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APPROXIMATION PROPERTIES OF THE FORMALLY. SMOOTH

MORPHISMS

Vasile Nica and Dorin Popescu

Let L be.a system of linear equations with integer
coefficients. Then-L has solutiens in-a field K> Z ¥ff it has
ratioﬁal solutions. This is a property of linear saturation for
Q. In algebraic case, a system of polynomial equations with
rational coefficients has a solution in an extension K of @ iff
it has solutions in the algebraic closure 0 of @. This means a
property of algebraic saturation for @. These saturation properties
are very strong, because they are reffering to every extension K
We can study also weaker saturation properties (linear or alge-
braic) relative to a given extension K. There are pure extensions
in the linear case (see f6] ) and algebraic pure extensions in
the algebraic case (see [9]).

Thithe algebraic case it is known (see tl], [51), the
study of the local noetherian rings R which has algebraic satu-
ration property relative to its completion ﬁ, i.e. the morphism
R-——a»ﬁ, is algebraically pure.

We say that a ring R has the property of approximation

A
(we write R is qan AE-ring) i.e. every "formal" solution (from R)

of gn arbitrary finite system of polynomial equations can be well



approximate by "algebraic" solutions (Frem R) in* the m-adic to=
pology of ﬁ, m being the maximal ideal in ﬁ'(in faect it evefy
finite system of polynomial equétions over R has a solution in

R whenever it has one in ﬁ, then R is an AE-ring).

In ch.v [5] (or [8]) it shows the preserving of some

properties from R to ﬁ if R.ig ian AE—rin%?properties which can

be given by compatibility of some systems of polynomial equations
(for example R is feduced (integral domain) iff Riils " teoo) . Unfor-
tunatelj, this cannot be done for algebraically ﬁure morphisms
(the extension m.c-——Arﬁ[XJ/(Xz) is algebraically pure but ’
does not preserve the property of being reduced). The reason

is that the profs from [51 use the bossibility to can wéll
vapproximate the solutions from % of an arbitrary system of
polynomial : equations over R by solutions from R.. Thits st net
possible for arbitrary algebraicaliy pure morphisms. However,
corollary 2.6, in {9] it shows that if A is a noetherian local
éomplete ring and B is a Cohen A-algebra such that its residue
ficld of B ‘igua ultrapoWer of the residue field of A, then the
solution frem B of an arbitrary system of polynomial = equations
over A can be in a sense "well approximate" by solutions from A.
As consequence,it shows that A is reduced (integral domain) iff

B isa'too (preposition 2.16 [9]).

In this work, we give a sense for the above "ga&d

abproximation" in the case of the formal%smooth morphisms

(62.2), (2.3) s, (2.61)) .. As a consegquence, wé get thé preseiving
of some properties by algebraically pure formaﬂzsmooth morphisms
{(§ 3). Also we extend the remark 2.18 iv [9] showing that if

A, B are noetherian local complete rings and B is a formaiasmooth

A-algebra, then B is an algebraically pure A-algebra iff their



residue field extension is algebraically pure (2.1).

§ 1. Algebraically and analytically pure morphisms

Algebraically and analytically pure morphisms were intro-
duced in [9) in connection with the study of rings which have the
property of approximation (all the rings are here supposed to
be commutative and with identity). They generalize the linear'
case of pure module morphisms [6]. |

(1.1) DEFINITION. A ring morphism u:A—>B is called
algebraically pure if every finite system of polynomials
F=(Fl,...,ﬂn) with coefficients in A, in an arbitrafy number of
variables Y=(Yl,...,YN) has a solution in A iff it has a solution
in B. If so, we say sometimes that B is algebraically pure over
M '

(1.2) PROPERTIES AND EXAMPLES. i) If A is a local noe-
therian ring, then the completion morphisms A — A is algebraical-
ly pure iff A has the property of approximation. Moreover, if A is
an in£egral domain then A is too and the fraction field extension
Q(A)c———;Q(g) is algebraically pure.

