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This preprint is a revised version of our previous
preprint with the same title (INCREST Preprint no.5/1979).
The revision was necessary because of a wrong application in
the proof of Lemma 2, in the first version, of a Lemma oOf

Nagata. Because of this, the results we were able to

recuparate are weaker.

The author thanks professor D.Mumford for pointing

out this error.
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BnEroduetion

In §1 we discuss the following problem:

. ¥ . . . .
Let i:X ¢ X~ be an open immersion of the algebraic variety

X into an integral scheme and let x ¢ X* be an arbitrary point.

Under which local conditions on X at x, does the point x have

an open neighbourhood which is an algebraic variety over k ?

Theorem 1 provides the following answer to this problem: x has

an open algebraic neighbourhood iff the local ring QDX% s i d

iy

N

noetherian =~ - universally catenary and dim Q?xgx.+ dim.alﬂ&\%\ﬁﬁ)ﬁ
4 >
o #* : : . - ~ .
= ddan: X (where k(x) is the residue field of GJX% % ).

2

In Lemmas 1-3 and Remark 1, we prove that xe x* has an
open algebraic neighbourhood if one of the following conditions is
fulfilleds:

I 1) ij X")x = 'ﬂ and cium COX,%BX. ke Ai\n,ak%\%{(i) =

= dim X

2P driitm @ =52 @
e e
Sk x’::‘ 1 c\umal%‘%\(x\ = X*

is a Krull ring and

3) AU""‘- ©X*5x.> S )A©X&3:f- is a noetherian normal

ring and al\'.m ©xx e Jim,a\,{g\%k(xv -_;‘o‘\'\.m Xk

In §2 we give sufficient conditions under which a dominanﬁﬁ
morphism.f:X —» Y from an algebraic variety to an integral scheme,
has the property that the sugset of all points yeY, for which
Qj iis noetherian (resp. %rull, if dim ¥=2), d8 an openbsubsetJ

T |
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algebraic over k. The sufficient conditions we find are: £ is
surjective and Y is normal or Y is normal and has the ﬁroperty that
all maximal chains of closed integral subschemes have the same
length (cf. Theorems 2 and 3).

In §3, applications of the results obtained in §1 and § 2
are given.

Thus Proposition 1 and Corollaries 1-3 give necessary and
sufficient conditions for finité generatedness of k-subalgebras of
finite k-algebras. We prove the following regultalet. Pro@osition
1 andecenellaty ) e

Let A be an integral k-subalgebra of a finite tybe algebra.

The following assertions are equivalent:

i) A is finitely generated

ii) for every maximal ideal m< A the ring A is noetherian

universally cdtenary and dim Ay = din A

L e A e vhiey integral clogure. of A Al its field of

uotients, every maximal ideal me A’ is such that A’ is noetherian
o Y pits m

and dim A$=dim A

Also in § 3 conditions are given for the finite generatedness
of the ring of global functions of a normal algebraic variety
(Corollary 4 and Proposition 2). We recover the known affirmative

cases of Zariski’s form of Hilbert’s 14th Problem (Proposition 3)

and we give a new proof for a Theorem of Goodman-Landman (Propo-

sition 4).
In § 4 a connection between finite generatedness of sub-
algebras and a class of rings, we did .consider in [4], is éxhibited.
The author thanks professor D.Mumford for pointing out an

important error in the first version of this paper.



Conventions. Throughout we shall use the definitions and

notations of: EGA, except the term of "preschémes" which is replaced

by>"scheme"

Therefore for a scheme X and a point xeX we denote by QDX <
3

and by k(x) the local ring, resp. the residue field of X at x.
If X is an integral scheme, then K(X) denotes the field of

rational functions on X.



e e

§1. Open embeddings of algebraic varieties in schemes

We shall give some properties of the open immersions

of algebraic schemes into arbitrary schemes.

Temma 1. Fet 1 » X &osX" be an open 1mmersion of 1n-

tegral k-schemes over a field k, where X is an algebraic k -scheme,

Then:
a) dim Y=dim X¥:dimaal,k K(X%)

b) for QXEEX‘XZGX%, diH}«)yﬁ , +* dim.al. k(x)4dim 5%
& ’A

¥ X : . :
c} If xeX and@?xﬁ 2 LB noetherian such that dlmﬁjxﬁ g
s ? )

+ dim.aly k(x)=dim XE, then k(x) is a finitely generated extension
N\ e e T

of k.

Proof. o sl f Xfc;xfcz.,.czxi is & saturated chain of

integral closed subschemes of Xﬁ, it 1s easy to see that

° /«§f e 36 ] v 3 s o 1 u. e
dlm,al.kK\Xi)<dlm.al.kK(Xi+1) for every i, 04i¢n 1. Hence

ngdim.al., X (x*) and then dim X% dim.al. K(X*)=dim.al. K(X)=
= dim X<dim X7

B 25 3 s W 3 o
D) IL X, 18 the topological elosure of X 1n Xy, then for

: 2 % 3 3 : '
every saturated chain Xfc:X1<$ a..C:Xi = X* of integral closed sub-
% ' 3 e
schemes of X°, by the same argument a&s in a), it follows that

‘dimaalgkk(x) + n:dimeal.kK(Xf)+nsdimg319kK(X§)=dim X*. From here,

b) follows.

e) . If meX, all is clear. Let xeX" - ¥ and ZeX -X the

topological closure of x in X" . We. shall proceed by induction over

e - ‘
dlm<)xx’x. :

. . ; /
If'dlméb ¥ _=1, then the integral closureépvﬁ of
X Xe®



Lo

Q?X*, is its field'of quotients is noetherian, by Krull-Akizuki
Theorem. If @ is the localisation of the ring G);ﬁ’x with res-
pect to some maximal ideal, then @ is a discrete valuation ring.
" Because its field cof quotients K(XY) is a finitely generated ex-

tension of k and the residue field k' of © is an algebraic ex-

tension of the residue field k(x) of@?xx < 1.4 Pollows that
: 9.

dim.alekk' = dimoal.kk(x)zdinLaLhK(X“~i and it results that k' is

a finitely generated extension of k, by [21}, Chovn, Theorem 31 .

Since‘k(x)c.k', we have that k(x) is a finitely generated exten-

sion of k.
Suppose that dim@j %. . >l. Let acéb 3 be the ideal
X % = XX

corresponding to the closed subset X =X and {5,...,¥p the minimal

] - 'd' 1 e‘@ t i © = ® 6 ® .S i
prime 1deals of XK,X containg a. If %Q O<:%1C. C:%m 1s a satu
rated chain of prime ideals OfQjX¥ of length equal to m=dim QDXﬁﬂ

SX J
replacing %i by a prime ideal %i, Oc:%iczgg, we may
assume that %i#igi’ for every i, 14i4n. Then ht gizl and
X ,

me of X passing through x and corresponding to %l' Then

dim@)-f ;/ = dim<9¥ﬁ x"l“ Let Xﬁ/ be the integral closed subsche-
» ¥ . '
sl xll‘. , . 2 B ; . : .
Xt=x Xhﬁﬁ; otherwise, X 18 contained in some irreducible com-
% o : ; .
ponent of X"-X passing through x and this fact implies that %1 is
equal to some of the prime ideals_gl,eu.,¥n, which is a contradic-
; e ; . : 3
tion. X© being l-codimensional in XK, we have that ¥X¢ is 1l-codi-
: 5 s ! 5 .
mensional in X. Therefore dim X° =dim ¥ ‘=dim Xﬁwl, by a). Since
@ i f ::@ / v 1 i ¢) =di =
V)XX,X X%,X'%l we haye that dlm(a%ﬁﬂx + dlmnal.kk(x)mdlm b G
Applying the induction hypothesis to the open immersion i:X'chﬁ’

d v' »
and to the point XeEX%, 1t follows: that k(x) is a finitely generated

extension of k.

