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INTRODUCTION

We shall present in this paper some remarks about the
proper morphisms of noetherian schemes and about the noetherian
schemeswhich are dominated by algebraic varieties.

In chapter I,we prove a converse of the Grothendieck-

Serre Theorem about the coherence of the direct image of a cohe-
rent sheaf via a proper morphism (Theorem 1). An analogous result
holds aiso in the case of complex-analytic spaces (see {31 ), na-
mely: a morphism f:X —Y of complex—aﬁalytic spaces is proper if
f*(F) is coherent for every coherent @& - module F whose support
ig zero-dimensional. In the case where f:¥ —Y 1is a separated
morphism of finite type of noetherian seleles Een = 0 5L Gl
preper af and enly if £ (Bl s cohefent for every'“Qli#hohicznt
wodule F "“ee.. *. The case where X is an-algebraic scheme
‘over a field andY is a noetherian scheme is also considered (see

Corollary 4). Thus, one gets a generalization of a result of

J.E.Goodman .and A.Landman ( [6] ). Another criterion of proper -

ness may be found in Corrolary 1.
fhe method of . proof of the above results consists in

applying either compactification theorem of Nagata,or. Chow's lem-
ma to reduce oneself to the situation when f is quasi-projective,

. The conditions imposed to the morphism £:X —Y lead to a compacti-
fication T:X —Y with the property that Z = X-X is a set of closed
points of codimension one in X. Note that the classical valuative
criterion of properness (in the form of EGA IT) may be also pro-

ved in the sgme way.

In the second chapter some properties of noetherian
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schemeswhich are dominated by algebraic varietiesﬁwhich come from
the analysis of a special case of noetherian scheme X with closeé
points of codimension one) are given. We nrove that such.X is a
Jacobson scheme (Corollary 5) and " connected by curves " if the
base field is algebraically closed (proposition 1). One also pro-
ves that X is catenarian and equicodimensional (Corollary 7).

In chapter IIT one introduces a special class of schemes
the so-called universal l-equicodimensional schemes (hefinition 1)
Such a scheme Z is defined in algebraic terms and caracterized by
the following property: every separated morphism f:X — Y of sche-
mes- of finite type ovef Z is proper if every closed subscheme (=
C'X of dimension 1 is proper overY . In the case where Z=spec k
(with kX a filed), this.is always true ‘(see [91 ) .Bul in general -
thislfaiis, {éee Example 3). One gives various charactérizations
of these schemes and one shows that they have some "good" general
properties. A speciél property of these schemes says that in an
universal 1~equicodimen$iqnal scheme the catenarian + equicodimen-
sional property "propagates" well (Proposition 5). As an applica-
tion of the theory of universally l-equicodimensional schémes; one
proves that évery noetherian scheme dominated by an algebraic va-
riety has the same brooerties of dimension as for an algebraic

variety (Corollary 15).

N o t e: Throughout this paper we shall follow the terminology

and notations of EGA I-IV except the term of "prescheme" which

is repla ced here by the term "scheme”,
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This section is devoted to the proof of a converse of

the Serre~Grothendieck Theorem on the coherence of the image of a

coherent module by a proper morphism of noetherian schemes.-Some.
new criteria for proper morphisms are also derived from here.

The 'aim of this section is the following:

Theorem 1. Let X,Y be two noetherian schemes and

£iXl ety g separated morohism of finite tyve.Then the following

conditions are equivalent:

l
(1) £ dis propen: -

(ii) f-(5) 35 o coherent CQY_ mocdule for every coherent(@X-modu-

le F

1 i 1) f*(Q%/i) is coherent for every coherent ideal T defining

an integral closed subscheme of X.

Proegfie Giidi) = (i),

We may assume that X,Y are integral schemes. Indeed,

: 1j71¢5¢n,
the irreducible components of f~ (Y.); taking the reduced struc-

let (Ti)lsi$n be the irreducible components of Y and (X

tures on Yi and Xijx&ahxi is proper = f is proper (EGA II,5.4.5)
and fij:Xij‘h’ s verifies the condition (iii) if f does.

If dim X = 0, X contains a single closed point x &nd
X = Spec k(x) (k(x) being the residual field of the pointssc) dlet
V be an affine open set containing f(x) and A =T (v, QQY). By

hypothesis, k(x) is a finite A-algebra, hence f(x) is a closed

point  of ¥ %nd k(x) is a finite extension of k(f(ﬁ)); hence f

» 5_ . = =
factors : - 73 St b i

X—A-Spec k(y) ==Y, where f’is finite and i is a closed
immersion. It results thet f is proper.

If dim X> 0, let f:X—>7Y be a separated morphism of fini-

te type of noetherian schemes,which satisfies the condition (iii)



o e

such that f is not a proper morphism. We may suppose that every
integral closed subscheme X’%;X is proper over Y. Indeed, other-
wise,/there exists a mihimal closed integral subscheme ¥ < X such
thatkf;i: §C—>Y is not proper; by the minimality hypothesis, eve-
ry integral closed subscheme E' = 3(1 is proper over ¥ and f\'i’
satisfies the condition (iii).

| We may assume that f is a quasiprojective morphism.
Indeed by Chow's lemma (EGA II,5.6.1) we find a projective bira-
tlonal ,morphism p: i’-a-X such that fo‘s is qu331progect1ve then

|

£ is proper iff foP is proper. Every 1nteg;al closed subscheme

~
X'g;}{ls proper over Y;since in the exact sequence of coherent

@x-mo dg les:

4 7;>Q2x'”'p%QZ%"ﬁ“p¥Q9§7éj Bl
: » /0%

the last module has the support # X (hence it is proper over Tl

from the coherence of f*QQX) and of f*(pﬁﬁiv/Qj)and from the
: TR

o
exact sequence:

g f‘%(@x) — £,7, (Q,%-»f* (v, QOR//@Q
; 1 h 3 i :
it fol ows that (f‘iﬂ*jS; Q%,coherent

Thus, we'may take f a quasiprojective morphism. Let F be

a compactification of f

with £ a projective morphism and i an open dense immersion. Because

T is not proper, the closed set Z = X - X is not empty.
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For any point xe Z, let i—x be va closed integral subsche-
ﬁze of X, passing through x, such that ?{'X & . If ;:x nX #gﬁ, then
.}_fx N X is proper over Y by hypéthesis’;’ then YX N’'X being proper
over Y y it is closed in X_, which contradicts the
cH:onnectedness of ‘}—('X. Hence, for every point x e€Z and every inte-
gral closed subscheme ix% X containing x, we see that Yxc ZoIf
‘zl,..,zn are the irreducible components of 7 and x e Z, it fol-
lows that every non-zero ~prime ideal Pa @’i,x ‘contains any
prime ideal %j c @i,x’ corresponding to any irred_ticible component
Zj passing through x. Thus dim @S'i,x= 1 and so Z is a finite set
of closed points of codimension 1 in X.

We canmrove that the open immersion i :4 X<»X is an
affine morphism_. For this, let U C--)—{‘b’én affine open set of X,

U=t n X, F. a cpherent @U - module on U and F a coherent (O-G -modu-

le on U, extending F (EGA T, 9.4.8); in the exact sequence:

) 2 T e
(T, F) — W(U,F) — W g (T.F).
we have Hl.l_r\ﬁ( )

because dim S(:'ec- (o'i,x = ddm @'i)xz i 3P

From Hl(U, F) =0, it follows that Hl(U, F) = 0. From Serre's

Criterion, it results that \U is an affine scheme.

From the exact sequence :

0 — @—x R \"B©?§ G X/<O§
we oblain the exact sequence

§ i . : 7 & e
£, O, — §, ("'*©;</C/);< y — Rﬁg’%@?



S oA

‘ e { :
Because;f*ajx is coherent, by conditlon(ill))and R f* QD;‘ is

—

coherent because f is proper, we have that o] (L*@S{ /@—,z)
(which épriori is quasicoherent) is a coherent module. Because
i*@X/Qx has the support iwn Z,which is a discrete closed
subset of X, and e (L*(Ox/©?> is a coherent ©Y - module, it
is easy to see that Vi bx/@;(‘is a coherent (03(" module. .
. Hence kg quis a coherent QD; - module. Because i is
~an affine morphism, then X = Spec i*QQX and so,it folloWs that X
is a finite scheme over X. Thus, i being a closed dominant mor-
phism, it is surjective. It follows that Z = X - X =/ﬁ , which

contradicts the fact that f is not a.oroper morphism.

Remark 1 1In the proof of . Theorem 1, we have used
and broved the folowing property <{which will be used in other

proofs):

° Sr—
Lemma A.let i:¥X < X be an _open dense immersion of inte-

gral noetherian schemes and 7 = X - X. Then the following are equi-

-~

valent:

a) every closed integral subscheme X' g_:? suéhl that X! ni;tgﬁ

ig ebntdined in 7.

b) every closed integral subscheme X'gai'such Lhat X ry X %‘6

is contained in X.

¢) Z is a(finite)set of closed pointsof codimension 1 in X,

From lemma A it results the following proverty:

ct

nte—

e

Lemma B, Let i:X<»X be an open dense immersion of

: 3 iy a = : i HEEL e [
‘gral noetherian schemes. Suppose that for every closed point xe X,

i(x) 18 a closed point of X, Then: dim X = 1 3fF diw ¥ = 1.

SR a4 o iy S
Indeed if dim X = 1 and Z < X is an integral closed
' i int of X ; { ZONY =~ (otherwis
subscheme containing a point of X = X, then ZNXY = ﬂrxoudorw¢ue,

)

inb. x el ing 3 int ‘of X, dhen
ZNX is a closed point xe X; x being a closed point of X,

Hy
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{x}is a isolated component of Z, which contradicts the fact that

Z is irreducible), Hence by Lemma A, for every point x e X-X, din

@;‘x - 1 and so dim X = 1,

We remark that in Lemma B,‘the condition that () e g
closed point of X if x is a closed point of X is satisfied in the
following two cases:

1) X is a Jacobson (or Hilbert) scheme
2) i is an immersion of schemes of finite type over a scheme
S and,if f: X—>3 is the canonical morphism, for every closed
£(x) » dosed and

poin% x ¢ XY the residual field k(x) is algebraic over k(£(x)).