14.) The‘class of algebraically pure morphisms is stable
under composition and base change. Moreover, if veu is algebraica-
lly pure, then u is so.

iii) If u:A~—> B is a finite presentation morphism, theﬁ
u is algebraically pure iff it has an A-algebra retraction. In
particular if k is a field, and B a finite type k-algebra, the
Vstructure morphism k—— o B it algebraically pure i£F S8pec B
has a closed kfrational polint. TFf B is an integral domain and

ke 5B is algebraically pure, then k is algebraically closed



iv) More generally, an arbitrary ring morphism u:A-——%»B
is algebraically pure iff ‘B is a filtered inductive THmitE of
algebraically pure A-algebras or a filtered inductive limit of
A-algebras such that their structure morphisms have retracfions.

The above result furnishes some interesting ekamples of
algebraically pure morphisms and also a criterion for recognizing
this property (see 1.3 below).

v) If k is an algebraically closed field and B an b
trary k—algebra then the structure morphism ke—>5 B is algebrai-
cally pure.

) “Ef k ds -an infinite field.and X a wvariable), then the
morpﬂimn]qc——ak(x) is algebraically pure. More generally, any
'pufe transcedental extension of infinite fields is algebraically
pure.

vii) Any algebraically pure field extension of a finite
field is trivial.

viii) The algebraically pure morphisms are not in general
flat. For instance, A« A ([X]] can be not flat (nonnoetherian
case) but it is algebraically pure (having a retraction).

All these properties and ex@mples are given in [é]. We
complete them with the following proposition:

(1.3) PROPOSITION. Let k-be a field arnd B.a finite type

t

k-algebra which is an integral domain: B=k[Xl"°"X£]AF . Then,
the fraction field Q(B) of B is algebraicélly pure over k
iff for every polynomial Fe k[Xl,...,Xn], E‘¢1: which depends
at most s=trdeng variables, we have Z(p)¢ Zz(F), where Z(p), Z(F)
denote the sets of zeros in k" of p and F respectively.
Proof. Necessity. Let F be a polynomial in k[Xl,...,Xﬂ] not

in p. From hypothesis, the composition kc——%.BFe_—a.Q(B)



is algebraically pure and by (1.2.ii) the finite presentation

morphism k «——B_ is too. Consequently, ke—> B_ has a k- algebra

F F
retractlon, equlvalently the prime 1deal p has a zero in ko ,
which is not a zero for F.

Sufficieng¢y. Let s=trdeng. We can suppose that images

of Xl""'Xs in B form an algebraically free system over k. The

injectivenmorphism k[kl,.,.,xgjc__a.B is algebraic in the sense

,/////that'every elemnt of B satisfies a polynomial equation with coef-

ficients in k[kl,...,xé]. Let consider a b#0 in B and let
atbt+.;.+ao=0V%he minimal degree equation over k[Xl,...,X']

for b. We apply the hypothesis on the polynomial F= =a,;we observe
that F¢‘p, otherwise the equation satisfied by b has not mlnlmal
degree. There exists a zero «= da,...,dn) for p such that F(d)#O.
The correspondence Xiﬁwnﬁ>&i produces a welleefined morphism

r:B———>%k with r(b)#O} because F (X)#0. Then r extends to a k-al-

2g¢bra morphism Bb-———bk- So, the finite presentation morphism

k<——sB  1is algebraically pure. Since Q(B)=U B, , we conclude with

b0 ©

(1.2 iwv).
Q.E.D.

(La35l) COROLLARY .. If kils Infinite and trdeng=l then

Q(B) ig¢ algebraically pure over k iff the set Z(p)c k" is infinite.

numbers
(1.3.2) EXAMPLES. Let R the field of realV. Then the

extension R «—s Q (R{X, Y] /(X _y3y) is algebralcally pure, but
o ®DB,Y
Re . 0f / +Y2)) iis. not.
(L.3.3) Remark. A field is separable closed iff any its
separable extension is algebraically pure (also a field is al-

gebraically closed iff any its extension is algebraically pure).

