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GORENSTEINNES OF SEGRE-VERONESE
"GRADED ALGEBRAS

by

§erban B&rcinescu

0. Abstract

The characterization of the Gorensteim.property for the Veronese
algebras was done by V.Brinzénescu[ﬁ}and independently by
A.Matsuoka[?], in a pure algebraic ménner.

The general case of the Segre-Veronese singularities was treated

by L.Bédescu[ﬁland by L.B8descu and N.Manolache[2], the characte-
rization of the Gorenstein property of these singularities, in
terms of their numerical character, being obtained geometrically,
using Serre's duality, in the natural comtext of the Segre-Veronese
embeddings.

The present paper contains an alternate proof of the same result, -
based upon two facts: the characterization of the Gorenstein pro-
perty for G-algebras in terms of their Hilbert functions, given in
[S]by R.Stanley and the analytic expression of the Hadamard product
of two rational functions of one complex variable, given in(}]by

L.Bieberbach.

l. G-Algebras

All the rings involved are commutative, with unit element.

Let k be a field. By a "G-algebra" over k we mean a noetherian,
N-graded ring; R =(:)n20 Ry with RO = kK.

Such a structure satisfies:
() myo , dimkRn is finite.

The numerical functionﬂZR y nksrdimkRn, called " the Hilbert func-

tion " of R, is polynomial i.e. there is a polynomial QCt)EZﬂ}]



and there is an integer n0, such that:

Y

nzn.o—-%/ZR(n) = Q(n).

The least of such integers m, is called " the regularity index " -
of R (cf.[é}) and is denoted by r(R).

The dimension of R is uniquely determined by:ZR, namely:
dim R = 1 + deg?{R =1 + deg Q(t).

The generating series of the sequence (7,(n)) i.e. the formal
: R

. S ; n T | o 51 4 .
power series: HR(t) —nZ}_lc; ’Z'R(n).t éZE{H is called the Hilbert-

" Poincaré series " of R.

As;{R is polynomial , it results that Hp is rational, i.e. defi-
nes an element of B(t).

Ifgxl,...,xdﬁis a set of homogeneous generators for the k-algebra
structure of R, of degrees respectively Myyees;,Mygy then there is

a canonical surjective k-homomorphism:

k[Xl,...,Xa].%R

sending Xj into Xj (j=1,...,d4). Hilbert's theorem on syzygies

says that R has finite homological dimension over k[xl,g..,xé},
i.e. R.has a finite free resolution over kI%l""’X€1(Of lenghtdd).

showing that:
d mj -4 s
HR(t)=PR(t)IE:1(l-t ), where PR(t) is a polynomial with

integral coefficients.
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When m1=m2=...=md=1 i.e. when R = k[Rilthe G-algebra R is
called "standard" eand, in this case,

N

Hp (£)=Pp (t)/(1-t) 9, where Pp(1) # 0 and

d = Krull dim R, as the dimension of R is the order of the pole:
t=1 of the rationmal function HRm We shall constantly make use of
this normalized form bf the Hilbert function of a standard G-alge-
bra.

The Gorensteinness of G-algebras is characterized in the following:

l.1.Theorem (R.Stanley,{B])

Let R be a Cohen-Macaulay domain and a G-algebra. Then R is Corens-

tein if and only if its Hilbert-Poincaré series, considered as a

rational function, satisfies the following functional relation:

3 dim R ,q(R)
HR(l/t)—(—I) ot .HR(t)

where g(R) is an integer uniquely determined by R.

1.2. Remark
If, in the Theorem 1.1,the G-algebra R is standard, then, looking
at the normelized form of Hp, we see that Corensteinness in this

case means that the polynomial Pp is reciprocical, i.e. satisfies

Pp(1/t) = t~d€8 Pp . Pp(t).

Moreover, in this case one obtains:
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q(R)=dim R - deg PR (see also{@]).

2. Veronese G- algebras

Let k be a field and r,s be two positive integers.