1
|
!
J

For analytic spaces an analog of Theorem 1 is also true

(seej[3l ). In {3] it is shown that for analytic spaces only the

colierenice lof i fiy ((Ox/x),for every coherent idéal I or Q%Qdefining

an enalytic subspace of dimension O,is enough to ensure the propers
ness of f.

In the following, we want to obtain weaker conditionsfor
proper morphisms, using the same method of compactification of mor-
phisms by a finite set of closed points of codimension 1, as the me:
thod used in the proof of Theorem 1.

First we may point out:

Corollary 1. Let X,Y be two noetherian schemes,. . f:X—Y

a separated morphism of finite type and n>0 an integer number. Sup-

pose that for every closed subscheme X'c X of dimewnsion > n and for

every closed point ye Y, the closed subset X'N f"l(y) is either emn-

ty or of dimenmion > O. Then the following assertions are equivalent

(1) £.18 proper ;
(iii’)f*(Q%¢%) is a Q?Y- oherent module for everygzaherent ideal

I,which defines an integral closed subscheme of X of dimension £ n.

(v*Yevery integral closed subscheme X'c X with dim X'< n is proper

e cang e

overi Y.
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P}oof.‘Obviously, (1) = (iii’ )= (v"),by Theorem 1. W shan
prove (v*) = (i).

As in the proof of Theorem 1, we may suppose that X and
iy afefintegral schemes. Suppose Xis not proper over Y. Let X'« X
be' a mihimal integral closed subscheme such that it is not proper
over ¥Y; then dim X'> n and every integral closed suhscheme Z;gX'
is prone; over Y. If we choose a dense compactification g of f\

}

X! <——L—> W

ﬂx\’* Y/%

withgfl an integral schemey by Lemma A,it follows that Z¢ =xr.X!
is a nonempty finite set of closed points of codimension 1 in .

In the Stein factorisation of g :

sl

—f'
NS
.‘\( :

? is finite and Y is an integral scheme.

Iffdim Y = 0, ‘then g(X') is a closed point ye Y and X'
will be a complete algebraic scheme over the residual field k(y).
Because Z'#ﬁ, it follows that dim X' = dim X' = 1. But)becéuse of
condition (v'))we have that X' is proper over ¥y-c0 that-2°¢ =,6,
which is a contradiction, |

IE90n S0, e s surjective with connected fibres;be-
cause codim x,{x% =1 Tor every x€Z*, it follows that
h"h{x% SRl Let us consider the set z" ='{xef§'\ x 18 not iso-
lated in h“sh(x)% by Z_QLEEE'OY“avr-Theorem [EGA LLE :],Z*_is
closed end h(Zz") # Y, because h{(Z") N h (7‘)=¢ Then the set

B i
D= Y - h(z'UZ") is nonempty and open in Y . end h\ il L) = Ay
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is a finite morphism, because it is a . proper morphism
With i fibres; moreover, hot (D) e X', The set U=~ FC—\;:—D)
fis nonempty. and open in Y, ; 3\3‘%(33 %~\(L33 s is a
finite morphism and %*OJ)C)(shence —§\¥1 is generically a fini-
te morphism. Then, for every closed point yef(X') N U, the set
X'r\f'&(y) is a nonempty finite set of closed points of'X,Which,

together with dim X® > n, contradicts the condition of the above

corollary. . ° Corollary 1 is proved.

In the following, we shall remark some caseswhen the
wconditien (i) of = Theorem 1 is equivalent to:

(iv) f*(Q%/I) is 211€%~ coherent module for every coherent idenl

I defining an integral closed subscheme of X of dimension £1.

By Theorem 1, the condition (iv) is equivalent to
the condifion: ‘

.

(v) évery integral closed subscheme X'c X of dimension<l 1

e

: :
proper over 'Y. £(x) s losed and

In the case when for every closed point x & i??ﬁe re-

sidual field k(x).is aigebraic over k(f(x)),(in particular if Y

is a Jacobson (Hilbert) scheme)the properties (iv) and (v) are

equivalent to (iv') and (v')which %ouovv: '
(iv')'fag(a%/l) is an Qlf— coherent module for every coherent

g

jdeal I defining an integral closed subscheme of X of dimension l.

(v') every integral closed l-dimensional subscheme C<X i

propexr over Y,

\
Remark 2, The equivalence (iv)<=(v) follows from

Theorem ljgowthe case when dim X = 1, We may prove this case in

other manner. We may S\L\:'{;OSQ that &: X —Y s & dorinant hr\or?h&sm
°§ '\.VL‘\.?.%ra.‘. schemes.’ ;
If £ is not constant, then f is quasifinite; hence by

[1d§it is quasifinite; so in the Stein's decomposition of f:
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a !
1 i an open 1mmer31on f is finite (because f (QK isxgoherent
‘Qj - algebra), QD ij (hence i is dominant) and ,by lemma B,

dim X = 1. Then ‘* <>< QD} ‘% (X ,O):0as the kernel and cokernel
of the morphi sm @x —s Ly X+ It follows that depth 7_( @${\ >2
(cf.[Bl ), where 7 = X-X.It results Z = @ and so f is proper.

| If £ is constant, because £ Q9 is QJ-moherent and f
isvdoﬁinant it follows that £(X)=Y=Spec k ,where k is a field ,and
X is an algebraic curve over k such that dlmLQH s QQ Yi<ios
at mu;t prove that X i1s proper over k.
| ; We may assume that k is algebraically closed,; Indeed)

be
let ¥ ‘an algebraic closure of k and ¥ = X x Spec k. We have

| Speck
HIX 0. = H°(x©>ok oLm W(x @F> doa H(x®><oo

and X is proper over k iff X is proper over kX. But X is proper
: ’che

over k iff every irreducible component-§L of X, withYstructure
of reduced subscheme)is proper over k. It remalns to prove that
dimlH (xt)@;;\“?.llndeed, ek oy C@——vhe ideal defining

~——

X.yin the exact sequence of T -spaces:

()

HO(Y)@§>' . \—\°<;’X~L,@2L3 it \-\*(i}lﬂ

i _
we have dim~ H (X q§<i0°(bylichtenbdum’s'fheorem)-and
O‘\Lm_{k\-\o(i (’)Ao?)bence dlm-ﬁ H° (X @ )490

Therefore ,We assume that ¥ is an integral l-dimensional

scheme over an algebraically closed Yield k. let P : :X —X be the

normalisation morphism of X. In the ezact sequence of k- snaces

e \—\(A(o}—-—-»H(X Oy 0K, WQW/@}

< . . / . : e
we have dimb: H (X)T’%’:@?{/ @X\) < G (because dim supnp

F*(D%/@;O) and dimk\‘\o (X}@,S\ < 60



/ e

/
/
/

o ~
Then dimﬁyH (*)@§\<“and X is proper iff X is proper.

Therefore we may assume that X is§Eormal scheme, Then X
fis either affine or proper Scheme over k. Because.dimﬁLH°<xU€§)
< oo ; it results that X is proper over k.

In the classical case, when f:X—>Y is a morphism of al-
kgebraic varieties over an algebraically closed field , it is ea-
?sy to prove (see EQX ) that £ is proper iff f satisfies the equi-
valent conditions (iv)) or. (w). This fact is mo ionger true for

the morphism of schemes; in fact, we have the following

Example 1. Let A be an integral noetherian local ring

of dimension 1 and A[T]the algebra of polynomials in one indeter-
minate over A. Let mc A be the maximal ideal of A and t a non-zerc
element -of m; the principal ideal (tT-1) has height 1 andgis maxi-
mal becausé A[T}/(tT-l) is isomsrphic to the field of quotieﬁts of
the Ting A. Let us denote x = (tT-1) € Spec A[T], X = Spec A[?]-%X%
'Y = spec A[T] and i:X <>Y the open immersion of X into Y. We
remark that x is a closed point of codimension 1 in Y and for
every integral closed subscheme Cc:XQ.dim B l,ihe get 1(CJ is
closed in Y and hence C is a proper scheme over ¥.indeed,.if i(€)

——

is not closed in Y, then xe€ i(C); hence either i(C)={x\ oP

i(C)

¥; linthe finpat case [ = ﬂ,which is imPosSlth;
R i J‘h  LT L dandibiine thiessesondicaise
we have C = X,which coﬁtradicts dimedla=i dimeeY =udim A[T1= Seritt
follows that the separated morphism of finite type i satisfies
the :condition. (v) ,“but ifis not preper. -

The following case is an extension &f the classical case

Corollary 2. Let f:X—7Y be a separated a morphism of

P

schemes over the fieid k. Suppose that X is an algebraic scheme

‘over k, and Y is a noetherian scheme. : Then § is




proper iff the equivalent conditions (iv) or: (v) veredsatistied.

Proof. As in the proof of Theorem 1,we may suppose
that Xfand Y are integral schemes.

If dim X = O, then X has gﬁly one point x and the
poﬁnt f(x) =y is closed in Y. Then“is easy to see that f is
proper. .

l | If dim X = 1, the assertion is cleaxr by Theorem i,
“ TEavm X > angd  f is not proper, by noetherian induc-
tion, we may assume thai every integral closed subscheme x‘g;x
-ié?proﬁer over Y. If X were not proper over Y let ?:§'->Y¢% dense

compactification of f; then,by Lemma A, it results that the set

Z =X -Xis a finite set of closed points in'¥X of codimensioni,

smce 3 as in the proof of Theorem 1, or of Corvellary 1,
every closed integral subschemeyixlggiz intersecting X is contained
in' X . Then the Corollary 2 is proved if we prove Lemma 24 which
follows; b& this lemma, we. have that dinm Eél, which contradicts the
assumption that dim X>1, |

We shall anticipaté a con§equence of Lemma 2 (see Corollary
>y which follows): in the situation given in Corcllary 2, we have that

f(x) ¢ XY is a Jacobson scheme,- Thus for f the conditions (tv) or

(Y) are equivalent to (IiV?) or (¥'). Therefore we have the following:

. Gomollanas 5. liet f:'X;~—>\( be a morphism of schemes as in

orollary 2, Then f is proper iff the eguivalent condition (IV!) or

V) are satigfied,

It remainsto prove Lemma 2, We shall use in the proof of

PSRy i

Lemma 1 -~ Let K be a function field over the field k, BEvery

semma 2 the following result of Naqata([15§>LJunnxa.4.i 3

iscrete valuation subring QDC-K, containing k and whose quetient

deld ig K, is egsentially of finite T DE o




N L e Sy S

/

is a finite set
e — b 1 o

e

45— {4 ~

e S

Lemma 2. let X be a noetherian integral scheme over a .