Indeed, let k be a separable closed field and k'Dk a separable

finite generated field extension by (1.2) iv) this dis sufficient).



Then k' has the form k?}Q(k[X,Tﬂ/(PS), X%(Xl,...,xn), where P is
a (monic in T) separable irreducible polynomial from k{X,T].
Let Fé€& k[ngé non-zero polynomial. k being infinite, there exists
xe:kn such that F(x)#0 and P’ (x,T)#0. Thus P(x,T) is still
separable in k{T] and so it has a solution t in k. We get
Z(P)#‘Z(F) aﬁd by (1.3) the extension kc K is algebraically pure.
Conversely, l_etkS be the separable closure of k. If the é%gggéion«\\
kek, is algebraically pure, then k=k_ by (1.2)iii).

Ih thg case of complete rings, the algebraically pure
concept is extended in the following manner:

(1.4) DEFINITION.. A local morphism of local, noetherian,

and complete 2w . rings uiA —>B is called analyticélly
pure if every system F=(Fl, 2 ..,Fm) of polynomials in A[IZ'I [Yl—
where Z=(Zl,...ZM), Y=(Y1"°"YN) 2~e variables has a solution

tzyy) in B iff it has a solution (2z,y) in B. (Obviously, the

components of z,z are in the maximal ideals of A and B respectivéif)
(1.4.1) Note that for M=0, we recover the algebraic case

of (TI.1): “Aldo ' in the case of artinian loecal rings; bothtdefini-

tions coincide.

(1.5) Proposition. Let u:A — B be an algebraically pure

morphism of noetherian-local rings. Suppose that the maximal
ideals m of A generates the maximal ideal of ‘B. Then the induced
morphism ﬁ:gﬂ~—>§ is anaygtically pure. Moreover, if A,B are
complete rings then u is algebraically pure iff it is analytically
pure.

Proof. Let F be a system of formal power series from
Q.Ezm [¥] which has a solution in o By theorem 2.8 [9] (see
also theorem 2.5 [8]), there exists ¢ eN such that Fihas o solution

A ”~
in A/mcg iff it has one in A. But our system F has a solution in



N A
B/ch: B/Ec§ and thus 1@ has one in A/mCKQLA/mC because the

induced morphism A/mc ———~a-B/mC

B is analytically pure bgv(l.Z)ii)
and (1.4.1). Consequently F has solutions in A.

QoE-D.

In the context of definition (1.4), we remark that there
is no relation between the solution;(2,§) of F in B and the solu-
tion (z,y) in A. Then, it arises the following question: if F
has a solution (Z,y) in B and it is known that it has solutions
in A, oﬁe can find in A a ’solution (z,y) which is "near" éo
(Z,y) in B? For this, it is necessary a suitable concept of
"nearness" between solutions (Z,y) and (z,y), and one of poésible
ways to introduce such a concept is the following one:

Suppose that solution (z,y) in B satisfies the condition:

ord Gj(z,§)=cj j=1,...p, Dbriefly ord G(%Z,¥)=c

where G=(G,,...G_) are in AZ[Zﬂ'[-Y], c=(c,,...C_) are nobnnegative
S P L c. P c.+1

integers and ord Gj(5,§)=cj means Gj(§,§)e n 7, Gj(§,§)¢ n J 5

n being maximal ideal in B.

In the above notations, we shall say that the solution
(z,y) “in A‘is G-near to solution (Z,y) in B if ord G(z,y)=
=ord G(z,y)=c.

So, we can specialize the definition (1.4) looking for
the lifting of any solution (z,y) of F in B to a solution (z,y)
in A G-near to (z,y) in the above sense. We shall see in § 3
that the analytically pure morphisms A —= B which 1lift the
solutions fgom B to near solutions in A, allow to preserve some
properties from A to B, properties which can be explicited in

terms of compatibility of some polynomial equation systems.