2.1l. Definition

The "Veronese k-algebra of type (r;s)" is the k-subalgebra of the
polynomial algebra]&ﬁhy...,Té], generated by all the monomials

of degree s, i.e. by:
il 12 i .. — .
SLTI o T57 ¢ oes <T.T / iytiseeetl = s in Z;}

This algebra will be denoted by V when the field k is fixed.

ra!
According to this definition, it is easy to see that Vg is a
standard G-algebra and a domain of Xrull dimension r. The graded
structure of V_ :@nzo V.. (n) is given by

r+ns-1

*) m0, dim Vv . (n) = . 5

Vrs is always Cohen-Macaulay: indeed,%?i,...,Tﬁ%:is a system of
parameters and a regular sequence in‘,VrS (another argument for the
Cohen-Macaulayness of .- is.based on a theorem of Hochster[é],
asserting that a monoidal algebra k[ﬂ]over a field k is Cohen-Ma-
caulay if the monoid M is normal; in our case the monoid of all

the monomials contained :'m.VI,S is obviously normal).

Let Hrs(t}rPrs(t)/(l—t)r be the (normalized)Hilbert-Poincaré series
of Vrs’ written in its rational form, and let Hr(t)z(l-t)"r be the
Hilbert-Poincaré series of the ambient polynomial ring k%?l,...,T;l.

Directly from 2.1 we see that Hrs is obtained from Hr" by selecting



the terms from s to s ™.
The following lemma yields a general procedure for such a selection

Y

2. Lemma

2
Let f(t) be a rational function from C () and let:

f(t) = Za 0

n0°n

be its development near the origin in C.

; . . n . . ‘
Then, if fs(t)~. %é%‘ans‘t y then the following relation holds in

the Puiseaux power series field over C.:

s |
1/s %‘:1 £ (z-j._tl/s-)}_ £ (t)

where Zyseeey2 8TE the s-roots of the unity irldﬂ

Proof.
For any s indeterminates Xyse+.3X  we denote by O%(Xl,..,,xs)

the k-th elementary symmetric function, on th X; s, icees

! Xi X' e o o Xi ©

U‘k(xl""’xs) = 1gil<i2 ...<ikss 1 1o k

For every positive integer m,let pm(XI,...,XS) be the sum of the

m-th powers of the X;'s , i.ee:

- m
pm(Xl)OOO’XS)"XI{*' e e 0 +XS ®

Then the p,'s may be determined through the Gk's ,because of

Newtom's formulas (holding imZ?E%l,,..,X%(cf‘[flﬁz
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(a) 1lgkgs:

: : k—l
pk-pk_1¢i+ pk-£r2' eeet (-1) o +( 1) ke k—O

P1 %=
(b) s<k
8-1
PPro101#Py Tp= wo et (1) °TTpy 0T 1+ (-1)%py (OC = 0

Specializing:

Xl=zl,.l.,Xs=zS (Zj being the s-roots of the unity in @),

and making use of the Vieté's relations for ZS—1=O, we obtain

rk(zl’°"’zs) = 0, lékgs-l

AP T L

.and thus:

0, if m$0 (mod s)
pm(zl,...,zs) = ‘
: s , if m=0 (mod s).

Then, in the conditions of the enounce:

S 1
szzl f(zjt) 224 o) (zl,...,z )t

n2ao I'l

which immediately gives the desired relation, if we look at the

above values of the‘pn's.

ge.e.d.

Now we are in position to prove the following:

2e3.Theorem

The Veronese algebra VPSOf type (r;s) over a field k is Gorenstein
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if and only if rz0 (mod s).

Proof.
According to 1.1 and 1.2 we need only to show that (in the above

notations): P__ is reciprocical iff rzQ (mod s).

rs
Or, applying lemma 2.2 to H (t)z(l—t)-rtzz‘(P+n"1>.t?ﬁme oktains:
- T nzo\r_1
8 s-1 ; .
y _ i i/s\r
(%) Prs(t)-l/s.§%=1 (Ziizo Zj . 4 )

This relation -actually holds ifﬂZ&Wn i.e. the right-side member

in (%) is a polynomial with integral coefficients. To see this we
use the multinomial formula, expanding every term in the right-side
member of (%) and making use of the possible values of pn(zl,..,zs)
we obtain:

b _
(xx) prs(t)z 2. C._.t8

£ e , where b=|r(s-1)/s| (integer part) and

the coefficients C, are, for every a:

.

a (Tl,...,is)eé‘a

t /51 7 !
P./ll,...ls.

the index sets Sy being:
; . s . . . . _
Sa= g(ll,-to’ls)éz_*_ / ll+...+1s=l“ 8Ild 12+213+"0+(s—1)ls~8°s}

Suppose P_ is reciprocical as polynomial from'Z/‘[t].
This means that the coefficients Cq in (%) are two by two equal

when going from the extremities to the middle of P ...