S-i,e,Lo{. ko a.noL X € X ar open honem\;zty. Sugse.t‘ o(: X. é‘:’(@?"se,_ E\f‘-“t‘

a) X is algebraically over k

b) X=X is a nonempty finite set of closed points of codimen-

gion. .l ingl.

Then X is an algebraic scheme over k of dimension 1.

1

Proof. We may suppose that X is a normal scheme. Indeed,

the normalisation mprphism Y>:-in—?i has finite fibres (because X
:"’ . ~n =

is noetherian), ?J(X) is an elgebraic. scheme over k and x -?’ (%)

of closed points of codimension 1 in X, whose lo-~

e e et A et e o
T e e P e

e rn e —

cal rings are noetherian (becsasuse they are localisations of the

—~integral closures of the ringqﬂ@9ggi;x€xijin the fie2d  of ratio-%

& b |
nal functions; these are noetherian rings because dim X% = A 32
it results-that'in is a noetherian scheme, If we prove that in
is an algebraic stheme over k, it results that X is algebraically
over k, because F is an integral morphism. _,‘Wé may suppose
that X-X has only one péint X and ‘the loecal ring ng)x Lniigs 8- disge

crete valuation ring.

-

By a Nagata's Theorem [131 , there is an complete nor-
mal algebraic scheme Y over k, having the sdme field of rationaly
functions as.i} such that fhe discrete valuation ring O . has:

AL e i T | P

& center ye YI Let f:X —Y be the natural birational mapy it re-

sults that f is defined in a neighbourhood of x. Let Z<Y be-

the topological closure of y in ¥; by restricting X to an open’

neighbourhood of x, we may suppose that f is a morphism, f(i)ﬂzﬁyi

while %\X:)(-—>%(X) is an isomgrphism of algebtaic schemes over k.

‘ ‘ Let us suppose, that dim Y >1; then the point Yoisinet

closed. iin ¥ and, by restricting X to an open neighbourhood of X

_wé may suppose that f is injective. Then f is a homeomorohism of

X onto f(X); indeed, let U be an open set in X which contains the
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point x; it suffices toprove that there is an open set V4iﬁ'Y;ru
such that £(U)=vNnf(X); T (U} being an open set in Y, and Z
| being a closed set of Y of codimension 1 such that f(U{ﬁ)r\Z—lﬁ,
| it results that Y- f(U{ﬁ)-ZKJZlU...UZ w1th ikthe 1rreduc1ble
components of Y - &(\J Xm’;)dlfferent of 77 then ithisuseti = f= U Zy
satisfies the equality {(U) = \ff\S(X) It follows that we have
 én isomorPhism of ringed spaces f: — £ (X}, if we take for
LX) the structure of topological subspace of Y ang the local
rings (O'&(XBPL Xy o for every te€ §<X>
Let U be an affine open subset of i'containing the poin

X. Then the restriCtion homomorphi sm ?v: r(U @~§ >©x x/ k¢
is surwectlve, because &xkls a closed subset in U. Passing throug
the 1somorphlsm f of ringed spaces , we see that the homomornhlam
?HU\ r(&'(UB © (x)\ Gl @Y‘a/‘m ’&(‘}) is SUI‘JeCulVE.

% Wy ©. ) ; o
Because {(x/ is the ring of regular functions -on th
open subset §(‘J) -\jﬁc\rvwhlch are defined on 7 (i.e. Z is not
present in the polar divisors of these functions) and k(y)zk(Z):.
= the function field of the variety 7, we have that every ratio-

nal funetion on Z is the restriction to Z of a reguler function
on f(U)- {\a’; Ir .Y~ (%CU\ S\‘ﬁ) Zilzl ---UZM-> Zuj .being the
irreducible components of‘T—-(gﬁﬂ'ﬁﬁifferent f Z, it results.

that for every 3E;k(l) the polar divisor of g in 7 has the sup-

port included in L) (Z- F‘Z) - This fact contradicts the supposi
tion that_dlm Zy = dilim Pl 00

Therefore dim Y=1 ang dim, algF(Y)“dlm ol k(X)~ dim.al. "

(M) =dim X=1l;hence dim X=1. Then the biratiopal map f: X ==Y, by
restrictingii-to an open neighbourhosd of X, may be reduced, as
above, to an isomorphism of ringed spaces of-ihon’f(i), but in

this case £(X) will be an open subset of Y, because .dim Y=1. Then

—

X is an algebreic scheme over k and . . Lemma 2 is proved.

rrna o R
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_ Remark 3. . . Corollary 4 apnlied to the canonical mor-

phism T : X—>Spec T (X) gives the following result, due to J.E. f

Cioo34nan and L.lLandman, obtained wsing the algebraic convexity {6X :

Let X be.mn algebraic variety over an algebraically clo-

sed field such that T (X) is noetherian . Then the following asser-

tions are equivalent:

(i) X is 2 semiaffine variety (i.e. W is proper)

(i1i) for every closed integral curve Cc X the restriction homo

morphism ?éi F(X) “‘*‘T(C) fgefiini te.

We may remark the following consequence of Lemma 2

which seems to be an extension of a form of the classical Hilbert's

"Nullstellensatz ":

Corollary # . Letedf % —> Y be a dominant separated mor-

phism of schemes over

k. ; A field k. Suppose

that X is an algebraic scheme snd Y is noetherian. Then for every

2 elosed pointuye Y, the residual field k(y) is d.&huie ektuxskﬂt

of .

Proof. We may suppose that X and Y asre integral schemes.
If we choose a dense compactification f:X —> 0 then it suffices to
.prove the following:

(#¥) for every algebraic scheme X over a.

) e

—

field k and every onen immersion of X into a noetherian scheme X

Afover k, the residual field k(x) of every closed point x€ X-X is a
finite sxtension of k.- . S
If dim X=0, then X=X.




i
T dim ol then ¥-X is a finite set of closed points

of codimension 1 and , by lemma 2, X is an algebraic scheme;hence
a finite axtension of

k(x)w k for every X ey,

L el ey e o X, by noete
herian induction, we may assume that every integral closed subsche
© me ?%-}E passing through x, such that Y=Y NX #;5 has the property

a ke axtension of 'S 2
(x) (i.e. k(y) 5 for every closed point ye¢Y - Y). oS
_Ifthere is such a subscheme Y then, because xeY, it follows
a fnde atension of k.
that k(x)wY _ -~ . If there is not such a subscheme Y, then

every integral closed subscheme Yo X passing through x is inclu-

:F-
ded in X-X. Then, by Lemma A, it results that dim QDszﬁx =14

eand x will be a‘closed point of dimension 1 inﬂfl_lt follows that
‘x% is a connected component of the closed subset X-X of X and
then ><k1§1X is an open subscheme of X. By Lemma 2, applied to the
scheme XkJixR containing the open algebraic scheme X, it results
that « XUfx} is_an alqebraic scheme over k. Therefore, h(x)is a finite

)
bxtt_v‘f.s'\.on‘oi k.

Corollary 5.

let £f:X —Y be g separated dominant morphissy

of schemes over a;

field k. If X is an alge-

braic i i :
scheme over k and Y 18 noetherian then Y is a Jacobson (or

Hilbert) scheme.

For.the notion of a Jacobson (or Hilbert) scheme see the

paragraph after the enouncement of - Proposition 4

Proof. It suffices to prove - Corollary5 in the case

— —

Wh ‘ . » ; ° »
en f is an open immersion because, if f:X—>Y is a dense compac -

tificatior & L X4
phiol £, and @Y doia Tacobson scheme, it results that v

3 T % 'V‘

18 Jacobson scheme (Indeed, let Vc Y be an open affine subset ang
["" V ~ 3 » 5 s . v

%:C (,(Q)a prime 1deal; because f is surjective . there is an

open affine subset U< X snd a prime ideal %L OJ(5} suachithat

el 46308



- S

V(U)(ORS DV(‘/)(’)Y\and %_\_ = _?_ N T(\J) @\(> ; for every maximal
ideal \g_Cr<U)@>—<‘))the ideal m N \—(\J)(’JY) is maximal in V(\/,@T>
because f is proper; because r(U,(’JR\ is a Jacobson ring, P is
an intersection of maximal ideals of V(U)@x\; then it results
that _q:is an intersection of maximal ideals of Y—(\/,@\A,

Therefore,we may suppose that f is an open immersion.
We shall prove that Y is a Jacohson scheme by noetherian indue-
tibn On Y.

If dim Y£ 21, by Lemma 2, it results that ¥ is an alge-
braic sch%me over:k; hence it is a Jacobson scheme.