§ 2 Main results

(2.1) THEOREM. Let u:A —3»B be a local formally smooth
morphism between two noetherian local complete rings with residue
fields k respectively K. Suppose that K is a separable extension
of k. Then the following conditions are equivalent:

i) u is algebraically pure

ii) u is analytically pure
iii) the residue field morphism k<« 5¥ induced by u is
algebraically pure.

Proof By hypothesis, B is of the type Bz A'[[ X]} where
A’ is a Cohen A-algebra and X=(Xl,...,Xn) are variables (see 3]
8§ 19). Thus u admits the following decomposition

A % LAY aIx]es
Clearly, u" has a retraction and so it is algebraically pure. It
remains to prove the theorem in the case, when B is a Cohen A-

algebra (1.2 ii)), which is the subject of the following theorem:

(2.2) THEOREM. Let A be a noetherian, local, complete'Twug
and B a Cohen A-algebra (i.e. a flat, local, complete A-algebra
such that B/mB is a field separable extension of the residue field
k=B . .<0f A)T The following conditions are equivalent:

- i) The structure morphism u:A —> B is algebraically pure
ii) u is analytically pure
iii) For every F=(F,,...,F ), G=(Gy,s-..,G,) in AL z3[¥],
Z=(Zl,...ZM), Y=(Yl,...YN) being variables, every c=(c1,...cp)
with cj noé%gative integers and every (Z,y) in B such that F(z,¥)=0

and ord G(E,§)=c, there exist (z,y) in A, such that F(z,y)=0vand




ord G(z,y)=c (in other words, any solution of F in B lifts to a
G-near solution in A).

iv) The residue field morphism k «—» ¥ induced by u is
algebraically pure.

Proof. Implications iii)=> ii) =>1i) are easy, and i)=> iv)
comes from the fact that algebraically pure morphisms are stablé
under base change. Implication iv) => iii) is the obﬁect of the
following theorem, in which the nearness condition between solutions

(E,f)'and (z,y) is translated in terms of linear systems.

(2.3) THEOREM. Let A be a noetherian, local, complete
ring, B a Cohen A-algebra such that the residue field morphism ke—s K
induced by u is algebraically pure. Then, for every system

F=(Fyse--0F )y G=(G1,...,Gp) from A[[z] [Y], every matrix hagh

j=1,...,p, k=1,...,9 with elements in A, and every (Z,¥) in B such
Z
that F(Z,y)=0 and the linear system fjlajka =@, -(B, Yk iEL J o sptalis
incompatible in B, there exists a solution (z ,y) of F in A for which
the linear system Z? a, T G (z,y) is incompatible.
k=1 jkk

Now we show how we get iv) =>iii) (2.2) using (2.3). In

the notations of theorem (2.2) let {ejk}' {fje} F=1y s sagP k=1,...q§ r
(o c.+1

f=1,...qg be systems of generators for ideals m J, m J respec-

Cs

tively (m being the maximal ideal of A). To say that G (z,¥)em I
' 45

means that there exist{ bjk} in B such that Gj(z,y %21 jkejk ’

-5

$

j=1,...p, in other words the system G.(E,§)=ZSt e'kU'k has a
j k=1 Jk3

solution in B. These equations will be added to the original system
: c.+1
'F. To say that Gj(5,§)¢ m J B means to say that the linear system



o

%
G, (Z )=z?

" f. T., has no solutions in B.
J =1 & J¢

=i

The proof of (2.3) is difficult enough and it7is the

-

subject of § 4.