: b L GE 2 y
Lemma 2. Let 1:X <X be an open immersion of normal




schemes over a field k, where X is an algebraic k-scheme and Z an

. x 4 2 o al
integral component of X" -X. Suppose that the local ring @&x Z_pf Z
9

" is noetherian and dimfbxﬁ o+ ﬁimwal.kK(Z)rdim Xﬁ. Then there
9.J

. . : o » o .
exists an open subset X*¢ X” with the following properties:

a) X' is ean algebraic scheme over %k

b) X*D X
) X*NZ + ¢

5 ¥ s .
Proof. Replacing X by an open meighbourhood of the
generic point of Z, it is obwvious that we may suppose that

®x . It
1) X" is an affine scheme

By Lemma 1 c¢), the field K(Z) of the rational functijons
' : * i . 5 ~s R R4
of Z is.a finitely generat@d‘exten81on of k. Lettﬁl,,ﬁo,@mgbe-a
finite set of generators of the field K(Z) over k. By restricting
X* to an affine open Subset which meets Z, we may assume that there
- X 2 “ e
are (7’1,....,(53[6\ (X ,@Xﬁ) such. that for every Jj, 1$Jém,(3jkzr Fija
Let{di,.,.§i£}be a set of generators of the maximal
ideal Of@)xi 7 By restricting X* to an affine open subset meeting
’ .
Z, we may assume that for every i, 1sisﬂ,d\ie TYXK,ijﬁ). Let
a C‘G(Xﬁ,(@xx) be the nilideal of the closed subset X -X and
p=2a the prime ideal of Y_(Xﬁ,QDXﬁ) cbrresponding to the irreducible
component 7 of X*-X. The ideal P beinghminimal among those contai-
ning a, it is clear that there exists s«irkXK,ijﬁ)mE such that
for. every a. 1sis£, sdie ae Replacing<*1,..e;*n by sdj,se.,sdny we
may assume that(iie.g fiof gvery iy 1sis€, and<il,e..}iﬁ)is a set

of generators for the maximal ideal of(DX¥ g Then
: ;

* % - . :
X‘*i:§X‘¥€X<*i§*i(XE¢ O% 1s an open subset of ¥ for every i. X being

a quasicompact scheme, we may find a finite Set‘%£+1we~»,d31€ a such

' 5y ng x }? ;
that X = i&T?IJh<ii“ Then dl’”’f’dn also generate the maximal idesal

of © s f L e e Dy ox
e e LR e i.ehel(x ,g%?) and X zg:i'xc*;.
- SR, U



2 A

For evéry i, 14i¢n, the ring of quotients VKXXKDX£)4.~
rky ,G)y) is a finite type k-algebra. Let{xi .[i,qi< be a
flnlte system of generators of T® G)xxx- over k, sugﬁ<?nat
‘V C.rfxx @’z), and let Amk[ ek ""”Fﬁ""’{;s""] be the
- subalgebra of FYX €7x) generated over k by all the elements

{&dﬁ“”dn?%l""’Fm’§ ij§ i,j% . For every L , 1l¢tgn, we have;

A&t:k[.,..,oki,...,,(bj,,.,.,T“FS,W, 1@2}‘1[-“’1}5&25 ""]1<s<mt
i -‘-—(X’E,@Xﬁ)d

Therefore A&t’: kaﬁ,ﬁkﬁkkt .

If A' is the integral closure of A in its field of quo-
tients, A' is also a finite type . k-algebra. Since X* is a normal
scheme , At Qf?xx,@%ﬁ) and for every i, 1l&i<n, A;< -YYX e

Let £ : XK-—e>Y£ be the morphism of afflne knuchem;s
correspdnding to the inclusion of k- algebras A'c:r(X (D x)

Clearly ™ = = Spec A' is a normal algebraic x-schame. In 2)-4)
below, we shall point out certain properties of the morphism f:

e X

2) Y =f(X) is an open subset of G and f X'A'_%Y is

an isomorphism of k-schemes.

Indeed, from AG( = foﬁ @Lﬁ) . it follows that
f(YCK ) = Spec g . and f(XO< ) is an open subset of Y*. Hence

“f(Xl f((\EJ KcA ) LMJ f(K ) is ‘open and ' f X X~-=sY is sur-

i=1
jective. For any p01nts x,x € X* such that f(x)=f(x')=y, we hawe
that@ :OK “‘@ ,. Binge ‘T x%, ¢ XZ —> Spec A'& is an
e Y oo i i

1oomorpHLbn, for every i. The scheme ¥* being affine, it fOIWOWS

that x = x* and so §i : X—>Y is an isomorphilsm.

PUTIE WCYE 19 the elosure of "£1(27) 1n Y® with the redu-

5 i I et
ed closed subschene structure, then f\7 + Z—-W 1s a birstional




morphism of scheme.

In fact, let (f\z)ﬁ: K(W) — K(Z) be the canonical
homomorphism of the fields of rational functions. For every o ¥
léjém,©j€(~(Yﬁ,¢§ﬁ7 andlif @j\ W is the restriction of @j on the
closed subscheme wey® and%@{i...,ggﬁ is the set of generators of
the field K(Z) over k chosen above, we have @g;(f\z)%(@j\ W) for
every j. Therefore (f\z)ﬁ ig an isomorphism of fields.

Let Y€ V(Y&,@Qﬂ ) be such thaf?\w 4 0 and such that
for every irreducible component Yﬁ' of the closed subset y¥oy
‘not containing Wyfqyﬁ' = 0., Then Xﬁ,m%x\xé;xg; fﬁ(?)(x)$0% is an
éffine open subset of x* which meets Z and Yﬁ,m%y\ye;Yﬁgf(y)% 0%
is an affine open subset of v¥ guch that every irreducible compo-

N
nent of y’”}{, - (v N y) contains W e . h

Therefore, by restricting x* and g tb open affine sub-
sets neeting %, respectively W, we may assume that £: Xﬁ¥m>Yﬁ
has the following property:

4) every irreducible component of Y¥-y contains W.

G be
Let fx':QQx W—a%Z&x Y“The canonical homomorphism of
& 4

_ , A
local rings. We have dim@%ﬁ sabt dim = - dim.al.kK(Z) = dim y¥-
£
- dim.al. K(W). The last is equal to ain@x , since ¥* is an
. ;
algebraic k-schene. |
Therxefore dlm(Z&g'Z = dlm@?y*,W’

For every i, léiéﬁ,cﬂieif(YﬁaEQ%), Since
4
£ \Xﬁi ; X* > y¥ ig an isomorphism, it follows that
i

1 ol

i\Y*—Y = 0 for every i and socil,..,,$n are in the maximal ideal

m of the local ringQDYﬁ e IE follows that

m, = mV(D P This fact and 3) imply that the graduation homo=- -
. o 1|
X el
morphism gr £% gr@@ﬁ W — gr@&% 7 is surjective., Then it is
[ | I

- ! \ 23 (/'\
known (cf. [21 or IZG]) that the canonical homomprphism fﬁ;JQﬁpw-“%

|
|



S .
— Q?xﬂ 2 between the completions of (Qyﬁ and @@x
14 \

7 in the ra-
-

W
[4
dical topologies must be surjective.

Since(ch’w is a k-algebra essentially of finite type,
’
it is a normal excellent ring, Then, by EGA IV 7.8.,3 (vii), (or
N

by [10] , 2.10.1 and 2,10.5) O x . is an integral ring.

: 4

It follows that f*, being a surjective hemomorphism
from an integral ring onto a ring of the same dimension, is an iso-

i £ ) @ R o a

morphlfm. TE K= 0l %, 7)= QO ) and X = Q( Xﬁ,z)zo(CQﬁ’w) are
the fields of quotients of these integral rings, then, by {11(Ch.III,

% 3.5), we have the following equalities among subrings of ?:

AN /N
©x“", 7 @x*‘, z O K "‘Qi", K =@*,w

Il

Hence fﬁ:@&ﬁ W —+(bxx y 1s an isomorphism of local rings
4 14
[ 4

and so, via the morphism £, the integral closed subschemes X* of x*

containing Z are in one-to-one correspondence with the integral
closed subscheme Yx' of Y*® containing W,

Now ¥* - v = W. Indeed, via the morphism £, to a closed
integral subscheme Xﬁ' of x¥ meeting X there corresponds a closed
integral sukscheme Yk’ of Y meeting ¥ = £(X). Since there exists
a unique closed integral subscheme of G containing Z which does
not meet X (namely Z itself), it follows that there exists an unique
closed integral subscheme of Y* containing W and not meeting Y;:
this subscheme must be W,

Let £% : rXY&JDY«)—>YYX*.@&ﬂ) be the homomorphism
induced by f£. Then £¥ ig bijective. In fact, ifd«j?xﬁ,@&x) then
<i€.K(Yx):K(X§) is defined on Y &£ X, Since‘bgay“,W':@%ﬂ,z and
‘YK = YW, it follows thatddis defined on an open subset vVC Y%,

such that codim Yx(Y*—V)i}Z. But Y¥ is a normal k-~algebraic scheme;

hencecﬂ€f1Yﬁ¢¢§ﬁ) and so £¥ is bijective. The morphism £ being do-



minant, it follows that £* is bijective.
Then f : X —>¥* ig an iscmorphism of affine schemes

‘and SO x* is an algebraic k-scheme. This completes the proof.