%Suppose that«dim 3{>1 end that evéry integral closed
subscheme ’Y'ff-:Y)such thate X! = T % #;z{,is a Jacobson scheme. If
Y is not a Jacobson scheme, then there is an affine open subscheme
B< Y 'such itHat A = r(U,(OY)is not a Jacobson ring; obviously un
r\(Y—XX#qBQ We may suppose that Y = U is\d%fﬁne scheme. As in

wWhich follews
‘the proof of . Proposition 4, a) :}b)\ﬂhere is a prime ideal
R4, such that A/_\?_ is a semilocal ring of dimension 1. There-
fore there is a semilocal closed subscheme Z = Spec A/_?_ @Y of
dimension 1; let x be the generic point of Z and XyyeeeX the
closed points of Z.Because X is a Jacobson scheme, thewn x e& X
and for every i, x; € X. Thus ZcY-X. We have codim Z > 1; other-
wise codim Y Z =1 and Z would.be an irreducible component of
Y~X; then X\ %vﬁ would be aﬁ open subset of Y and . x —, & closed
point of the scheme X U Sang)of codimension 1 in X \J {x{; vy
by Lemma®, 5
Lemma 2, dim XU {x}=4;"It follows dim Y = lvhich contradicts the

fact that dim Y >1l. Therefore, because codim _Z >1, it results

X
dim (O‘( x> 1. Then there is an integral closedisubschieme Y'%Y
)

s / / s v_._,
passing through x and such that A = X I’\X#§{> ; otherwise, every

ime i ; ! i Be e ddeals
prime ideal _61__(_ (O\‘,’x %:ﬁo contalns one of the prime 1id

Jus=-- 4 ELL_"" , corresponding to the irreducible components of Y-X,

passing through x; it results dim (O\{)x?- ithLc‘n contradicts the
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fact that dim @*(,x.> 4. (see Lemma N)

| Therefore, by the inductive hypothesis, the subscheme
“Y' % Y passing through x is a Jacobson schemeIf ._g:i.s the 1deal of
ﬂAcorresponding to the integral closed subscheme Y'< Y then
'EVQ:C'Ay@k is an intersection of maximal ideals; hence in A/¥L

the intersection of the maximal ideals is zero; this contradicts

“the fact that A/%l is a semilocal ring of dimension > 0.

Corollary 6. Let X be a sevarated algebraic scheme over

e i .. field such that U (X) is noetherian.Then

the following conditions are equivalent :

(17 the cenonical morphism W : X—sSpec V (X) is surjective

(i) the canonical map;“?méx :“Xmgz(bpec T(X))max between the

sets of closed points of X and of Spec | (X) is surjective.

Proof. By @hi's result. (see {15)).(i)<=> (ii) iff ©(X)

is a Jacobson ring.

Remark 4, The problem of the equivalenceof (i) and (ii)

for the varieties X over algebraically closed fields k was enoun-

ced by J.E.Goodman and A.Landman [6x :

Corollary 7. Tet i:X. <X be an open dominant immersion

of schemes over a : T field k such that X is an

integral algebraic scheme over k and X is noetherian. Then for eve-

ry closéd point x € X, dim QDYWI. =dim/ X = dlmE. More, X 'is a

catenarian scheme.

proof. 1f .x is a closed point of X, then dim ngox.%

dim X. Indeed, lettizesaa(. If diHlQDi.x: 1,then, by Lemma 2, dim X
\
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=»@im#X=14 Tf dim ®§1>1, then there is a prime ideal i) c @’iax.
3
of coheight 1 and such that the corresponding integral subscheme
?lsl 3(‘ passing through x has the ‘prooerty b4 =:‘?_10X %ﬂ(, by Lem- .
mal2‘, dim Tf—lzl, because x is a closed point of codimension 1 in
fl. i YA % " % %YM =X is a saturated chain of inte_gfal
closed subschemesof X, then we have:{x} =3 A C-?Y Sl Rt
where Y. is the closure in X of Y.. Hence dim O< .>n= din X.
| We shall prove that for every closed point -xe7-X
cL\.m@.. 2. dim ‘X, by noctherisn induction -on-¥. If dim X=1 then J.wn

!,.
) )
X'T'l, and dim ‘(/—)Z = 1+~ fdamXl yawe may suppose, by’ the induc-

ti‘ve' hypothesis, ’that for every close_d subscheme '-fc.}z, sueh that
Y=Y N X#(,{J, we have dim Y = dim Y. We have dim ©§x Sl
atherwise, x is a closed point of codimension 1 in Sg)andrthen

X U%x}is an open subscheme of ?f; by Lemma 2,it follows dim X=1=
dim X,which is not possible, because dim X >1. Let m =¥o %XE\ g-
; -Xln4 2 _‘3_\,1 =0 be a saturated chain of prime ideals of
lenght n = dim @X x and let \( {"} %&Y ;7.— ?(M: i

the corresponding chain. of intggral closed subschemes of . It

- =?~\-4 (\X#f} then Yoy & R end*so's dim X.. If

s ?nu\ f\Xzsﬁ,then)for every i< n)?LC7<~Xe Because n> 2,
?n 1 %{x’\ and it is snirseduoible componernt of X-X. If n=2, then
dlm@ > dim X>1. Hence dim @x = dime X Ifen i let \36 o
be-the generic pO’lnt; then dim @\—(3 >2 and there is a prime ideal
-\?—#’3“-4 suchEthat j@_.\_?_%_&g %k@n‘o' Then the corresponding integral
closed subscheme AYCE passing through x, has the property that

ek =Sy %;D/ Hence dim E;n—2< dim Y < dim X, e @- L~ n¢aimX

We shall prove that ¥ is a catenarien schepe. It suffices

to" see that,if-x is a closed point’of Xt tand o= };Bn et Er‘»$°”—*

is a saturate chaln of prime ideals of @ then n=dim X We shall
.\

prove it by -uduclion on - . dimX. et K:Yn;;F i e
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Gl et be
B 2 X, ={x{ the corresvonding chain of integral closed subschemes

If Qi e 2,1t is clear that n=dim B0 dim X> 2 Suppose,by'

the inductive hypothesis,that every integral closed subscheme

?Tc.iwsuch that Y =‘§(\X'%/¢,is a catenmrianscheme. There are two

vossibilities: .
a) §h-1 is included in i;x. If y is the generic point'of

Nz 5 then.in theiloecal ring @-{

there is a saturated chain
b) “

O;%,ﬂ@,—( \k%lpn_,_e’z;}; by ‘a result of McAd'am‘[ﬂ)there are infi-
. . . : s ~ kt 2 -t -
nitely many prime ideals ’P‘C@X,‘},’ such that ,?. i ,F 4

We may choose such a prime ideal with the property 0 =+ SYD““"&(O?—’:,}‘

Then the corresponding closed subscheme Y, has the property X =

and Y e Y“-A . Because \'(“_,\ is an irreducible com-

—

=g

ponent of Y, we have ¥ = Y0 X #yf By the inductive hypothesis,

h‘,%‘ic _-_%YM%Y being a saturated chain in Y, we have dim Y =

= n-4 and,because Y is of codimension 1 in X, we have dim X=n.
e

b) \(h_-—k =Yv\-4 0 X :##) - Then we may apply the inductive hypo-

thesis to Y _;ibecanse Y, &Y g ...& X..5 Loy isyagsatunated, chein,

then n-1 = dim ¥__; = dim X-1. Thus n=dim X.
Corollary 7 is proved.

We shall give . another consenquence of Lemma 2.
: . o7 o
proposition 1. Let f:X —> ¥ 'a dominat morphism of schemes

over an algebraically closed field k. Sunpose that X is a connected

separated algebraic scheme over k and Y is noetherian of dimension

> 0. Then for every closed points y,y'e Y there is a connected

closed reduced subscheme Cc Y of dimension 1 such that y,y'eC.
3

Mc_)re’C can be taken ¥ _ .. an algebraic scheme over k.

s St

Proof. We may suppose that X and Y are integral schemes
and dim Y> Q. Choosing a dense compactification f:X—Y of £.08

-suffices . to prove the following:
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(**IJfor every open immersion i:Xe>X of a separated algebraic
scheme X over an alﬂcbrdiuxuy,closei;' field k into a noetherian
scheme over k and for every closed point xe X-X,there is an inte-
gral algebraic closed subscheme ECi)such that xe 2y " Z=7 ﬂX#p/ anc
dim Z=1,

Indeedy if (** ) is true, then for every closed points
Y,¥'e Y there are two closed points x,x'eli- such that f(x)=y and
f(x')=y"', and a connected closed algebraic subscheme ZcX of di-
mension 1, such that X,X'¢ 7. Then C=§Y§)C-Y)with the reduced
structure | of subscheme,is'algebraic over k , because 5 i;'f—»c
is a finite morphism and$a~is a connected scheme of dimension 1.

‘Let us prove (%% ) by noetherian induction on X.

If dim X=1, then X is algebraic scheme over k, by Lem-
ma 2.

‘If dim'§:>1, we may assume by the induction hypothesis
that every integral closed subscheme.i'ggi such that xeX' and
X‘ii&ﬂ X a ﬂ'has the property (%) (i.e. there is an_integral
algebraic closed subscheme Z c¢X' such that x¢Z, Z ='anﬁd and
dim Z = 1). If there is an integral closed subscheme'f‘gginsuch
thet xe XY amd X° = X' X ¢, we find a closed integral subsche-
me Z of X', hence of X, with the required properties. If there is
not such é subscheme, then, by Lemma A, it results that dim QO;;x:
=4 ~ . Because x will be a closed point of codimension 1,

{x§is a connected component of X-X and so XU{x}is an open sub-
scheme of X. By Lemma 2 , applied to the noetherian scheme XiJ{XRD
containing the algebraic subscheme X and the closed Dbint x of co-

. . y Lgmma BY
dimension 1 in XU{x}it results dim X=1 and so dim X=1Y This con-

—

tradicts the fact that dim X >1.

Proposition 1 is proved.
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Corollary 8. a) Every integral noetherian subalgebra of

dimension 1 of an algebrdl of finite tvne over an.algebraically

closed field k is.ofifinite type gverik.

b) Let X be a separated algebraic scheme over an algebréicallv

cloged fieldd kiwithl (X) noctherisn, If dim{:(%) = 1 then it is

an algebra of finite type over k.

|

——
—
P

\

First of all, we shall discuss the.following-problem;
if Z is a noetherian scheme, what conditions must carry out 7,
such that gvery separated morphism f:X —Y of schemes of finite
type over Z, verifying the equivalent conditions (iv) or (v),.
is proper. '

We shall introduce the following:

Definition 1. A ring A is called universally l-sgui-

codimensional if it is a noetherian ring and if every integral

A - algebra of finite type,Wwhich has a meximal ideal of height

1, has dimension 1.

A scheme X is called universally l-equicodimensional

with. affine open sub--

if there is.a finite covering e
8 5 e vering (Ul)le T

sets of X, ssuch that ‘forievery jc Tuthe »ing r(Ui,(Q) is univer-
L R PR S AL

sally 1 - eguicodimensional.

