ) - There exists an Lz-p_gunded ol ~automorphic analytic function

{g & B (})} which is outer such that

it IRy
) To 3 |
(ii). For ‘any other' L -bounded B =auteomorphic function

{g ’ @; ’ @4 (9*)—} which verifies F@, < F we have F@’ & F® 5

The outer function {E, o @())} is uniquely determined

by (i) 'andr(.ii) up to a unitary censtamne factor frem the Jert. In
——— : — .
order ‘thet Bhe egualitty holds in (1) it lis necessary and sufficient

that the subnormal. operator attached to F is pure.

BiEcof. Let {]{,V,Ej be the minimal spectral dilation
of F, N the associated normal operator and X , defined by (3.12).
Applying Theorem 0 to N and ‘j<+ we obtain a representation o of

G on a separable Hilbert space § such that

‘j{_ =L§':(*n) @(Xl ’

2
3{+=H§(ot) +‘Xl ;

Lé(m) i:educes N* to. -the multiplieatien by =z and H;(GQ reduces N+
to the bundle shift TO( . Let P be the orthogonal projection of

5 A
:‘:K onto HSC(OQ . Denote

(.3.13) \Y = AV.
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Hence there exists an o -automorphic

[

2
L i .
/ hen V@gCH}(O()
| function {g ,(\;, ) (Qc)j such that ‘
‘ ‘ (3.14) ® ()a =[Véag(2) GaieD)
| We have
| ‘ ' |
e 2
| N BV S= N/ P VS =P, \/  f(N)7s =P =H" (o) .
feh oc eAﬁig = E5 K+ T
Hence {g‘,? : @(?c)j is euter..
For any function fe& A, and ,&eg, we have

tflzd(FQa,a)z-‘J [f(z)[zn (V@a)(;}” 2

ast -

o

”f(_N)P va :”p f(N)Va” 2
A x

]f(z>12d(F(z>a,a).

|

| £y va)”=
g .
Us:L;g the approximation modulus property of A on ()
- for any positive function ?e C(QSL) , we obtain

<

SNLEIES

sz)aw@(z)a, ¢ jcf(zm(F(.Z)a,a)
’ L
2—bounded ﬁ —automorphic

e TH G
®

Let now{g, 3_1 : @(}}3 be an

£ B Eor sany fl"'?ﬁ o8 ). and

g E o
@4

function on D verifying

aje.-a 52 let us put

>ék i ! K p=1



We have

n e ?..__ T 5 : =
i %;f’;\/@@k- I K% fﬂ-& d(F@/&,' /ﬂ‘ﬂ

"'/ é/%-gf“—[}d(]:/&z}97>-:_

M L
S Ler)inall”
k=]

Hence X is a contraction from :l( inte L?'&r (m). Clearly
/{

/
/

3 ,d5) XN.= N X
5

Since X:chHé: (F) and 5<1= SLk eK%’:f(N)ILé R, (¥) fe.C(,a_Q_)j

| ipipi ; 1 12 :
we have xjgl X{IZG?L.E(N)K€7(+ ; (%) fc—C(aJ\)) & 'hé“g// (/g) .f(st:’ Jhte
e H‘} (g) (¥) feC(Q&)} ={0}, because T, is pure subnormal. Hence
1
x‘j{‘1={0} w’.:lich implies X%(K Sl oy e 7(+

Then for any feA we have

1
SRV

ZHXP;( £ va)’s | B EM)Val] e

2t 2 2
= E N Bl =R =SSR .
[ro0g, vall *= fleggal * fisl *ace g aa)
elol
Using again the approximation modulus property of A we conclude

F Tt
Now, for any L -bounded outer functicn 5, 5 @(ﬁ}}

which is o¢, -automorphic and verifies (i) and (ii) we have
/
F@' = Fny. Using Theorem 2 we obtain @ (})=Z@ (%) where Z is a

: : o | i v
unitary operator from ¥ onto F such that o (A)Z=2K((A) for any

AEG. The proof of the theorem is complete.



/

S

| BAs the corollary we obtain the following inner-outer factorization

for o —automorphic functions.

Theorem 4. Let {E ¥, & (93 be an o(—automorohln,

— e et e e

L -bounded analytic function on D. There exist an —automorphic
P

function [g ,3} ' .@4 (% )} which 13_ outer and an 6, /@ automorpnlc
function {3‘1,?, @ j which is_inner such that |

(3.16) ® N-G NG, . daeny

This factorization is unique in the following sense:

If {8 r 3;{}' @;(1)3’ is_an Pl —automorphic outer function and

i:—)—‘{’, ST @2(?)3 is_an '(o(I,P/ )-automorphic inner function such that

/
O w=gnfmn, (2 D)

then there exists a unidary operator U from ?:1 onto ?jguch tloat

{27 Ugcad = /BCA)u) (Aeg)
(3.18) UB,o= 0/o), Gu=@odu, (1e)

Proof. Applying Theorem 3 t9 F@ we obtain an g —automor-

phic outer function G (%) such that " F. = . ‘Using
2 R e < a @, @

Theorem 2, we obtain an inner (o(a/;}—automorphic fuhctioh{?}/%@f)}}

sueh’ thait {

@ston e ®), (3 @‘(’U/ | ilReAd) )
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Suppose now that

(3.20) @r‘;) = @Q’j}) @ffﬂ) . . U‘“@D)

/
where{g p }‘”{, @ (h 3 is anﬁ’—automorphic outer function and

{.‘}"’,?, ’{l (})3 is an &, }3 —automorphic inner function, Then

it is easy to see that F® f@ . Using Theorem 2 we obtain a

unitary operator U from }:’ onto SC/: suech thet (5:.17) is satisfied

and

e - e (ReD)

From (3 190 (3.20) iand (321, ditiresults

@ 7y & () = @ (DU (j&)

and using Remark 2 we obtain

®, 0= OO

The proof of the Theorem 4 is complete.