Lemma 3, Let i X<;»Xﬁ be an open immersion of normal

schemes over a field k, where X is an algebraic k-scheme and let

xexﬂ

a) If dimébxx o= 1, then x has an open algebraic neigh-
CIUERED ﬂ

bourhood iff dim.al.pk(x)=dim X*~1

b). It diméjxﬁ o = 20 khen x has an open algebraic neigh-~
b A ¥

bourhood iff dim,al. k(x)= dim X' 32 and(a&ﬁ . Ls_a Krull ring,
",

Proof, If x has an open algebraic neighbourdhood, theh\,nA
s 5, : 3= o s ';{ u e
éjxﬁ,x is a Krull ring, and dzm,al.kk(x) = dim ¥ dim@&ﬁpx
Suppose that@?xﬂ , is either 1 - dimensional such that
4
dim.al.kk(x) = dim Xﬂ - 1, or 2 - dimensional Krull ring such that
dim.al. k(x)= dim X* - 2,
Clearly we may assume that xex® - ¥ and let 7% e

ke the closure of x in Xx. We may suppose that:

Ty is an affine scheme

i

In the case when dimajxﬁ l, then Z is an integral

&

component of $*i-"g,
\\
In the case when-dim©x-x x = 20 let a0 be the nilideal
[4

=

of the closed sukscheme X* - X inQQXk 5+ There exist finitely many
y

prime jideals pC@Xﬁ’{EZ such that p>a and ht p = l)s‘ince® s il

XKpd
Krull. For every such p, the quotient ring (Q&ﬂ Z)E is noetherian.
¥
: ¢ ¢ : '
Therefore the setgﬁﬁm«%xﬁ'éxﬁ:-x \Xﬁ integral closed subschene
2

2 AR
such that codim)@ ) Gl 1, andixx 2 Z% is finite and via lemma 2,

o,

£ ! 5 ‘3 . * :
or every X Eﬁjﬂb we can £find an open subset U gt & X which is
I X



“ AR -

s 4 ; 5
algelraic over k and U x,!\ X*:#«# . Then replacing X by the

algebraic k~scheme X{J ( ) we shall suppose that

I 14
o T

2) Z is an integral component of ek o

. ~J ~
Let%ﬁl,..a,ﬁm%be an algebraic basis of the field K(Z)
over k. By restricting X* to an open affine subset meeting Z, we
shall assume that there exist @l,...,§me.ka*}DX%) such that
for every i, 1<¢i¢m, Pi =€: ;
j 74 = 5
/ Lettil,...,dn be elements of Yﬂ(X ,Gﬁxﬁ) such that the
3 b, I * i 9
open subset Xdi_{x €X \oki (x).?o% cover X.
"As in the proof of Lemma 2, using the elements
%digléiém and%Pj% 14 <m’ we can construct 1n the same way an affine
normal algebraic scheme Y* over k and a dominant morphism

x

x *
f7 ¢« X¥—=Y" of k-schemes such that:

3) Y = £(X) is an open subset of Y* and f\x: X —Y

is an isomorphism of schemes.

4) if W<Y® is the closure of (Z) 1in Y* with reduced

closed subscheme structure, then dim.alekK(Z):dim.aI.kK(w).

5) every irreducible component of Y -Y contains W.

Betx£*: 0.5~ O = be the canonical homomorphism
YO, w il

of local rings. By %) and 4), we have:

. g i it R Y * : i : 39
dlm,al.kk(W)*dlm.al.kK(é)ndLm.al.kK(X )wdlm(oxx’zudlm.al.kK(Y‘)-
- dimQﬁxﬁ Zm‘dim Y - dimQDX§ g ™ being an algebraic k-scheme,

i H b

1t fbllows that dim(ZQﬁ = dim@9xx =24
b

s W A



S U I

S AR o © 5
1f dlm@xx’z =1, theﬂ@xﬁ,z@@ﬁ,w By & TG

noetherian l-dimensional ring. By the‘KrulluAkizwki Theorem,

© % 7 is noetherian and a) of Lemma % is proved, by Lemma 2.
T# dimqjxﬁ,z = é, let us denote 2 Spee(b % 7
08-“ Spec@? ¥ W o, and Iy the closed points of % and GH and
f’:@{.~»05 the morpﬁism Qf‘affine schemes corresponding to £*,
The restriction homomerphism ‘—(Q% QD Bl g
——p F’(@au. Qj ) is an 1bom@rpllum, since Q)k 7 s la-Krullsping.

We shall prove that there is no l-codimensional closed
irreducible subset ‘BE":""{J.C_,32”:x -~ Y. Indeed, otherwise we have, by 5),
that Y%§>W and so f”l(Yﬁq)rzg by virtue of 3). If E§Z§§,W is the
prime ideal corresponding to Yﬁe, then hitp = 1 and¥ﬂ9§§ is ﬁ“ﬁ?i?r
mary. Then it is known (cf. SGA II, Example III.a) that '

Gg~§m ,E% is affine,lsince dim(%jz 2 and GH is normal. Bu@‘f being
an affine morphism of scheme and ¥~ 5% v B% j =B L
follows that(gz~ Jul is an affine scheme. Since (_ @X;Q%%? g
-%YEQE— EK,GQ@g is an isomorphism, the open immersion of affine
scheme Q{f gf<—>q% is an isomorphism, which is not possible.
Therefore, YﬁuYzW, since codimYﬁw =2 and by virtue
o e ) PN
Then %, X”(YX,@QK)-%'VTk%,QQX%) is an isomorphism.
Inkfact,'everycié-rkxﬁ,@§¥)c;K(X§)rK(Y¥) is defined on every l-co-
dimensional closed integral subscheme ' e Yﬁ, since every such
YE' meets Y'Y, Hence‘xérkyﬁ,ﬁjyﬁ), since Y* is an algebraic normal
scheme.
It follows that f Xx-;% ¥ is an isomorphism and this

P

ccmpletgs the proof of Lemma 3 b),

Remark 1. In Lemna 3 a) is not necessary to assume that

|
|
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X* is normal. More precisely:

1

Iet i:X<X" be an open immersion of an algebraic sche-

me in an integral scheme over a field X and let xeX® such that

dinﬂZ&ﬁ,x = 1. Then x has an open algebraic neighbourhcod iff
dim.al. k(x}=dim ¥*-1.

’ fn fact, if p . XKL—%XE‘E is the mormalization morphism
of Xﬁ, then for every point x'e XX' being over x We have dim
@?Xf"x, 3 1 and dim,al.kk(x'):dim X§'~1, Then every such point
x'é,XXG has an open algebrsic neighbourhood. If U is the union of
all these neighbourhoods, then szﬁ—b(xx-U) is an open neighbour-
hood of x and p"l(v)c.U. Since p is integral, it follows that V

is locally algebraic over k.