Example 2. It is obvious that every k - algebra of fi-

nite type over a field ¥ is universally 1 - equicodimensional.
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Then every algebraic scheme over a field k is universally l-qui—
codimensional. Later, we shall give other (some of these more

general) examples of such objects.

Example 3. A noetherisn semilocal ring A, of dimension

> - @,vis ot universelly 1 = equicodimensional, Indeed, because
there is f¢ A, £ # 0, such that the ring of quotients A is lo-
cal, we may suppose A local ring. Then in the polynomial algebra
A [T] , the principal ideal Eﬁt=(£T"&) fs mAwimal For every non-
Zero elemenfgbf the maximal ideal of Aj then'hi'hltf=4>but dim
AlTl=2.
First of all, we shall give some elanentary'pPOperties

of the universally 1 - equicodimensional schemes:

Proposition 2. a) If X is_universally 1 - eguicodimen-

‘ .
sional scheme, then, for every open affine subset U<X, the ring

P ﬂI,Qﬁx) is universally 1 - equicodimensional.

b) Every scheme of finite tvype over an universally l-equicodi-

mensional scheme is universally 1 - equicodimensional (more-par-

ticular, every locally closed subscheme of such a scheme or every

fibred product of two schemes of finite tvpe over such a scheme is

universally 1 - eguicodimensional).

¢) X is universally 1 - _equicodimensional if and only if every

irreducible component of X, with the reduced structure of subsche-

me, is universally 1 - equicodimensional,

d) If £f:X—Y is a surjective proner morphism (resp.surgjective

finite morphism, surjective integer morphism) of schemes with Y
)3

noetherian (resp. Y any scheme, Y noetherian) and X an universally

liequicodimensional scheme, then Y is an universally l-equicodimen=-

" sional scheme.




st

Proof. a) Because every ring of quotients of the type
Ap is universally l-equicodimensional if A is such a ring by De-
| finition 1 it results that X has a topological basis <Ui)i€.ivwkh'
affine open subsets of X osueh: that  Bor every‘ie T T(Ui, QD)
is an universally 1- -equicodimensional ring. For every open affine
set UcX and every integral | (u, (D) - algebra of finite type A
whch contains a maximal ideal m. of élieight 1, ‘from. the canonlcal
morphism of affine schemes ?A}J: Spec A —> U, there is i eI such
that I?A,U (m) e Ui; then m ¢ ?;tU(UL) and ?:U (U) is an affine
/scheme universally l-equicodimensional, because it is of finite
type over U, (see b)). Then dim ?:§,<1h) = 1. Hence dim Spec A=
= dim A = 1(bj Le,mma%) )BeccuLse Xis a Jacobson scheme (5u?m§:os'uticn[ﬁ
b) results from Deflnltlon s and ‘from the fact that every
algebra of finite type over an universally 1- equlcodlmeq81onal
ring is universally 1 - equicodimensional.
¢) From b) it results that every irreducible component of X,
with the reduced structure.,is universally 1 - equicodimensional
1601 so.'ConVérsch,o;: let U be an affine open subset of X
and A an integral algebra of finite type over YTU (9) containing
a maximal ideal gl of height 1; then A is an algebra of tinite type
over | (u, qj)red I, QD ). Let the canonical morphism of af-

Vea

fine schemes be: ?A\,i Spec A — U and_let Xl,...,X be the

red
integral components of X; because A is integral and U= L,)CK ﬂl)
there is an i, 1¢ign, such that ?A\J factors through X;0U. Then
A isa;r'(Xif\U, QDXJ - algebra of finite type and because Xi is
universally l-equicodimensional scheme, it results dim A=1.Hence
2 (U,Q%z is an universally l-equicodimensional ring and by Defi-
nition 1, it follows that X is an universally l-equicodimensional

scheme.

d) Suppose that f is a surjective proper morphism with Y noet-
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herian and X universally l-equicodimensional. We may suppose that

Y is an affine scheme. Because for every n30, £ : X Sgécz£SpeC'

n
ZLYTl,...,Tnl—>Spec ¥ XSFQLI[TU is a surjective proper morphism
: T

and X X 5?«32[1 118 universally l-equicodimensional, it suf- -

5(:«; Z

fices to prove that,if ZcY is an integral closed scheme and

2z €97 1s a.closed point such that 'dim @Dz_k = 1, then dim Z=1.
)

Let z be such a point; f being a surjective proper morphism,there
is an irreducible component W of f"l(z))such that %\#J:\N ez
is surjecﬂive. kWe consider W with the reduced structure as a
subscheme) . Let w be a closed point of W, such that f(w)=z and

| canonical m,gcci:,va.
§1C-Q) & 2 prime ideal of coheigt 1, such that by theYhomomor= ..
phism ( \ \ @ ‘—"’@w,w we have( \ 3(1\3 #-_\2 I ¢ is the
closed subscheme of X passing through w,wvhich corresponds to the
prime ideal %L', by b) it results that dim "= 1 Then F£(C) 1s
closed, contained in Z and contains strictly the set {zﬁ . Hence
f£(C) = 7, because z is closed of codimension 1 in Z.The morphism
§kc-:C -—a-Z; is finite "and surjective. It follows: ‘dimiZ=dim C=1,

If £ is a surjective. finite morohism, it results Y noet-

herian,by Nagata-Eakin Theorem . In this case and in the

case when f ic a surjective integer morphism, the proofs aresimilar
with the above one.Some.other direct proofs ,based on definitions,
can be gi&en. | |

In the following, we shall characterize in more "geome-
trical™ terms the universally l-equicodimensional schemes, alge-
braically defined above, and we shall prove that thege are the

solution of the problem in discussion (see c) of the Lollow1ng Dro-

pooltlon)

e

Iy

Proposition 3. Let Z be a noetherian scheme, The follo-

wing conditions are equivalent:
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~a) Z is universally l-equicodimensional.

b) _for every integral scheme X of finite tyne over Z of dimen-

sion > O and for every closed point xe X, the set of closed pointe

x'€ X such that there is an integral closed subscheme C<X (resp.

a connected closed subscheme) of dimension 1, passing through x

endi x! ;. ds dense: in X.

c) for any schemes X,Y of finite type over 7 and every sepnara-

ted morphism f:X—Y aver Z, f is proper iff the equivalent con-

1
ditions (iv) or (v)) are satisfied.

dJ for any schemes X,Y of finite type over Z and every separa-

; | S » . . S . .
ted morphism f:X—Y over 7, f is proper iff is satisfied the

following condition:

(vi) £ is a closed morphism with proper fibres and for every

integral closed subscheme C < X of dimension 1, noncontained in

some fibre of f, the morphism ﬁ\C=C'—*§Qﬂ ig finite;

¢) for any schemes X,Y of finite type over Z and every separa-

ted morphism f:X — Y over 7, f is finite iff every integral clo-

sed subscheme CC X of dimension 1 is finite over Y.

: noethevian
Proof. a)=>b) We shall proceed bfyfhduction on B (S

I dim X=1, b) is satisfied. Suppose that dim X >1 and that every
integral closea subscheme X';;X has the property b). If there_is a
closed point xe€ X, such that the set Y of closed points x'e X,which
may be“joined“to X by an integral closed subscheme of dimension b5l
is not dense in X, then there is an open nonempty subset Uc X éuch
that: UATii= ¢; hence xé.U and every integral closed subscheme XE%X
passing through x has the property X'NU =‘ﬁ. Itzyggﬁits, 3 o
}77 Lemmot. A 1 Sadthat dimf@x‘»ﬁ_:’i'.; by a)jt\/follows that

dim X =l1,which contradicts the supposition dim X >1.
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{‘.}t}g\!‘dk
b) =>a) Let U be an affine open subset of Z and A an(—<‘3,Q21 =

algebra of finite type,which has a maximal ideal m c A of height
l.‘Then X=Spec A is a scheme of finite type over Z. and x=m 1is a
closed point of éodimension Tedns Xae FF Y =u§x'é X\ x' closed
point such that there is a connected closed subscheme of dimensior
lfjbipg”x to x'}, we have xe Y. The equality: ¥ = {x% iSyrot pos -
siblei(because, by b)){xiwquld be dense in X and then (t results
that A‘iéﬁ?ield); S0 X ;;{x&and theh~dim Xe= "1 "(becauce 1 f . C-is
an igtegral closed subscheme of dimension 1 passing through x,
thenvC = X from the fact that codim % ol

b) = c) We may suppose that X and Y are integral schemes.

| If dim X = O, then X = Spec Kwith K a field and we
may suppose'that Y and Z are affine schemes; hence Y = Spec A and
Z = Spec B; A is a B-algebra of finite type universally l-equico-"
dimensional. Byéproposition 46ﬁhich follows),it results that A ‘
is é Jacobson (or Hilbert) ring; then, because there is a prime
ideal pcA, such that KA/, end K is a A/y - algebra of finite
type, it results that.A{?‘/fé field‘and K is a finite extension
of A<? < Wemcef 1g proper,

If dim X> 0, suppose that f is not proper. Lef f : X—Y
be a dense Qompactifiéation of £ and xe X-X a closed point; by
b),iit results that there is a connected closed subscheme C.cX of
qimension it ssuchy dhat ‘xoe B ands G 0N #,d. Because C is pro-
per over Y, it results C = Eiwhich contradicts the fact x & X.

c):ﬁ?e)vlf 7 'is not an universally l-squicodimensional écheme,
thenqﬁgﬁ%xists an affine open subset UcZ and an integral algebra
of finite type over T(U,(Dxl such that dim A> 1 and‘A hés a maxi-
mal ideal @}:A gf heilght 10" Letr ¥ =usSpec A, Xi= V- {QB and f:¥oyY

the céanonical open immersion . Then X and Y are schemes of finite

type ‘over 7 and for every integral closed subscheme C X of dimen.
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SHen-: L, ey s cloéed in Y. Condition: () ig satisfied, ‘but f is
not proper.

c)<=>d).'It results easily, because (vi)=¢(VJ and every proper
morphism is closed. |

¢c) =>e) Indeed, if every closed integral subscheme CcX of di-
. mension 1 is.finite OeTWY byecl) it results that £ is proper
and it is easy to see that the dimgnsion of “all fibres of 'f is
zZeros hence . f'is fipite,

-€) = a). In the same manner as c) =a).