(2.4) Remark. When B is a Cohen A-algebra such that
the residue field morphism k—s X is algebraically pure, ﬁhe
theorem (2.2) shows that the morphism A — B is not only analy-
tiéally pure but has also the property to lift solutions from B of
arbitrary finite formal equations to near solutions in A (shortly
we say "lifts good"). It arrises the question if this new property
- is still valid for formally smooth morphisms. The answer is negative
in general because the morphism u":A'—s A’[[X]]' . lifts solutions
but not in a. "g‘ood" way. For instance, the morphism k'-——-—> k(T X3 .,
where k is an arbitrary field is analytically pure but does not lift‘
good "analytically", because a formal equation with coefficients
in k can have nonzero solutions in k]IX]] and only the zero solution
in k. If k is finite the above morphism does not 1lift good also
"algebraically", because otherwise the morphism k «— k((X)) must
be algebraically pure, which is a contradiction (1.2) vii). When
k is algebraically closed then clearly the mkorphism k— k [X¥
lifts good "algebraically".

The following theorem precises when the morphism u"
from (2.1) lifts good "algebraically".

(2.5) THEOREM. Let K be a field and T a variable. The fol-
lowing affirmations are equivalent: |

i) The extension Ke—> Q(XK T> ) is algebraically pure.

ii) The extension ¥e_—» K((T)) is algebraically pure.

iii) For every noetherian local complet ring A with residue

field K the morphism A— A[[T]] lifts good "algebraically"”.
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Here K {T > denotes the ring of algebraic power series with coefficients in K.

Proof. Clearly ii) = i).7 and 1) =) ii) is a consequence of
(1.2) 1) and 1i), KZT> béing an AE-ring (see [1] ).

ii) =»iii) Let m be the maximal ideal of A and denote by
B the completion of the ring AL T} mA LT Clearly, B is a Cohen
A-algebra with residue field K((T)), which is an algebraically pure
vextension of K(ii)). Applying (2.2), we get that the morphism A —>B
lifts good algebraically. It remains to show that A —p» AII'T]I» has
the same property. Let ajke A, Gj , Fe K[Y], Y=(Y1,V...,YN) and

YyeA[LT ﬂ'N a solution of F such that the system

(+) Zkajka=Gj ¥)

has no solutions in A {['TX . Then it is sufficient to show that (+)

remains incompatible in B, i.e. there exists jO such that G. (V) is
o
not contained in the ideal _a_j B , where éj denote the ideal generated
; o}

by (ajk)k in A. Let Jg be such that Gj (y)fgj All TJ] (otherwise (+)

o o
is compatible in A[[X]] ) . Then _e_l_j is a proper ideal and we get easy
o
(g_j B AT =a, .A[[TJ . Consequently, if (+) is compatible in
o o ‘

B then G. (V)€ a.B and we get G, (¥)é€ a. A[[TH . Contradiction !
ie =4 io = i

iii) = ii) Using iii) we deduce in particular that the
morphism ¥ ——> K [[T]] 1lifts good algebraically. Now, let Fé€K [y}

is

<iet

be a system of polynomials and ﬁ-j , VEK[[T]} , V#0 such that

a solution of F in K((T)). Let F’' be the homogeneous polynom
associated to F. We get F’(v,u)=0. Lifting good (v,u), we get a
solution (v,u) of F’ in K with v#0. Clearly, % s ‘@ isolution of
F in K.

Q.E:D:



(2.6). Corollary. Let u:A——=B be a local formally smooth
morphism between two noetherian locél complete rings with residue
fields k respectively K. Suppose that K is a separable extension of
k and Q(K{T> ) is an algebraically pure extension of K, T being a
" variable. Then u lifts good algebraically iff K is an algebraically
pure extension of k.

For proof is sufficient to apply (2.5) m-times successively
in order to get that u" (from (2.1)) lifts good algebraically.

(2.7) Remark. i) Corollary (2.6) is still true if A, B
are not complete, but A is an AE-ring. Indeed, by proposition 19.3.6.