. ¥ . ;
Lemma 4. Let 1:X¥<X™ be an onen immersion of normal

schemes over a field k, where X is an algebraic k-scheme and let

X € X*, Then x has an open slgebraic neighbourhood iff the following

conditions are satisfied:

i)Q?,ﬁ is noetherian
jFIEy

- s . . o g et ®
11) dlm(bxx’x + dlm.a¢.kh(x) =dame X,

Proof. First we shall prove that for every point ye =
satisfying the conditions i) ang ii) of Lemma 4,@7X§ o 18 essential-
N P
ly of finite type over k.
Let%d\l,o--’&n, (Sl,oee,Pm, ’B.Vlyuoo,rngbe 8 Set Of gene—
rators of the function field K(XK) over k such that:
a) oy, B, Vté\@}:%,
b) the k-algebra A=k {..,,dr,..a,ﬁsg...,fk,..ix is normal

v for'every ris. it

i3

c)§dl,«aa,&nﬁ is a basis for the maximal idesl m of



= g

d)§%1”"’ R gives a set of generators for the vesidue

field k(y) of ijﬁ i which is finitely generated by virtue of

p X
Lemma 1 c)e.
Let n = m{lA sand fngLaGQ% ., be the canonical inclu-
i ot ! o EE 1 4

sion of locel rings. Erom .a), c), d), it follows that

gef, « ereh “a)gﬁb is surjective and go the canonical homomor-

. ’V ; 23 s . . »
phism between the completlons: 2 Aquay% y 1s surjective. But An
- ¥ st

is integral, since e is essentially of finite type over k and

m v s . x
normal. Since dim Ao * dim. alg [&A = dim A = dlmbalakK(X‘ﬁﬁ
= aim@wﬁ + dim.al. k(y), it Tollows that dim A_=aim Oz _ be-
1Y n X,y

: : . N~ . )
cause k(y) is isomorphic with A /nA_. Hence f is an isomorphism
e k

and then it results that f is an isomprhism, as in the proof of
Lemma 2. Hence<3&ﬁ % is essentially of finite type over k.
3
Therefore for every prime ideal_@c<@xﬁ , we have that
9%

dim «@.ﬁ )+ éim,alekk($) =. dim Xﬁ, if ye‘:XﬁE verifies the con-
ditions i) and ii) of Lemma 4.

By induction over n, we shall prove that we may fingd

a chain of open subsets of Xﬁ: Vq;V%;..o€;Vm'such that for every

. . i . A ;
1, 0¢l¢n, V" is locally an algebraic k-scheme containing 211 the
points VwEX such that© * ¥ is a noetherian i-dimensional ring and

such that dlmQ7 * y+ dlm,al,kk(y):dim-Xﬁ
If i=0,we nmay take vOsx. Suppose that we have found

a chain V%;V%;ea.g;vn with the above properties. We shall define
- .

Vm—l~

X . 3 n L ;
there exists no point yeaXi - V' such tnatg9xﬁ y i8
X

I

=

noetherian (n+l) - dimensional ring and dim<b ¥ = + dim al.kk(y)~
b

e x
=dim X~, then we put vn+1 -y}, If there exists such a point y, then

it is easy to see thqt the closure Zy ofuy-dn x* JS an 1rredu01b1e

&

" component of x Vn Let ly Specé?xy y*‘>X be the canonical morphlsm

y
corresponding to the 1ocallsaflqn ol B in v. Becsihes i;lgvn) 5

11 i

i



e e

= ©_« = is a noetherian scheme, (m being the maximal
Spec X#,y o, 1 ey

ideal onj x ), it follows that we can find finitely many open

affine subsets Ul""’Jﬁ of V' such that Spec69 * vy T gy

= ;l( L_~,) U i v clear that ZY is an irreducible component
J=1
of x* ek 27) Uj and applying Lemma 2 to the open immersion
2

J= - : s :
i:_L yJ C»X and to Zy’ we find an .open affine neighbourhood
J=1
Vy of y whlch is an algebraic k-scheme. If}M§4J_ {y'eX - VXVZ&ﬂ’y

is a noetherian (n+l) - dimensional ring and dlm(c&ﬁ y+d1m.al.kk(y)
?

= dim Xﬁi , then we take Vmb1 A ; Yy).
| yeNo, :
| The open set V=(J V" is locally t&an algebraic
/ n
k-scheme and it is the subset of all points y<5X* such that

6&*,y is noetherian and dlm(bxk,y + dim.ai.kk(y)zdim X*.

Recall the following
Marot Lemma ( [111 ; Lemma 2)., If A is a noetherian

integral ring and for every prime ideal_?CA, ¥p#0” the ring

A{?

extension of its field of quotients is noetherisn.

‘is jeponese, then the integral closure of A in every finite

In the case of the open immersionsinto arbitrary

schemes we can prove:

Theorem4. et i - X <5X%X* be an open immersion of inte-

gral k-schemes over a field k, where X is algebraic over k and

let xe X*. Then x has an open algebraic neighbourhood iff the fol-

lowing conditions are satisfied:

i) Q)XK - is a noetherian universally catenary . ring

$ $¥ i @Xx’x + dim.al. k(x) = din X%,

Proof, Suppose that i) and ii) are satisfied. We shall
prove that x has an open algebraic neighbourhood by induction over

dim x%.



g

i : < X
T diim XﬁzO, the assertion is trivial, since X=X .

Suppose that dim > 0.

4

We claim that every integral closed subscheme X0 of

x* passing through x is generically algebraic over k. In facti,

B fo X e SE' c * wE o
let X =X_DX7D ... 2%, = X" = Xrl_{,ylb‘“oD,{m*——.SX?S be a saturated

n
% - .
subschemes of X*, which contalns X° .

-

chain of integral closed
since O x _ is catenary -, we have m = dim(bvﬁ gl nde by
X ,X L ’X
condition 117,
m + dim.al.k}_{(}{ii)zdim.alakK(X%‘) and for every oguv¢m-i
B X . oE ,
d}m@alakK(Xi)> dlm.alakKCAi 5 l), we have
. Y e 3 oo s e el
dlm,al.kK(Xi)»01m.alng{Xi+l) + 1 for every 1? 0<i¢n-1.
We shall prove by induction over i that for every i, 04i¢n, X? is
generically algebraic over k. If i=0, the assertion is clear. Sup-
3 . . e '
pose that Xf is generically algebraic over k, and let Xi+if%he

. . x
generic point of X, .. Then QD % - N Az . =
i+l Xi’xi+1 = 1 ago dlm.al@kk(ki+1)~

=dim.al. K (K], )=dim. a1l K (X])-1.
By Remark 1, it follows that X541 has an open algebraic
neighbourhood in X?. Hence Xf+1 is generically algebraic over k.
For every integral closed subscheme Xﬁr of X+ passing
through x, we have dim(bxx9’x + dimsalekk(x):dim x*'. Indeed if
) Gl T :JXTTDG.,TDXﬁ =¥ 5 X§+1 wwa Dxiz igi is a saturated

C
: ’ ¥* . a xS
chain of integral closed subschemes of X, which contalns x* y we

can prove, by induction over i, that dimQQX% e dimsalekk(x) =
i?
3 'K ° 3 I3 e © ° ® Y . i
= dim X, ¢ for 1 = 0, 1t 1s the condition ii); we have dim

e

QD : e ~ ) LU

Xf+1’x % dlm@?X?,X_l’ 81nce(z&ﬁ,x is catenary ., and dim X\L*&:
3 _*@ﬁ 3 3 * WAL P -3

dim. -X;-1 since dlmealﬁkK(Xi+1)mdlm.al.kkaxi)~l,

*

Therefore we may apply the induction hypothesis to every

: ; U ¥ :
closed integral subscheme Xi’f + X* passing through x, and to the

i ﬁ' . * 3
point x€ X® . Then for every prime 1deal¥c @Xx < ‘\i* 0, théiring
b4



e

,ijx X/R is essentially of finite type over k. By Marot Lemma,
! /
it follows that the integral closure‘bxx siof Q?Xx $ in its field
g 9 )
of quotients is noetherian.

Every maximal chain of prime ideals O;pé:pi:...<:ph
{ )
e i) _ el ; ; o
in X%,x has the length n dlnﬂt&ﬁ’x. Indeed, 81n7e(5&x’x 1s noethe
rian there exist finitely many prime ideals ofG?Xx S lying over
b
/
.« Hence we can find a finite © 3 - subalgebra A or O, % such
?1 Kty X X ;x
that for every i, O¢itn, P 1s the unique prime ideal of65xﬁ A
9
lying over piﬂA. It 1s clear thsat O;pé\AcPlnAC...c?AWA 18 a maximal
chain of prime idesls in A. By EGA:IV," Propesitioni5.6.10; dimlAﬁnni
= dinO_x _. since A . 1s catenary ., it follows that n=
Hlo nOA
= dlm@xﬁ’x.
x4 ¥ . 4 . *
Let p : X~ — X" be the normalisation moerphism:of X"
, ;
By the above, for every point x'e X* lying over x, we have that
ijx' 4+ 18 a noetherian ring of dimension equal to dim(axx x* Thus
3 - - ’
dimexﬁf X,+dim.al.kk(x°):dim XX’o Via Lemma 4, it follows that
y
! .
every point of x* lying over x has an open algebraic neighbourhood.
Let U be the union of these neighbourhoods; then V=X%P(Xf~U) is open
18] X%, pml(V)cU and xeV. Since p is integral, it fellows that 'V is
an open algebraic neighbourhood of X, which ends the proof of

Theorem 4.