Proposition .3 is proved.

Proposition 4. Let Z be a noetherian scheme. The follo-

wing assertions are equivalent:

8) Z is universally l-equicodimensional.

b) Z is @& Jacobson (of Hilbert) scheme and every integral sche -~

me X finite over Z,vhich has a closed point of codimension 1, is

of.dimension 1.

¢) Z is a Jacobson (or Hilbert) scheme and for every integral

scheme X finite over 7 and for every closed point x € X, the set

of closed points x'e€X such that there exists an integral closed

subscheme Cc X (reso.cénneqted closed subscheme Cc X) of dimension

1 passing through x and x', is dense in X.
Recall that a Jacobson ring is a ring with the property
that every prime ideal is an intersection of méximal ideals (see
[41 or [171 ); it seems that in other terminology these are cal-
led Hilbert niim s Tn én obvious manner, it defines the "Jacobson
(or Hilbert) schemes: g scheme X is called Jacobson (or Hilbert)

scheme if there is a covering (U')ieI with open affine subsets

1

such that T’(KJ;)Q%K) is a Jacobson (or Hilbert) ring for every iel.

Then, for every open affine subset U, the ring r(\J)Q&)is a Jacob-
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son ring (see EGA IV).

Proof. a) =>b) It suffices to prove that Z is a Jacob-

son scheme ; then.there exists an open affine subset Uc Z, such
that the ring A =r(KJ,QDZ) is not a Jacobson ring; there is a
prime ideal_yic.A such ‘that ¥A is not the intersection of maximal
ideals which contain it; there are two possibilities: either Ay<$‘
is of dimension 1, or there exists a prime ideal,?z %L %q

such that ¥a/¥‘ has the height 1 in the ring A/é\and'-?l/g\

is not the intersection of the maximal ideals of 5/¥‘mMich contain
i@. In the first case A/Q« & - 8. a semilocal ring (other-
wise, in the l-dimensional ring Ayé\, there exists an infigite fa-
mily of maximal ideals and the intersection of the maximal ideals
is non-zero; this is‘not possible); then Al/é{is not universally
l-egquicodimensional (see Example 3} and this contradicts the fact

“that A is such a ring (by a) end Prop.l a)). Repeating thiS,FVOC&‘

O—

uvre, we find an infinite sequence of prime ideals._\g‘ % _P?_% - -
: R : j '
%; $~ g;-f- such that pi is not of dimension 1, for every

.

l._l

> 1,Which contradicts the fact that A is a noetherian ring.

b) =>a) We may suppose that Z is an affine scheme; suppose Z=
=Spec-A,; with A g noetherian ring. Let BY%n integral A-algebra of
finite type, such that it has a maximal ideal n of height 1. We
have to prove that dim B=1. If*gc_A is the kernel of the canonical
morphism of A-algebras: A-»B, becausesrcn'%éhqsthe pronerty b),we
may suppose Ac B. Let f:X=Spec B—Z = Spec A be the coresponding
morohism of affine schemes and Uc X the set of point x ¢ X isolated
inff"lf(i); because m e¢Spec B is closed of codimension 1,it re- °
 sults that meU and the open set U is nonempty. By Zariski‘*stlain
Theorem [EGA III} , there is an finite scheme Y over Z and an open
Qimﬁersion UesY over 7. Because UesY is a morphism of finite type

of Jacobson schemes,m is closed in Y and it is of codimension 1 in
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Y. By b), it results dim Y=1 and then dim U=l. Hence, dim Spec B=
dim B=1.

a) =»c) Z is Jacobson because a) =>b). Because every closed

noe’tkcv‘@*\: ;
subscheme of X' .is finite over Y. We procee&biVinductlon Glte X
as in the proof of . . Proposition 3, a) =b).
c) =»b) as in the proof of . Proposition Byablesa) ibnleing

X finite over 7.

Exsmole 4. Let A be a ring.Then:

0) if dim A = 0, A is universally l-equicodimensional iff A is
an artinian ring.

1) if dim A=1, A is universally l—equicodimensional LEP iNdg
& noetherian Jacobson ring.

2)itidim A= orid AL iéva normal ring, then A is universally
l-equicodimensional iff tt is a noetherian Jacobson ring withiall
maximal ideals of heitgt 2.

35 a noetherian k-algebra A over a field k,which is intégrai‘

over a K-algebra of finite type is universally l-equicodimensional.

pProof. Q) and 1) result from Prop.3,b).

2) If B is en integral finite A-algebra with the maximal .
ideal gc:BAof height 1, and if_g_is the kernel of the canonical
morphism of A-algebras T : A —> B, then g‘ can not be zero because,
otherwise,n = §r4(g) would be of héight 1 (A is normall); but n is
a maximal ideal, because B is finite over A,which contradicts . the
hypqthesis ofi-2); Hencew$,¢ 0. . Then kt%z = 1 and dim A/#_ = 1.
Because B is finite over A{? and contains it, it results dim B=1.

The conditions of Prop.3%,b) are satisfied.
an

3) We may suppose that A is integral ring.
A is a2 Jacobson ring ( see [4] Yoo let Bcd be. a: k-sub-

algebra of finite type,such that A is integral over B,and C an
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integral finite A-algebra which contsins a maximal ideal m such
B'is the Lw\taﬁmt losureokB

. ; 5 /7
that ht m=1. We may suppose that € containsA. If'C'=C ® B, then

y
Ch integral over B* and C. If m'eC' is a maximal idesl whwh lies
over Q and - gccr is a minimal prime ideal such that#icgy, then
ht m//u 1 ”'[F_ and_p lies over the zero.ideal in-B* and C':Tt
follows that m,/? lies over a'maximal ideal of height 1 of B'
because B' is normal. It results that dim B*= 4(B* is an algebra
of flnlte type over k) and thern dim B=1=dim C. Hence A is un1§er-
sally l equlcodlmenolonal

For the universally japdnese schemeswe have the follo-

wing © - - properties:

Corellary 9. 1) Let Z be.an unlversally japanese scheme,

Then the following conditions are equivalent:

a) Z is universally l-equicodimensional.

b} for every integral closed subscheme Z2'c ' Z, if the normalisa}

s

tion scheme Z' of Z' has .a closed point of codimension 1, ‘then

gim 70 = 1.

S 3 o

2) Let £:X —>Y an integer morphism of schemes such that Y.is

universally japdnese scheme and X is noetherian. If Yaids universal-

1y l-equicodimensionel, then X is universally l-equicodimensional.

Proof. 1) a) =>b) is clear because 7' is of finite type

over 72!. For b) = a) we af?bj?%o?asd¢onlrtﬂ =i f Wilatan into-
i closed. m‘;e,jrnl subscheme Z-,C-Z- )
gral geunant ° finite Sdmmquewtﬂ\whlch contains a closed 001nt ik
codimension 1, then X xz,?f is integral over Z‘ and contains a
: a

closed point of codimension R being»hormal scheme, it contains
also a such point; by b) it follows dim T = 1 and so dim Z%1=dim X

2) The same proof as for Example Ayl

Corollary 10. Let Z be an universally catenarian scheme,
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Then the following are equivalent:

a) Z is universally l-equicodimensional

b) Z is a Jacobson scheme.

PRoef .. et .7 be anoetherian unlversally catenarlan

Jacobson saheme and X an integral finite scheme over Z which con-

|
i

jtalns a closed point x of codimension:l. If f:X'—2Z is tpe canoni -
cal morphism of Z~schémes, by EGA IV, Prop.5.6.10, we have dim
£(X) = d1n169 -l f being a finite morphism,it followd dim X=1.
By Prop.4 (b) >a)), it results that Z is universally l-equicodi-

mensional.

Corollary 1l. Let f:X —=> Y be a separated morphism of

finite type. Suppose that X is a Jacobson scheme and Y dg s neet-

herian uni&ersally catenarian scheme. Then f is proper iff f satis

fies the eguivalent conditions (iv) or (v).

poit \r‘oofg—
Proof. As 1n the Corollaryi or Corollary 2, it suffices

to prove that if f:X —Y is a dense compactification of f, such
that X=X ds'a finite set of closed points of codimension 1,then
dim X=1. Indeed, because X is a Jacobson scheme, theﬁ$§s easy to
verify that X is a Jacobson scheme. By hypothesis)Y is universally
catenarian; hence X is universally catenarien. By Corollary 11,it

results that X is univefsally l-equicodimensional. Thus, it fol-

lows that dim X=1.

Corollary 12. Let A be a universally l-equicodimensional

ring and Sic 4 g multiplicative system <Such that for every maximal

ideal mch,, mNA 1is a maximal ideal. Then the following conditi-

ons ‘are equivalent:
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a) A_ is universally l-equicodimensional.

b) AS is a Jacobson ring.

Proof. a) =>b) by Pronosition 4. We shall prove b)=a).
We may suppose A integral. Iet B be a finite integral A-algebra,
such that there exists a maximal ideal mcB of height 1, It is
eesy to see that there is a non-zero TelA, and a finite Af;sub-
algébra Bt snch that B = B'®, A. . Thenn =B*Nm is a prime

£ Sy

ideai‘of height 1 end it is maximal berause if F AS-——>B' is

1 - T ‘ ° * 3 i
the canonical morphism of rings, ot (n) is maximal. Hence dim

(Ag/xxrgj)-z 1, because A§7 is universal l-equicodimensional.Then

> { : .. ‘.‘ o .’ A » l" (‘-
dim \AS/Lerfs) 1. Therefore A is universally l-equicodimensio
nal,

Exemple 5. Every Jacobson k-algebra egoent gy o " 1 <
nite type over a field k is universally l-equicodimensional.

Indeed a such k-algebra is universally catenarianithen
the assertion follows from Corollary 10;

¢

Proposition 5. Let X be an integrsal universally l-equi-

codimensionsl scheme. If there is s nonelipty ooen subset UcX

such that U is a catenarian. scheme and for every closed point xeU,

dim Qjﬁ%i-: dim U, then X is a catenarian scheme and for every clo-

sed peint xe ¥ dim @X < ameXsdime,

Proof'. The proof is like that of Corollary 7.

o

Remark 5. Let us call a scheme X universally equicodimen

sional if for every integral scheme Y of finite tyve over ¥ and

every closed point y€ ¥, dim QQY =" ddam Yoo In Proposition 53
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if U is catenarimand universally eguicodimensional,then X is

catenarwnand universally equicodimensional.