In particular:



N

Or, it is immediate that C, = 1. Then, Iooking at (xx) and taking
into account all the possible values for the pn's, we see that
Cp=1 iff'r(s—ljso (mod s)&r= 0(mod s),obtaining the neccesity

of the condition in theorem 2.3.

For the sufficiency, let us.suppose that r=m.s, with meN.

Then, in the above notations, b={%(s—1)/s]= m. (s-1).

Let S =Cg20 Sa be the total index set in (%x).In every coefficient
Cgy» every term: r!/il!...is! is a positive integer.

Bearing this im mind,let us look at the function:

g:5—=>3, given by:

i T SR 1106880 1,10 00 eyig 191 ))= g, g 1reeerisyiq)

So defined, g establishes a bijection betweerr.Sa and S for any

aé{p,l,...,b}, and immediately given:

because every term: r!/il!.,.ist of C, differs from the correspon-

ding one in'Cb_a only by the permutation g on the indices

<i1’.."is).
Or, this shows that P.g is reciprocical in this case and ends the

proof of the theorem.

g.e.d.

3. Segre-Veronese G-algebras

and S =@® S be two G-algebras over the same

Let R =(® nz0 °n

nw.0 R



field k.
The " Segre product " of R and S is, by definition, the G-algebra
over k: N

RoS =@ .  R® S,
which is a domain of standard type if R and S are such.

Cohen-Macaulayness is preserved by the Segre product iff ([9]):
r (R)gminSLm/Srf o7gand r (S)émin%.n/Rnf# o} .

The Hilbert function of RoS is obviously:

;(Ros =g+ Ag» showing that:
dim RoS = 1 + degZRoS =1 + degZR.’ZS =1 4+ degZR + deg7s =
=1 4+ (dim R-1)+(dim S-1) = dim R + dim S-1.

Finally, the Hilbert-Poincaré series of RoS is:
2 W - -
HRoS = N80 Zk(n).ﬂé(n).t y le®, HRoS is the Hadamard product

of HR and HS.
We shall use the following integral representation for the Hadamard

product of two rational functions f and g of complex argument t

(ct.[4]):

(1) (fog) () =1/2mi gf(l/z)g(tz)dz/z
C

.where, if r and rg are the convergence radii of f and g, then

f
the convergence radius e of £ o g verifleszrfgémlnirf; Tgk
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and the integration road in (1) is the circle:

N

C :|z|=¢, with I/fiés<rg/ltl .

3.1. Remark
The Hadamard product f o g is a commutative multiplication onC ﬂtﬂ.
In order to see the commutativity on the integral representation

(1), one must change the variable: z-»1/u and then one must invert

the orientation of the integration road C.

%.2. Proposition

Let R and S be two Gorenstein domains and G-algebras over the

seme field k. Then their Segre product, R o S is Gorenstein, if

(in the notations of part 1):

g(R) = q(s).

Proof.

In the notations of part 1, we have:

2mi (HR 0 HS)(t)=gHR(l/z)HS(tz)dz/z, where
C :lz(=%, with: &
Lhﬁ§S<PS/ltl, L and Ty being the convergence

radii of H. and HS respectively.

R
We make use of theorem 1.l.Then:

emi(Hp o Hg) (1/t)= SHR(1/Z)HS(Z/t)dZ/Z

C\

where now C': \z\=g‘, I/PRL%\L lt]. rq.
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Because R and S are Gorensteim, we see, from theorem 1.1 , that:

2mi (Hy o Hg) (I_/t)-:g(..l)dim Rz3® g (z).(-1)%® 5,
Ql .tqcs)z"q(S)HS(t/%) dz/z=
¢!