Remark 2 a). The condition of universally catenarity for

ijﬁ X-irfrheoreWI&is not a consequence of the other conditions. The
b
following Example, which draws upon Example 2 of Appendix to [13],

shows this fact-

Exemple - An open embedding i:X<sX* of an algebraic k-sche

me into an integrsl k-scheme such that:




nﬁ(bﬁr S is & noetherian
205

not uriverssally catenary.

isucatenary,

Z ol 4 : ; ;
a.x Tormal power series which is transcendental over the

= 1 a i 8
t=1 =
e g n
Pleld kg 1et Aéxk{xs B, f(x)wa]x % fx)-ayx-.. anv/{n l
A o U 4ng € ¢ o0y -~ ’.o'e.
¢ i Palaites *1/ Pl e e ] Be
and A LX Sosgnd o3 J3’/x‘cue? () ay sel Xn,,., be: the

.
Ny ™

/ Ity siorehe ldeal of" A" generetied by .5 and ms th

D

[L/x] = kr[x,y, 1/X1 y

Sl aedIn At 2 and AT is a discrete valuaticn ring.
i z m X
o 22, ] -
If m =(x -x,y)cA is the maximal ideal of A generated

n
D
®
@
>
k/]
i)
@
(@
D‘:—
—
fy
ey
e
LEREY
(&
—-
[

s :

by x“~x and y, we have m](\AzmoﬂAﬁmﬁ The ring AL'~Fs- e intecra
my myNA=m 2

clesare oft A In lesifield of quotients and 4% 16 Tinite over M.

Since A' is noetherian, it follows, by Eakin-Nagata Theorem ({6]

10!

P[l6l ), thet A is noetherian.Therefore o is a noetherian 2-dimen-
I8

sional ring which is not universally catenary since dim Aﬁ =0

feraBla. IV, PPOnosition e 10 .

since Spee K* e Feneri a]ly algebraic over k, it fol-

lows that Spec 4 1s so. If X =Spec A, we have an open immérsion

~ . R
1

k-scheme X in X . 1et %X €7 "be the cloted

Lpe X ol am: alise
point corresponding to me A. For

x o B ; ; .
subscheme X* of X passing through x, we have that dunayxx )

D

and dim.al., K(X*'y=1.'By Remark 1, it results that the generic po
*

e . . ey : ; :
cof X has an open algebraic neighbourhood. Iteplacing X by the union

of X with all these algebraic neighbourhoods, it follows th %‘S

v ¢ 3 3 v east ) 3 “
& component of ¥ -¥X. By pestrietihg X~ to an open nexphbourloecd of

AN

Ml 10196
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we obtain the desired Example.

Remark 2 b) - In Lemma 4, the condition of universally

catenarity fch)Xx 4» follows from the fact that(bxx = is a normal
. 3 . b

noetheriean ring and ‘im(@xx a2 dim.al.kk(x)zdim X* ( in the
b)

proof, we have shown that@bxf . follows essentially of finite

,l\.
type over k).

From a more general point of view, there 1is , an

open problem, called the Chain Conjecture, (cf. {26}, p.1071)

which comes from Nagata ([231 ,{241) and Grothendieck (EGA IV, 5.6)

end whose affirmative answer implies that every normal local

noetherian ring is universally catenary.

§2. Two Theorems about the schemes dominated by alge-

braic varieties.

The next Lemma, gives the possibility to deduce some
properties of the schemes dominated by algebraic varieties, using
the previously established properties of the open immersions of

algebraic varieties in schemes.

Lemma 5 . Let f:X—>Y be a dominant morphism of integral

schemes over a field k. Suppose that X is an algebraic k-scheme.

Then Y is generically an algebraic k-scheme.

Proof. It is sufficient to prove that if A is a
k-subalgebra of an integral k-algebra of finite type B, then there
exists a non-zero element A e A, such that the ring of quotients

A is -still of finite type.

oA :
Let-%xl,...,xﬁi be an algebraic basis of the field of

quotients Q(B)} of B over the field of quotients Q(A) of A, so that
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x;€B. Then B is algebraic and of finite type over the subring

tq [Xl’°9"Xn-10
Let{yl,aec,yﬁﬁbe a finite set of generators of B over

A[xl,...,xgland for every Jj, 14€j¢m, an algebraic equation of Y3

over A[xl,aee,xn]:

e By () s olF)
e ¥t el R 4 4‘?0 =40

J

. where “féj)% G« If we denote ‘Pf‘P(l) ,‘f£2X,,eo=\€£m) y then

nq 7 m

-y

‘F# O and B, is finite over A{XI,.;a,Xn&% .
Hence A [Xl,ege,qu is an algebra of finite type over k.
¢t
\P

o

sSe

6]

(@]
ey

We shall consider two

a) A is a.finite ring. Then A is a finite type k-algebra

and this completes the proof.

b) A is an infinite ring. We may assume that

X e {Xl,..,,xn] is a polynomial in the indeterminates Xj,...,X,;

-then there exists (dy,...,4 ) such thatkf(dl,...fﬁn)'# O« EF

§<:A[Xl’°"’xnl is the ideal generated by the set §X1~dl,s.«gxn~dn§9

we have the isomorphisms:

A[Xl, 0o e ,Xm]\{E\eQ(A[le e e e ,an /E)fﬁ A k{)(ﬁtg,—--,d‘h)

Therefore A‘f0kh-n,dwq is a k-algebra of finite type
and Lemma 5 is proved.
Let us recall in a particular case the following

Nagata-Otsuka Theorem (cf.[lS} , Theorem 3) - let A

be a k-subalgebra of an integral algebra B of finite type over a fieX

k and pc A a prime ideal such that there exists a prime ideal of B

L SR S, e S

lying over P Then dim AP + dim.al.kk($) = dim A

\ . [ \
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Recall that a scheme X (resp.a ring A) is called cate-

nary . and equicodimensional if the following condition holds:

(€1).+a11 the maximal chains of closed integral subsche-

mes of X (resp.allthe maximal chainsof prime ideals of A) have the

same length.

It is obvious that a ring A has the property (Cl) iff
the affine scheme Spec A has the property (C1).

Now we shall give the two Theorems:

Theorem 2. let f:X—»Y be a morphism of integral

k-schemes over a field k, where ¥ is an algebraic k-scheme and Y

is normal. Suppose that one of the following conditions is satis-

fied:

a) £ is dominant and Y has the property (Cl).

b) f£-is surjective.

Then the subset of all points ye Y such that@DY is

5 o sk

noetherian is open and locally an algebraic k-scheme.

Proof. By Lemma 5, Y is generically an algebraic k-sche-
me. If the condition a) is satisfied then it is easy tc see that

for every point zeY we have dim@j +dim.al,kk(z)=dim Y. If the

¥,2
condition b) is satisfied, then the above equality holds for every

point zeY, by Nagata-QOtsuka Theorem. Theréfore for every point yeY

such ihat@jy v is noetherian, the conditions of Lemma 4 are veri-
?

fied and y has an open neighbourhood which is algebraic over k.Hence
the subset of all points yeY such thatQQY o is noetherian is an

~ 9.
open locally algebraic subset of Y.

Theorem 3. Let f:X — Y be a morphism of integral k-sche

mes over a field k:such that X is an algebraic k-scheme

S R




Dl e

1) If dim Y41, then ¥ is locally an algebraic k-scheme

oY 1f dim-Ye? and if one of the following conditions is

satisfied:

a) f is dominant and Y is normal with property (C1)

b) £ is surjective and Y is normal

4
then the subset of all points yeY such thatQﬁY v 18 '8 KErull rang
L Y

is open and is locally an algebraic k-scheme.

©

Procf. 1) If dim Y=0, the assertion is obwious.
If dim ¥=1, by Lemmab , it follows that Y is generical-

h

focd

t

8]

ly algebraic over k. For every closed point yeY, we have

C

dimQjY y= and then dimtalakk(y):o, by Lemma 1 b). Via Remark 1, it
¥
follows that every closed point of Y has an onen algebraic neighbour

hood.