The proof is left to the reader.

Cofollary 13, let f:X—>Y be a separated morphism of

finite type. Suppose that Y is an universally l-equicodimensional

scheme and X is an integral catenarian scheme with the property

that for every. closed point xeX, dimQQX ¢=dim X. Then , for every
; b 3

dense compactification F:X —» Y of £, X his the ébove<pronerties

of X.
Proposition 6. a) If f ¢+ X~—=>Y is a faithful flat
. el 2y % : Q.Y\t( T 3%‘050’1
morphism of schemes , . X is universally 1 «ﬂquiooo imensional%; then

Y is universally l~equicodimensional,

=h

b)) Let £ : X—>Y be g surijective separated morphism o

Schemes ovér an universally leequicodimensional Tine- k. suel flat

‘inite type over k and Y is a noetherian Jacobson scheme,

5

X igioef

Suppose that for.every closed subscheme X'C X of dimension > 1

Ao < ; -l !
and for every closed point ye¥y the closed subgset X'AF ~(v) is

- 3 . ~ b PR no . -
glther émpty or of dimension > 0., Then Y is unlvowoa71v Ll QUime

codimensional,

Proof. a) We may suppose that Y is an affine scheme.-
Let Y be an integral finite scheme over Y,which has a closed point
Ye X'y cuch thet dim QDY' = 1; Y' being a closed subscheme of
X XS‘;«_ZS\:QC Z [_TA,--- r:l‘f‘or‘ any n>0 and f XXSU_ZLSKN‘C‘
zz‘:h~,gl"*\(x YULZ[«V,Qbelng faithful flat, we ma§ suppose that
Y'ii=s en intégrol closed subscheme of Y. We must nrove fhat dim -
Y*=1. |

Because f is a flat surjective morphis%,théfe is anirre-

ducible componerit. X' of f"l(Y') such that the morphism fﬂ K =

Ko
1s dominant and y e 1W&<&l/>. (We consider X' with the structure
of" reduced subscheme).we may choose a closed point xe.X‘ such that

<§\X )(") Y end _F_c@ zx a prime ideal of coheight 1, such that
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(ﬂxl)*(m_x) c}:_}\?‘ (here ) '(ﬂix,? s the canonicel injective homomor —

phism@*/»@/ and m_ is the maximal ideal of @X/)x iithen the
b) XJL 08t

integral closed subscheme Cc X' passing through x and correspon-
dijng’ 1650 _¥_>__c. @X',x." is of dimension 1 and f(C); %y} . Because y

———

is a closed point of codimension 1 in Y*, we have £(C)=Y'.Then

dim Y'=1. because .){_S, g € s o) A.Un.s‘e. Com:tad.c,{i,%'kc_aii.ﬁ:h. 03- %\c) 5‘j
ssuins 'E,:Weh‘*‘/ef Al =AumE =4 cun.oL 3 UoaL §quhe, m.o\r?\usm.
- b) As in a) we must prove that if Y*c Y is an integral closed

siubsc}heme y,which has a closed point yeY' oficodimension 1, then
dim Y= 1 We shall —<covisider two cases:

1) There is an irreducible component X' of f-l(Y') of dimen-
s?ion > 0, such that ye £(X') and X' is not contracted by. £ to .y. :
Then the proof is similar to that of a).

| 2)‘If every irreducible component X' of f'l(Y'), such that
ye £(X*), is contracted by f to Y, we shall prove that dim Y'=1
in the following manner: let f:X—=Y be a dense compactif‘i_cétion
of £ with X an integral SCheme; there is an integral closed sub—,'
scheme, Y;cf such that f(X*) = Ye. obviously, if xeX*' is a clo-
sed point such that ;‘,‘—(x):y, Ehen XeX'-X' (heve X'=X'OX ;j-'/d).
Suppose thét X' is va minimal integral closed subscheme such that
X' =X'NX £ f and £(X*) = v,

If dim X* = 1, then X' is finite over Y'; hence dim
Y= _

B dime X > 1. det .7 =(fz‘-1(y)c.f‘-){'=r}z;/ by the mini-
mality of X° 5 ewéry integral closed ;ubscheme -ﬁ’g& 7(',’ Such that
Yz - {) is contained in Z. If x€¢Z is a closed point and
$\>~--,¥n < (O‘i‘fx are the orime ideals coxresponding to the irredu-
cible components of Y, which contain the point x. i,t‘results that
every prime ideal %: C@Z,X’ifo’ contains dn ideal .?i « Then dim

(:O-R.zx =1 and Z is a finite set of closed points of codimension
Sy iy
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1 in X, Let A be the restriction morphism and
= % =e k‘ls isolated 1in 'f(x)% Then L €\ and. by
A cm. ‘f’l“‘ [ 3%@“&‘1&\! &i.ni.te,.

Zariski Main Theorem, U is an open subset, :uh;rtharews & closed
point .jeTléudtﬁhdt-X'ﬂfT%J) is a O-dimensional scheme, By the con-
dition given in Corollary, it follows that dim Xt < 1, which contra-
dicts the‘assuﬁption thaat dim T4 >4 (th Lemma B , since Y is o

Jacobson scheme).

/ : Jacobson. :
Corollary 14, a) If A is a ¥  noethevrian k-—subalgebra of

vype over an universally l-equicodimensional

i

bty

~.J
")
o
-ty
o
O
(“

ring k, then A is generically universal imensgional,

(ﬁ

sally

hiver

».,«

b) If X is a scheme of finite dype over an
i Ja.ooBSok’\.
l-equicodimensional ring k, such that Bea) ]cVnoe*hervrn, then« U (%)

is a generically universally l=equicodimensional ring

Ercod.. These are particular cases of the following:

(xxx) If £ ¢ X -—>7W.ie o dominant morphism of £inife

type of schemes, such that X is universally l-eguidimensional and Y

Jacobson
Ynoetherian, then Y is generically universally l-equicodimensional.

Indeed, §..J 18 a generically faithful flat morphism,

Proposition 7. Let f:X —> Y be a separated dominant mor-

phism of schemes over a ’ Ei fleld ey VIR X i85 &an

algebraic scheme over k and ¥ is noetherlan. then Y is un1Versal—

)

ly 1- equlcodlmensvonal

; _
Proqf. We may suppose that X and Y are integral schemes.

If a2 ¥ 1s adenge compactification of £, then! by Prop.2 ,4)it
suffices tq?rove that X is universally l-equicodimensional. We

have to prove that for n>0, every closed integral subscheme
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7€ R X S hfWH“Ch contains a closed point ¥ of codimension 1
in Z, is of dimension 1. Indeed, otherwise, we have dim Tl
\ b
let . . z°¢ ZVa closed point such that codim %2-§>-1 and-let
/

L 3 ' C_ - -
§Z‘% = Z* ;:Z':$-~'¢-LL L be = saturated chain of integral clo
sed bubschemes;.we have, £>1, 17 Z=F L‘H? - 7*; m‘X‘#R&k
is a saturated chain of 1ntegral closed subschemes ;we have two

‘maximal saturated chain of different lengths: P
3 g e e el e XPQK

! - b
W= 28 282 F Ll - (TR e
) / = LIRS n
and {1} S Loy o = Lo = X "Qk . Then Corol-

y\‘ —
'lary 8,applied to the open immersion X-*pﬁkf”xxﬁgimplies that

the lengths of these two chains are equal,which is a contradln—

tion. Hence dim Z = 1.

Remark 6 . Proposition 7 is a strong generalisation of

Corollary 3 and thus generalizes Coodman-Landman  result (see

Remark 3), because, by Proposition 3, for every morphism ffZ-f%W
of schemes of finite type over Y ¥ as. . in- Theorem 2) f dis pro-
per iff every closed integral subscheme C<Z of dimension 1 is
proper over W. '

As an application of the theory of universally l~equico-

dimensional schemes, we shall prove the following:

Corollary 15, Let £:X~>Y be. a separated . dominant

morphism of schemes over a ' - _field k. Suppose

that ‘X is an integral algebraic scheme over k and Y is noetherian.

Then Y is catenary and for every closed point veY, dim‘@)\(‘3

=hdiim Y ='dim.al.hﬁ((Y>. More, every integral scheme Z of finite

lype over Y has these properties.

Proof. Let Uc X be the open subset of regular points

Lt E-E N
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o&tJ. Because U is dense in X, f(U) is a constructible densé sub-
set ol ¥; hence there is a nonempty open subset Vcf(U). . Because,
fof every closed point ye V §~k3ﬁ(ﬂd+¢py EGA IV, we have that

V is a regular scheme, ig We choose V< £(U) such that 'ft{

"‘C\z):

f"(v\ —> VNV  1is flat; then, for every x&X, we have dim QDX <

= din @*“ dim (Qxxcz“o ROD with y=f(x). By EGA IV, Prop.13.2.

ﬂ
18 ‘an equlcodlmen810n31 morphism; then for every X€ X!

f\ _g—4<

‘AL\“ XDC®@ %k(‘j) al.umx'g g(x) AL\W\& -5-(3() omeg('Yl with 'y{ the gene-

PlC point: of Y. It follows that for every ‘closed point yeV,

-4
dlm QDX- = dim X.~<LW\f Cq~ hence for every closed point ye V

)

‘dim Qj*’j &un\Z. By Pirop.7 and Prepis, it follews that ¥ is

:natenarlan and for every ¢losed point-y'eY, dim Qlfj: dim Y.