Now, we change the variable: z->1/u, and,making use of 3.1, we

obtairm:

(2) 2mi (Hp

os)(l/t)=(~1)dim ROStQ(S) g umHR(l/u)Hs(tu)du/u

r
“where: [ :lul=X, 1/r¢ Xry/ | t| end m = q(R)-q(S).

The integrand in the right-side member of (2) differs from the
suited one, as given in (1), énly by the multiplicative factor: ﬁm.
Thus, if m=0, one obtaims the conclusion of Proposition 3.2 from
the theorem 1.1

q.c.d.

Z.%.Corollary

In the above assumptions and notations:

g(R:o S) = q(R) = q(S).

Proof.

Obvious, if we look at the proof of %.2 and at 1.1l.

Now, let9 = (rl,...,rn;sl,...,sn) be a sequence of 2n positive
integers.,

In the notations of part 2 we give the following:
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%3.4. Definition

The "Segre-Veronese algebra of numerical character (rl,...,rn;
;sl,...,sn) " over a field k, is the Segre product of the Verone-

se algebras over k : U "“’Vr G

T8 .
. 14 nn -
Keeping fixed the field k, we denote simply by Vy the Segre-Vero-

nese algebra of numerical character"ﬁ=(r1,...,rn;sl,...,sn). It
is easy to see that V’ is a domain of Krull dimension
rl+...+rm7m+1, naturally embedded in the polynomial k-algebra in
Pytesotl) variables. VV is a standard G-algebra, its graded

structurecs

Yy:<§)nzﬂ Vv(n)

‘being given by:
| . n rj+nsj-l
(¥) ny0, dim V,(n) =TE=1 ri-1 )

V is Cohen-Macaulay, as one can see using either the above quoted
characterization of the Cohen-Macaulayness of the Segre product
of two G-algebras (cf.{?l) or the theorem of Hochster[?}, as the
normality of the monoides of monomials is preserved by the Segre

producte.

Now, we shall prove the main result of this paper, namely:

2.5« Theorem

The Segre-Veronese algebra of numerical character (rl,...,rn;sl,..

«ey8,) over a field k, is Corenstein if and only if there is an

integer q, such that:




i o

rl/slzrz/s2=g..=rn/sn§q

Proof.
First, using 1.2 and 2.%, we see that, for any Veronese algebra
V.g OVer a field k, the Gorensteinness of Vg implies that:

qQ(V.g)= dim V. -deg P, = r-r(8-1)/s8=r/s.

Then,_using an induction on m, we see that all we have to prove
is, because of 3.2 and 3.3, that the sufficient condition in 3.2
is also necessary in order to insure the Corensteinness of the
Segre product R o S, in the case when R and S are two Veronese

algebras: R = V,q, S = Vr's"

Looking at (2) im the proof of 3.2, we must show that (in the no- .

tations of part 2):

m - : o S e e
(%) g (u -1).Hrs(1/u)Hr.s.(tu)du/u—o if and only m=0.
h
(Herei1: lw\=%4, with 148<1/ \t| , because H_ g and H,. gy both have

the convergence radius equal to 1 ).

According to the results of part.2, we know that:
H(0)=P (4)/(1-t)T and M, _, (1)=P . (£)/(1-)T
rs “trs o _ enkd - b rig?
with Pos and Pl gt reciprocical polynomials in]Z[t], of degrees

respectively: r(s-1)/s and r'(s'-1)/s' (st and V.. g, being

Gorenstein) and satisfying:

Prs<1%#o and Pr's'(l)%o (cf.part 1).
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Then (%) becomes:

~

(4) g(l-um)/<1-w)r W5 b (w) P, (tn)/(1-t) T du=0
P | |

with the same(‘.
Or, in the domain bounded by the circle Y‘, the integrand in (4)

has a unique pole, mamely u=l. Thus, the integral in (4) equals

the residue i u=l of the ratiomal functiomn:

h@)=(1-u™)/(1-u)" . p(u), where:

_.r/s-1 3 i
p(u)=u PLg (@) Prig (tu)/(A-tu)™ .

Or, ome directly sees that p(u) is analytic near u=l and more,
that p(l)#O. Then, except for the trivial case r=1, a direct com-
putation shows that the residue in u=l of h(u) is non zero when

m#0, implying (3) and ending the proof of the theorem.
g.e.Qe



(1]
2]

3]
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