'2) From a) or b) it follows that dim® +-dim,al.kk(y}

Y, ¥
= dim Y for every point yeY. Via Lemma %, every l-codimensional

point of Y and every 2-codimensional point yeY, such that(bv.v 18 a
- Sl 7

Krull ring, haw an open algebraic neighbourhoed. The union of these

neighbourhoods is the set of all "Krull points" of Y, which ends the

proof.
§3, Some consequences and applications
In the following Proposition is given a characteriza-
tion of the finite generatedness of a k-subalgebra of a finite type
algebra:

Proposition 1. Let A be a k-subalgebra of an integral

algebra of finite type over a field k. Then the following asser-

tions are equivalent:
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i) A is a finite type k-algebra

ii) for every maximal ideal mcA, A is an universally

catenary noetherian ring and dim A_ = dim A.

pesod

1ii) for every maximal idesl mea, oA is noetherian and eve-

ry_integral A-algebra B, which is finite over A and has a maximal

ideal of height l, is l-dimensional.

Proof. (i)<»(ii) follows from Lemm85<uurThi: Spec A
is generiéally an algebraic scheme over k and if (ii) is satisfied
then every closed point of Spec A has an open algebraic neighbour-
hood; then A is of finite type, since Spec A is quasicompact.

iii) = 1) Let ¥X* = Spec A be the affine scheme corres-
ponding to A and X< X an open non-empty subset, which is algebraic
over k- (cf.Lemma 5),. ‘

From (iii) every integral scheme; which is finite over
X* and has a closed l-codimensional point. is l-dimensional. It is
obvious that for every xeXK,QDX%,X is a noetherian ring.

We shall prove that X* is algebraic over k by induction
over dim X .

IT dim X"41, then X% is algebraic over k, by Theorem 3,
because ™ is quasicompact.

Suppese that dim X§>»I.

We claim that X* satisfies the condition «(Cl). In Tact
len XS:XI:°”“CXn—f:Xn = X" be a maximal chain of closed integral
subschemes of X*. If n=1, then by (iii) it follows that dim szl,

: - C ) : :
since X™ has a closed l-codimensional point; this fact contradicts

. . ¥ ; :
the assumption that dim X°>I. Therefore n3»2, SlnceQQXK v 18
: a . : ' n-2
noetherian and ¥ 5 has a maximal chain of prime ideals of
L’\
n-2

length 2, by a Theorem of McAdam (cf,[ll), theretexist dnfinjitely



many maximal chains of prime ideals

oy

@; ,...,?m, are the prime ideals of X*, X

irreducible components of X~ X con

maximal chai epcm j,n:@ e
ety T O-? XX of length

n-2

every i, l4idn, If b o is the closed

-1
corresponding to_$,
maximal chain and X! ,0X f}ﬁa > )

<di by induction

~1

gebraic over

over k and dim Y' m X

X;l 1 18 &l k. Hence n-l=di

codimension 1 im X, we have dim X £qF

= satisfies the condition

. ¥ V¥
n dimel” and X

scl

Every integral closed sub
over h |
algebraic suoh that codim Xr=T, O

such a subscheme X°*, then@)xx

dim @Xxf

has the property (Cl). By Remark 1,

]

+ a3 - R R
oF le.al¢kk(X)md1m(bX

5 g3

¥ has

bourheod and then X*

< dim X, by induction hypothesis X'

Then for every point xeX™

ideal%c@&x)x,tfe rnng@?** is es

’X/,X_

By Marot Lemma, the integral closure

G &
gt

of quotients is noetherian. Therefore if Y= 0

of length 2 in@bxﬁ .

integral subscheme

we have that XéZXf:a,.C
hypothesis
T3 7 ¢

il Xn

e

rg * ré, e 3
me X' of X7, X'gX",
‘nc&eec& Ct W% zwgﬁcmni ter prove ‘Um,b for X c.)(*
¥ is

+dim.al., K(X*')=dim ™
X ‘k
is generically algebrsic over k. Bec

and for

sentia

T
"n«2
y corres mandln% to the

-2
taining Xn

[ala )

w2 2\

3

o

_p 1 We may

2 such that %{+
of

e

&t
2

we have that

o

8 Since Xl -,ﬂX is of

- 3 :}: 'l
L=81im ¥s =1 JTherefone

(€LY,
is
point of

the generic

is an l-dimensional ring and

X’;}E

S

y because

an open algebraic neighk.

ause dim X°¢

is an algebraic k-scheme,

every non-zero prime

1ly of finite type over

el
A

¥ in its field

o
is the normalization

0O

¥ : ¢ . . 5 .
of X for every point xeX%“, the local rlng(ihﬁﬁ 1s noetherian.
For every closed integral ‘subsche eme 7<:X Z:#X:}m oy
¥ s gl e : 39 2 SRR
YeX©, Y#X7, is its image in X, we have that XK(Z) is a finite exten-

sion-ef K(¥), by Mori-Nagata Theorem (cf[l

G

noetherian ring a Simce ¥ s

e

see that Z is algebraic over k.

31,

algebraic over

5%3:10)sepplied. to.the

k; it is easy to

® N : o : v 3
X has mot closed l-codimensional polnts. Indeed,
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TKXX“,Q7X%ﬂ)=A' is integral over A an%}if m,cA’ is a maximal ideal
<

u o .
of height 1, let n =minA and'm,,...,mthe other prime ideals of

A' lying over n. If ff:gi—lj_i ms and B=A [fl,...,f£1cA' is the
A—algebra generated by fl""’fr we have that for every 1i,j

it3, m.NB #_gjnB. Then mq is the unique prime ideal of A' lying

over mqNB. By Cohen-Seidenberg Theorem, it follows that ht(glﬂB)=I

since ht my=1. By (iii) we have dim B=I and then dim A=1, which

contradicte the faet that dim Xﬁ -2l

Hence every maximal chain of closed integral subschemes

0

of X*" /has the length>2. Let ZcZ:¢...cZ _<Z =X"" be a maximal

chain of integral closed subschemes. Then as above for XX, we may
replace g by Zn.q such that AL %\XNF#<#, where X'ex¥' is the
normalization of X< Xf and 2, o< Zéml C-Zm:X¥ﬁ is a saturated chain
Since Zé_l is algebraic over k, it follows that m=dim X*H, in the
same way$%or Xx.

Therefore x*" is a normal scheme which is generically
algebraic over k. and satisfies the condition 0:1). By Theorem 2,
it follows that X" is algebraic over .k, since for every point xeX*H
the ring(pxﬁn’ o 'Cis noetherian. Then X* is algebraic over k.

Proposition 1 is proved.

For normal subalgebras we have the following characte-
rization of the finite generatedness in terms of chains of ideals:

~

Corollary 1. Let A be a normal k-subalgebra of asn inte-

gral algebra of finite type over a field k. The following assertions

are eqguivalent:

i) A is of finite type over k.

i1) A is moetherian and for every meximal ideal mch,

ht m = dim A.



i

X

i1i) for every mavimal ideal mcA, A is

ring end dim A =-dim & .

(@)

= (11) are:obvious.(iii) ==r (i) it foll

~~ i =]

Tndeed, (i

ﬂ : . v % . - g ST
irom Lemma 3, applied tc X~ = Spec A and to everpyvclosed point of

~ tA 18 generically algebraic over oy Temma® D5 and 1f &' X

and by (iii). Therefore every closed point of X" has an algebrgic

nelhbourhood, and then (i) follows, since X" is squasicompact.
For the normal subalgebrasof small dimensions, we have

weakel* conditions of finite generatednesse

Corollary 2 - a) Every l-dimenc

('1

sional k-subalgebra of an

Chk A

1nu9n1a 21lgebra of finite type over a field k is gts

;:i‘x
Hv

tl-er

nit

fede

1]

P e

b) Let A be & normal 2 ~-dimensional k-cubalgebra of an

[
]
ot

J

egral algebra of finite type over

3
fASL S e

a field k. The followine 28 SET =

lons are equivalent:

1) A is finitely generated

1) A is a Krull ring and for every maximal ideal mei,

1ii) for every maximal ideal mcA, & is a 2-dimensional

We shall point out the following:

Corollary Fi:let 4 he

a normal k-subslgehrs of .an i g s 9

‘n

gral algebra B of finite type over

g field k&, suppose that fepr every

prime ideal of

A there exists a prime ideal of B lying over it.Then:

a) A is finitely generated over k iff for every ma ximal

Lo LiCH

ideal meh the ring A
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If dim A=2, A is finite generated over k iff for every

meximal ideal mcA, the ring A 1is Krull.