Let now {g P tg" ' @ (9\)} be an Q,(',;})-—automorphic function

o~

on D and let E be the flat unitary bundle oyer (1. corresponding

O el aend iy Then

©
ig,,gt,g) ('})} gives rise to a holomorphic bundle ma%:om E to F
Suppose that # has nontangential limits m-a.e.

2 a poimEiete ) O)

the flat unitary bundle corresponding to]g

on 9SL . The limit
can be regarded as an operator from the fiber

g Of IE ot 'z toithe fiber & of F @ dt z

agi) z~—>//@(e)a// belongs to- L™ (m)

. Suppose that for any

[}

‘a-a

. Thlen: the funcflon Sl @/}j

is-Lz—bounded and we have



S g

(322 (V@a){z) =@(j z).a ; (m-—a.e on ;)_52_)

If the function {g ; ?, @ ())3 in Theorem 3 has thege

/Properties, and, moreover in (i) we have equality then we obtain
(3083 a2 =) (2)* O (2) dmiz)

which corresponds to the usual meaning of factorability of measures
bevmeans of analytic functions.

Genewally, St A difficultitoigive simple characteriza-
tions of the fact that we have equality in (i), or at least'that
(7 (%) is not a null function. Bven in the scalar vulued case the
Szego-Kolmogorov-Krein problems of factorabi llty on miltiply connec-
 ted domains -become more complicate (cf. [3] )

IH the remainder we shall make Some considerations on
this problem.

Fo§ ancl(g)—valued semi-spectral meagﬁre F on 9] let us

define
i (A [F—K /QI,CL) 2y C)mﬁ g CZ__ :fafé))E;(%) O{(F(%) Qj/ &)a ’
. Dy :

where the infimum is taken over aill finite systems fo=l and

fl].--;fne A(J’ ac)=a, al’ld al!-on;ane g-

If{tk,,V,E} is the minimal spectral dilation of F and

N the normal operator on R corresponding to E let 9:{ =N/ f(N)Vg .
feA

We have

(ACF],Q o.> = chjf 2

/J =0

gaims <
: — el el f1=-8) Naadl
(Ve ll> = cnf I Ve~ &l >
:Cm’tf“ Z 79 J zeX,

(2 dlecovay, Ve =
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/
[

where PO is orthogonal projection of: 3{ onto (3{0.
Hence

FEre SNRT o O |
(3.25) (A[F}ﬁ)a)a: CV (I ?0>\//9f) >&

It results that (3.24) defines a positive operator A& (F]

on g . We call A(F] the Szegd operator of F. The name is jus-

tified because in case F is scalar v lued we have

A(Fl = inf, j |i-£] 2ar .
. fea

OLioa,

Theorem 5. Let F be an l(g‘) ~valued semi-spectral measure

i t
on 25 and A (F] be its Szegb operator. Then we have:

(L) 8 [E]=0 1f and emly If thereilils ne i -—bo\mdeg

of _—automorphdc.function {g, F @(.9:)} , such that (@ (})¥0 and Fp& F.

(i1) If ATFJ#C then there exigts a unique maximal (in the

sense of Theorem 3) L2—bounci§_q o{_—automorphic outer f't.l_xvl_g_t“ji_ongh

{Z F B0 ? such_that fééFr dim ¥ =dim A{FJE and
(3.26) ” A [F] =A[F9].-

"Proof. Suppose that there exists {g,ﬁ:, @(})} such
that @ (1)"%0 and F@EF. Then according to Theorem 4 we can

suppose that{g, ?, @ (x )j is outer. Then

ofii L
(AtF32,2) = ( afra] @ o_)f gadc e %V@-QJH 7
: /,’,,, €Ao o :,»_-”ﬁ
2> ;17-('0) ﬂ V Qe ’{'\” = // @/@/&//Z
k(o? o
which implies A (Fj#0.
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| / function given by Theorem 3. Recall that

/
f

= 31 -—

Suppose now A(FJ#C and let{g ; J’c’—,- @ (,’U}

/
/

orthogonal projection of ‘k‘_on H.2

be the outer

= jo) ot
V@ PoLV wl‘qere Peiiils the

3:¢x) in Wold decomposition

e L;(m@@}i/ N :%f"@t)@?d,.

If.«,e(jz+ is orthogonal to 525 then it is

on (N 20)3(1 '7(4 <« Hence

:Po( Cj:" o}X/—: (I"" PO)Pc(_h\/_ = G—?TQ
and.aécording to 3. 25) we Lave

A [FG] =4 [F].
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