Ther dim ¥ = dim'X - &g £ (q) = dim.al.&-K(X) -
- dim, el. e )K(_X) =idimead y&K<Y3

If Z is an 1integral scheme of finite type over Y, then
loéaliy it is a closed subscheme of U % ﬁﬁ:k, with UcY an opeﬁ
affine subset. We may suppose Y and Z affine schemes and ZC?YXIQQQ
an integral closed sﬁbschem%. Because &nz X,‘AAXL—_—? Hox 5ﬁnk
is a dominant morphism and X % ﬁktkis glgebraic over k. it suffi-
ces to prove that every closed integral subscheme Z < Y has the

properties given in the ¢orollary. Indeed)because Y is a catena-

rian scheme and every maximal saturated chain of closed integral

_subscheme has the same length, it follows that 7 is catenarian

and for every closed point ze Z, dim Q92H1!= dim Z
| We must prove that dim Z = dim al.&_‘<(23 . If we
choose a maximal saturated chain of closed integral subschemes
H=2.921% - L "2 $Zan G- §'2a= Y
because dim ¥ = dim al.&b K.(Y7 , 1t suffices toxrove tha+
Cdmal, Kz < dimady K (Z)
Indéed)if Z—LM = S\n,c.A 3 then Z‘L," \“‘C /,\2. S _p being a non-
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|'ZeTos prime ideal fof iy P e%g is a non-zero element and

A

5%%“'">%m%\g subset of elements of A such that igilzLS'“ )§hm)zgﬁ

is a transcendental basis of K(Z;), then %%,Sh—-vﬁm% is algebri-

- cally free over k.

Corollary 15 is proved.
We can write Corollaries 4,5 and 15 in.the followir
equivalent puye algebraic form,which seems to be an extension of

the classical dimension theory of k-algebras of finite type ¢

Theorem 2. Let A be g noetherian k-subalgebra of an al-

gebra of finite type over a. : field k.Then

every integral A-algbbra B of finite tyoe has the following pro-
perties:

a) B 1s _an universally catenarian Jacobson ring.
[]

b) for every maximal ideal m < B, Eaél ls_ o ﬁﬂielwiquoa<ﬁjg,

¢) dim B < c0.and for Svery maximal ideal m c;B, dim Bmxdim B

d) if K(B) is the field of quotients of B, then dim al., K(B)<

ggg dim.al.kK(B)=dim B.

Indeed, we have a separated dominant morphism of finae
type f:X—>Spec A, where X is an algebraic scheme over k. Then.
a),c) and d) follow. froﬁ Corollary 5 and Corollary 15 and b)

from Corollary 4 and from the fact that Spec A is a Jacobson sche

me .

Remark 7, a) For every algebraic scheme X over an al-
gebraically closed field k such that (X is_noetherian,i’(x) has
the properties of A from Theofem I
' b) From a (more éeneral) theorem)&uﬁﬁ.Nagatq and K.Otsuka

(see [14} yTheorem 3), it follows the following: if k is a field,
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A is a k-subalgebra of a k-algebra B of finite type and ¥y:A 1S

a prime ideal such that there is a prime ideal %f:B lying over_FJ,

then htp + dim.al.y K(A4)= dim al., K(A).
= c) . .. Theorem 2 can be generalized in the following form;

let k be a noetherian ring such that every integfal k-algebra

of finite type is generically regular &and equicodimensional.Then,

for every noetherian k-subalgebra A of a k-algebra of finite

type, the following are equivalent:

(i) A is universally l-equicodimensional.

Y o o > & » . 2
(ii1) A is¥Jacobson universally catenarulnvww%

In these conditions we._have that A is universally equi-

~codimensional and for every prime ideal.gc:A we have the reiation:
ht o+ dim. “LK(*L/:&Q?) K(A/x,_} = R0k n;?\; +
+ OLLM‘GL‘.K(M K (A) (bg- k. and A ave integral ringé) (see also
Nagata - Qtsuka Theorem).
The proof is like that 6f Corollary 15 and Theorem 2;
The Theorem 2, i - Preoposittion 1. ‘wii@eneollary 8, .
Lemma 2 and other assertigns of this paper. lead to the follo-

wing

PROBLEM 1. A noetherian integral k-subalgebra of a k-

algebra of finite type over a : ' ‘ ifiield k

‘is.of finite type over k?

In geometrical language: If f:X—Y is a dominant mor-

phism of schemes over & field R Yis infeqral noetherian -and ¥

Gsae .._separated algebraic scheme over k, is Y an slge-

braic scheme over k7 )

The author was asked by professor A.Landman a question

which amounts to a particular case of Problem 1: if X is en al-

gebraic variety with T (X) noetherian, is T(X) a finite generated

'k - algebra?
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An important result is the following Coodman-Landman
Theorem ( see [6} Nt ‘

Let X be an _integral algebraic variety over an alge-

braically closed field k and f:X—>Y a dominant morphism of sche-

-

mes over k (Y is not necessary noetherien!). If f is proper, then

Y is an algebraic variety over k.

PSSR

In connection with Problem 1, one may further ask also

the following’qdestion:

PROBLEM 2. Let f:X—>Y be a proper surjective morphism

of| integral schemes. If X is noetherian , is Y noetherisn?(in
| : »

some " reasonable" conditions ) o

A particular case of this problem is the Nagata-Eakin

Theorem (the case when the morphism £ im Pfoblem 2,13 affine)
Via .. Problem 1, the above Theorem of J.E.Goodman and A.Landmar
might turnout to be a particular case of . : Problem 2.

The Problem 2 seems to be on important step for gene-

ralisations of ... Theorem 1, when Y is not a noetherian scheme.

Propogition 9. Let 6 be a catepory of inteeral schemes

of finite type over an universally l-equicodimensional ring k,
such that:

Ay B ng%g , then V(X) is a noetherian Jacobson ring

i : . 4 2 net
o sl xe 6 3 then Far levewy .nal 0 Xxgkk‘ifg

1i1): for every X&'o and every prime ideal e TR

there exists Y Q‘é such that U(Y) contains 'V(X%/?‘ and 14 is

. integral over ‘—(X)/¥L < _ e

S

s ) =, HS *e s il s 13« el I T s
Then for every ﬂexgﬁ the ring ‘*gl) igs universally
|

l—~cguicodimengional.

Proof. Let XEWg and A an integral [ (X) - algebra of
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finite typewhich contains a maximal ideal m of ‘height 1. Because
Spec A is an integral closed subscheme of Spec r(X)D‘H-_-)TmN& )
fof- some n>0 and TRy [T,\)__-;T“—l = rCXfm“&z\lit results, by i)
. and ii) that it is sufficient for us to prove the following: if
x e and ir YeSpee U (X) is an integral closed subscheme which
fcontalns a closed 001nt of codimension 1, then dim Y=1. By iii)
thexe is a . . scheme'Z € € , such that there exists an
‘integer surjective morphism Spec | (Z) — Y; then Y (Z) has a maxi-
‘mal ideal of height 1 and,if we prove that dim V(Z) = 1,it fol-
?lows Chios dim: ¥ =415 .
Thercfore it suffices to.prove that if Xeg-and \—(X.)
has a maximal ideal m height 1, then dim YV (X) = 1.
| Tet 1 =§§'§E<:T(X), n maximal ideal, ht grlg. Then I is
either a finite set or a dense subset of Spec T (X)

~—

Tl”“Iﬁ be the irreducible components of the closure I of I in

; indeed, let,

Spec T (X); for every j, fj contains an ideal n;eI end then,be-

cause ht erl, either Ijr lgj% or Ij=SpecT—(X); if, for every
Jds Ij:%
I x).

gjx)then I is finite set; otherwise, I is dense in Spec

We shall'prove that U=Spec \ (X)-T is an affine scheme,
if I is finite; indeed, for any coherent Q? - module % and every
.exte181ong? of' F to Spec N () 1n the exact sequence: }{ CS?Q;VCﬂj@
sy \\ (U ‘&X — \’\ (Sl\au,r( \)%)we have H% (Spec T(X),? e G:LDGI
ﬂgfﬁ<S?{cgﬁ ?;) because dlm,éj 1, Eturesultss that i fop evefy.
e L, H%\(up Xe @%;‘§ ) =@ and then H (Spec N GL), %:) =- Q;thus
H (U,ﬁ') = 0, because B (Sbec e ,%:) = 0; by Serre's Criterion,

S
it follows that e isvan afflne open subset,

G X~¢ Spec T(X?V%%e canonical morphism. If I is a
finite set, then I N7 (X) 4:¢: otherwise, because U=Spec \(X)»I

h R
is an affine st anRs o, Qj Spec TKX))’ 1t follows that ‘



‘ e
/’ -“l P
factOrs through U: X —~%-Snec A Ca'SpDc V(Y) and hence the homo->

movphism R Y'(XS C——? A\<L-> T(X)ls 4VT}J ; 1t results from
| here. that L¥%dﬂisomornhism,w%ich contradicts the fact I%ﬁlIf g
| is a dense ‘subset then I(YW(X)%ﬁ, because T (X) contains & non-
.empty open subset of Spec [ (X).
Therefore, thefe is a maximal ideal n € W (X) such that
ht n=1, Let xeX be a closed point such that T(x)=n and Cc:X a
closed integral subscheme of dimension 1 passing through X and
which is not contracted to o by W . Then the closure T(C)

Sn o
~ o % Gt
.henee: G~ gpep I (X), because ht .=l IfWe @ =sSnee - TOR) ip

a dense compactification of'WWC:C —>Spec T(X), it follows‘that
N i . 3 . 3 ° a i i Ed
N 1s a finite morphism; then dim [ (%) = dig Spec’ () = dim
~
C=1 (see lLemms B).

Proposition 9 is proved.

In the proof of Proposition 9 we have used and we Hhave

proved the following:

: o
Pemma 3, ILet X be an _integral scheme of finite type over

an universally l~egquicodimensional ring ke such that i) i 5

noetherian Jacobson ring. If dipn Ly 2 s

i)
3

o AR SR -
L O eveTry maximnsl

ideal m < T (X), ht m > 2.

We finish +his Section with the following example,

which gencrallzes Example 4,2,

Example 6. Every Jacobson noetherian 2 - dimensional

ring is universally 1 - equicodimensional, q

In fact, we may suppose that the ring is integral,
Then 1is Lntevral closure is noetherian Cohen w MaCaulay, hence
1t de universally catenarian and S0y universally 1 - equicodimenw

sional, by Corollary fo. Then the assersion {ollows g\fom .’Pro?' e
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