Corolaries 2 and 3 follow from Theorem & and 3 applied

to the morphism Spec B — Spec A, where B is the finite type k-al-

gebra containing A, and using the fact that Spec A is quasicompact.

Corollary 4. Let X be a normal algebraic variety over a

field k, such that the weak "Nullstellensatz" holds for X (cf.[7],

Proposition 3.2, .. 1If r(X,@%) is noetherian, then it is a k-algebra

of finite type.

Indeed, since the morphismW: X—s Specl(X) has the

property that Spec.maxor(x)g.'W(X), by Nagata - OtsuXa Theorem
it follows that for every closed point meSpec | (X) We have dim T(X$£
Y+ dim.al. k(m)=dim [(X). Since [ (X) is normal. by Lemma 3

every closed point meSpec [ (X) has an open algebraic neighbourhood.

Proposition 2. Let X be a normal algebraic variety over sa

field k. If aiml 1% ﬁbx}ézaL then ' (X,0,) is a k-algebra of finite

type.

. Proof. The ring V(XJQX) i & e Krullirings: ITnffact, if

(Ui)ieI is a finite covering of X with open affine subsets, then
) (X,@&)z g;}.rkUi,@§), wheres—(Ui,@&) are Krull rings having the same
field of quotients. !
be

Let W : X — Spec VYX;@&QVEhe canonical morphism. Then
Proposition 2 follows from Theorem 2 if we prove that in the case when
dimrkxfbx}:2, SpecYYX,@&) has not closed l-codimensional points.

= tg ; :
Let yeY = Spec | (X ,@&) a closed l-codimensional point.

By Lemma 6 below, y@ﬂﬁx) and Y~§y% is an affine scheme. The canonical

} q R, : o . s s
homomorphi sm ]’;E~(Y,@§)->fYX,@%) Tactors in the following way:



Y

Cr,0p) — T(v- {4, 0,y =T (x,0p)

where the first homomorphism is the restriction of the sections.

Since W* is an isomorphism, it follows that this restriction is an
isomorphism. Then ¥ =Y w§y§)which is not possible.
|

Lemma 6. Let f:X—>Y be a dominant morphism of integral

k-schemes such that ¥ is algebreic gver k and Y is a 2-dimensional

closed l-codimensional point

Krull-gehefic. If yiis“s

LL(X) and 1:Y -3y{<+>Y is an affine morphism
¢l I

Proof. In‘fact,if there exists a closed l-codimensionsal
point yeY such that yef(X), then dim@?v ¥ + dim.algkk(y): dom X5 by
y & & 5

3

Lemmas 5 and 3, it follows that y has a 2-dimensional open algebraic

neighbourhocd which is not possible.

For.the second part of Lemma 6 , we may assume that ¥ is

an affine scheme. Let VeY be an ovnen subset not containing the closed

l-codimensional point yeY. Then {y% is an irreducible component of
thire~Ffact it is

Y-V and thus YU3yjis an open subset of Y. Using

easy to see that Y -{y{is quasicompact.

‘ Therefore i:Y »{yﬁcva is a quasicompact morphism. Let
% be a Quas_icoherent@Y {jzmodule on Y »iyi « By EGA T, .9.2.24,

tendi ugq?o In the exact

x i

<-

«s

-
Fa1 T is a quasicoherent QQT” module on Y ex

sequence of | (Y,@&) -modules:

\ ‘ -
o . ) F2 (Vf§6

\ H (LT — 0l (-5} 5F ) — PG

\the first term is null and for the last therm we have P§V%(Y;§{2
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is a discrete valuation ring,
»

: T e )
- frmal C
H§y}(5pec Y,y;§§) 0, since &y o
Therefore Hl(Y-ﬂy%fg):O and so, by Serre Criterion (cf. EGA II,

Beel), it follows that ¥ —%yﬁ is affine. Hence i is an affine

morphi sm.
The next Corollary was proved by Zariski in.[221, §7.

Corollary 5. Let X be a normal algebraic surface over

a_field k. Then I'(X,@,) is a k-algebra of finite type.

Proof. By Lemmas 5 and 1, dim r(X,@X) = dim.al.kQ(T(’X,\@;?
< dim.al.kK(X)$2, Hence Corollary 5 follows from Proposition 2.
' With the same proof as for Proposition 2, we recover

the affirmative cases of Zariski's form of Hilbert's 14" provlem

o [l el

Proposition 3. lLet A be & normal algebra of finite

type over g field k and L a subfield of the field of. quotients of

A.Containing k. If dim,al.kL$2, then LA .is a . finite type k-algebra.

Proof. It is obvious that LNA is a Krull ring. Let
£f:X =%ec A —>Y = Spec LNA be the canonical morphism. Since
dim LNA<2, Proposition 3 follows from Theorem 3 if we prove that
in the case when dim Y=2, Y has not l-codimensional closed points.
By above Lemma €, if there exists a closed l-codimensional point

yeY, then yéf (X) and Y«%y%is affine. The canonical homomorphism

¥ ol
T :r(YJEY)—%>\(X$OX) factors in the following way:

V(,0p) = Tiv-§5% 0,) — T(x,0,)
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Iff‘&eﬁY—%y},@Y}, ki d.e\?x,@X)(\K(YMML:F{Y@Y}e There-
fore the restriction homomorphism VTY?@%)~»YYYm§yR3QIY) is_ an dso-
morphism and then Y2Y~{y}, which is not possible.

We shall give in the following Proposition an alterna-

tive proof for a Theorem of (oodman-Landman (cf[?l y Corollary

%.9), even for arbitrary fields.
First, recall the following

" Mori-Nishimura Theorem (Yl7§g D397 idia IT Modg8 iEkrull

ring such that for every prime idealp< A, 140, A/, 1is noetherian,
\ i G =8
then A is noetherian.
, e , ! : | (
Pronosition 4. Let f:X—Y be a surjective proner .

c I

morphism of integral schemes over a field k.If X is algebraic over

k, then Y is also algebraic.

4k
LG
Proof. Let f':X' —= Y' be the morphism betweenYnormali-

zations of X and Y induced‘by f and f'xvof the Stein-factorisation
of‘f‘, where"e:,ﬁi—az = Spec f;q&, and ?: Z —»Y', We may assume
that Y is affine.Then Y' and Z are affine schemes. Moreover Z is a
Krull scheme. Indeed, if (Ui)ielis a finite covering of X' with
affine open subsets, then T(Z,Qﬁﬁ:rYX',Q%e)ﬂ g;}YYUi,Gl ,), where
VKUi,Xi) éfe Krull rings with the same field of quotients..
' We shall proceed by induction over dim Y.

If dim ¥Y=0 then Y is-algebraic over k.

Suppose dim Y>Q; then dim Z>0. The morphism ¥ being
surjective and proper, for every integral closed subscheme Ao

there exists a closed integral subscheme W'cnﬁl(Z') such that

 ?\VN: W!— Z' 1s surjective and proper. By the induction hypothesis,

every such -subscheme Z*+ Z is an| algebraic k-scheme. Hence, by
; | . .

|
|
I
il
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Mori-Nishimura Theorem, it follows that 2 is noetherian. By Theorem

2, we have that Z is algebraic over-k. Hence Y is an algebraic k--

scheme, since Z is integral over Y. )

'Fov=\k.h'i\/€.\"'sd.u7 o\mn,Morthswh\m hall prove the S—?\\owfmc} cons
Sequence Of'?rovosduw»i, STARES S

Corollary 6. :let . filesT be'n surjective universally

open morphism of integral schemes over a field k, where ¥ is an

algebraic k-scheme. Then

a) Y has ‘the priepenty (C1)

b) ¥ is an algebraie k-scheme iff(bv . is noetherian for every
T,

yev .

Proof. a) Let Y=Y PY12...2Y  be a maximal chain of inte-
gral closed subschemes. For every i, 04i&n and for every yeY; ,there
exists a component Xij of f“l(Yi) dominating Yi’ such that

1 =) . “‘-l ] 7 1 Q
yef(Xij), since f 1 (7:) 1 (Yi)-«»-Yi 1s an open morphism.

Therefore, by Nagata-0Otsuka Theorem, for every eri, we have diHlQl(;
L)

+ dim,alekk(y):divain

We shall prove, by induction over 1, atlat Y, is generi-
cally an algebraic k-scheme over k and dim Y.=dim Y-i. Then it fol-
lows that n=dim v, which completes the proof of Corollary 6 a).

If i=0, the assertion follows from Lemma5 A

Suppose i>(0 and assume that Yi—l is generically algebraic
over k of dimension dim v-i+1.Let ¥; be the generic point of ¥; .Since
=1, then it follows dimsalakk(yi):dim Yi~1"1° By virtue of
Remark 1, ¥; has an open algebraic.neighbourhoodkV in Y. 4.

Therefore ¥y 18 generically algebraic over k and dim'*; =

=dim YiﬁV:dim V<lz=dim Yi 1~1:dim Vean'
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b) Y being quasicémnact, we may assume that Y is an
affine scheme. By Proposition 1, 1ii) =3 1), it suffices to prove
that every integral scheme Y', which is finite over Y and has a
closed l-codimensional point, is l-dimensional. There exists n;»0o
and a closed immersion 1:Y* =Y %, AQ +« Sinee f X‘&ﬂQF 1vy\x,ﬁfi_——a

/A
___?‘(xzzﬂkl is a surjective universally open morphism, it follows

that Y'*u‘ﬁzz has theiproperty (C1), by a).Then ¥* has this pro-

perty and so dim Y*=l.

Remark 3., With the same proof as for Corollary 6 a),
it follows that for every closed surjective morphism f:X —Y¥ of in-

tegral k-schemes, where X is an algebraic k-scheme, Y has the pro-

. perty (Cl)s

t

Corollary 7. Let f:X — Y be a faithfully flat morphism

of integral k-schemes, where k is a field. If X is an algebraic k-

schemes, then Y is also algebraic over k.

Corollary 7 follows from Corollary € b), since.Y is

noetherian.

§4 Unlversally l-equicodimensional rings and the finite

generatedness of subalgebras.

In{4| we héve introduced the following

Definitiom, A ring A is called universally l-equicodimen-

sional if it is noetherian and every integral A-algebra B of finite

type which has a maximal ideal of height- 1 is 1-dimensional.

A scheme X is called universally l-equic¢odimensional if
therle ex1sts a finite covering (U- )1eI °5 X weith mggun,e, o\oem. -
S S dh ot {or every LEl F(Ub:‘@ ) v an wﬂwe\”sauj MQﬁww

\ CoaRpams: Lol Y‘UMJ

i
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eythe Tol-

We have proved in[413 that if 7 is a schem
lowing assertions are equivalent:
i) Z is universally l-equicodimensional
11) Z is noetherian and every separated morphism f1X—>Y of
integral schemes of finite type over Z is proper iff every integral
closed l-dimensional oubuchemﬁ °§ X 'is properiover Y.
1ii) Z is noetherien and for every integral scheme)(offinite
type over Z, and for every closed point xe ¥ the subset of all
closed D01nts x'e Xy uUCh that there exists an integral (resp.

L

UOHH@Cﬁ@d)CLO%eO l-dimensional subscheme passing through x and x°',

/

is dense in X,

iv) Z 1s a noetherian Jacobson scheme and every integral sche-
me X, which is finite over Z and has a closed l-codimensional point,
is l-dimensional.,

We shall prove that L) is equivalent to:
¥) Z is a noetherian Jacobson scheme and if Z* is an inte-
gral closed subscheme of Z, such that its normalization has a clo-
sed l-codimensional point, then dim Z'=1.
In.Tact, 3v)~§v) if- Z'M is the normalization of a

closed uw'tecj\m.t, swbschewme Zf gz_ and € Z'Mis a
closed l-codimensional point, then there exists an integral sc hem

Z" finite over Z*' such that Z'™ is a dominating scheme over Z" and
such that %zﬁ is a fiber of the morphism Z*'"“._s Z".Then Z" has a
closed l-codimensional point and so dim Z"=1. Mhererore, dim ZY=1.

v) = iw).Indeed, if Z" is an integral finite scheme

(¢ u

over 7 and Z* is the(closed integral)image of Z" in Z; we have a

comnutative diagrame:

Z’”r\‘ . ; i

A /



N

where Z'" and Z"® are the normalization schemes of Z% and Z". If
7" has a closed l-codimensional point, then Z"™ and Z'™ have such
‘points; then dim Z'" = 1, by (v). Hence dim Z'=l.

In{4) , are shown some general properties for the
universally l-equicocdimensional schemes.

Clearly, we may complete Proposition 1 with the follo-

wing:

Proposition 1'. Let A be a subalgebra of an integral

¥

algebra of finite type over.a field k., Then the following assertions

are equivalent;:

i) A is_a finite tyve aleebra over k <

iv) A is an universslly l-equicodimensional.ring.

Remark 4. In[ZS ; Lol JREETL£F JT <y - PROVES the following.

Theoren (Theorem 3¢1)loc_CﬁL)

Tlet A be a noetherian local ring. Then the following are

equivalent:

i) A is universally catenary .. (i.e.A satisfies the altitude

formula lec.cik.)

~ ii) the completion A of -A is equidimensional (ie Als quast -
~unmixed , loc. cit) _ . e s
Following the proqfcﬁh)ﬁé ii) of this Pheorem in L2§1,it
.is easy to see that we may add the following equivalent property:

iii) A is catenary . and every integral A-algebra B, which

is finmite over A and has a maximal l-height ideal, is l-dimensiona

This remark allows an alternate  proof for Proco-

sitions 1': iv) of Proposition L= ii) of Propeeition 1.

y

i
I
i

1
|
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Chain Conjectures and finite generatedness of subalgebras

Recall the following two properties for a ring A, called
"the second chain condition", resp. "the chain condition”:

(C2) for every minimal prime ideal_g < A, every integral

extension domain of AA@ saticficg (Gl

(C) for every pair of prime ideals p<qg in A, (A/p)
: g o s

¥

satisfies (C2YV.

Via Proposition 1, an affirmative answer to each of the
following two open problems allows some new characterizations of

the finite generatedness of the subalgebras of a finite type

"kmalgebra:'

The Choin Conjecture: the integral closure of an integral

no&therian’ local ving satisfies (C).

The Normal Chain Conjecture: if the integral closure of

an integral noetherian local ring A satisfies (Cl), then A

gatisfies (€2 )x

Some equivalent satements of each above problems are
discussed in E?7§, Chapters 3, 4 Sl
In §?71, Ch.3,Theorem (3.3), it is shown that the Normal

chain Conjecture follows from the Chdir Conjecture.



An affirmative answer to the Chain Conjecture allows
the following completion of Proposition 1:

Proposition 1"- Let A be a k-subalgebra of an integral

algebra of finite type over a field k. Then the following assertions

equivalent:

(i) A is finitely generated.

(v) A is noetherian and all the maximal ideals . of the

integral closure A’ of A have the sdme height.

In fact, if (v) dis satisfied then for every maximal ideal
mcA the local ring A is noetherian and all the maximal ideals
of the integral closure Aé of Am have the sdme height. Via the
Chain Conjecture, A$ sati;fies (Cl1) and then Aé verifies (C2) (by

the Normal Chair Conjecture) .By Theorem 3.1. of {25}, it follows

that B is universally catenary..By (v), dim Am=dim A. Then (i)

Qoma o

follows from Proposition 1.

It dis elesv that Covellary 17is then a direckt conseduence
of above Proposition 1".

An affirmative answer to the Normal Chaiw Conjecture

allows the following weaker completion of Proposition 1:

Phepesition, i - ILf A is a k-subalgebre of an inteqral

algebra of finite type over a field k, the following statements

are equivalent:

(1) A is finitely generated

(vi) A is noetherian and all the maximal chains of prime

ideals in the integral closure A’ of A have the same length.
Indeed, for every maximal ideal m <A, the integral

closure A& of Am'has the property (Cl). By the Normal Chain

- ——

Conjecture A& verifies.  (C2) ané by Theorem 3.1 of [251, Am is

iy
| 3

‘ ‘
universally catenary. Since dim A_=dim A, Proposition 1" follows



from Propesition. 1.

It is clear that the above Propositions are proved if the
Chain Conjecture or the Normal Chain Conjecture have an affirma-
tive answer for noetherian local k-subalgebras A of a function

field K over k, such that dim A = dim.al.k Koo