[3] the induced morphism J:A——>B is still formally smooth. If K
lis an algebraically pure extension of k, then Q lifts good alge-

braically (2.6). Let F, Gje K[Y], ajke A, Y=(Y1,,.°,YN) and ?e:BN

a solution of F such that the system (+) is incompatible in B. The
A N
canonical morphism Be«—> B being faithfully flat, we get (ng)n B=
=§jB and so as in the proof of (2.5) we deduce that (+) has no
‘ 3 A B n; /\N o~
solutions in B. Now, by (2.6) there exists ye&¢ A  such that F(y)=0

and the system
(+) 2. a3 T=C; (¥)

has no solutions in X. If ye:AN is a solution of F such that ys§
mod mcﬁ for ¢ sufficiently large (A is AE—rihq), then the system
Zrajka=Gj(y) is incompatible in A (m denotes the maximal ideal
of A).

ii) As above, it is enough to have A an AE-ring, instead
"A,B complete rings" in the hypothesis of (2.1), (2.2), (2.3).

iii) If we leave the case of formally smooth morphisms,
then the results of this section are not in general true. For

instance the morphism C[IXJ<«—sC I3 [Yj(x Y)/(Yz—x) is not
14



algebraically pure, but it becomes algebraically pure if we

change the base from € [[XJj to ¢{IX¥F/(x)= c.

(2.8) Remark:  The condition 1) from (2.5 ‘dis “fulfilled

for instance when K is separable closed (see (1.3.3)).

§3. Applications

In this section some applications of the theorems
announced in § 2 are given.

Let A —>B be a formally smooth local morphism between
two noetherian local complete rings with residue fields k and K
Suépoée that ke—»K is a separable and algebraically pure extension,
and in the case when B is not a Cohen A-algebra, suppose additionally

that

() Ke—>Q(K<KT>) is an algebraically pure extension,
T‘being a variable. Using theorems 2.1, 2.2 and corollary 2.6 we
shall show tha£ some properties of the ring A which can be formuled
in terms of compatibility of some polynomial equation systems are
transfered on' the ring B.

(3.1) PROPOSITION. Let m be the maximal ideal of A, n

a non-negative integer, F=(F1,...,Fm) a finite system of polynomials

w‘_——
from AfY]=A[§ .,YNjYﬁas a finite number of solutions (perhaps

l,..
none) in gn. Then, F has not other solutions in gnB.

(

Proof. -Let y(l),...,y s) be the solutions of F in mn.

Suppose contrary, that F has in gnB a solution y=(yl,...,yN)
(t)

distinct from y yt=1,...s. We show that ¥ 1lifts to a solution in

mn for F distinct from y(t). Let {e],...,ep}- be generators of the




ideal gn. There exist {gij} i=1,.ﬂ.,N, j=1,...,§ in B such that
I -

'yi=2 'bijej , i=1,...,N, because ye_r_nnB. For every t=1,...;8 there
3=l - e
exists an index i, such that c,=ord (y. —yft))<:¢’. Put G. =Y, —yf ),

t i 1t lt i, i, lt

G=(Gi Y t=1l, 6008, c=(cl,...,cs), and add the polynomials
t

yi—Zf'e.Y i=1,...,N to F. By (2.6), there exists a solution y in

ioy 343

A of the extended system F, with the broperty ord (G)=c, i.e, there
(1) (s)

exists a solution y for F in mn distinct from y recesy .

Contradiction !

(3.2) PROPOSITION. The #$ollowing assertions holds:

i) A is a reduced ring iff B is so.
ii) A is integral domain iff B is so, and in this case
A is algebraically closed in B.
iii) If p is a prime ideal in A, then pB is a prime ideal
in B (in particular, Spec B —> Spec A is a closed morphism).
iv) If p is a prime ideal in A, then the canonical ﬁorphism
k (p)e—> k(pB) is algebraically pure (k(p) denotes the residue

field of the local ring Ap).

Proof. i) If ﬁ is reduced then A is reduced, the morphism
.Ac-).B being injective. The necessity of condition folloWs from
(3.1) . Indeed, for every nonnegative integer c, equatioﬁ v®=0 has in
A only the trivial solution. It has not other solutions in B, there-
fore B is reduced.

ii) Sufficiency being trivial, we prove the necessity.
Suppose that B is not an integral domain, and let §l’§2 in B such
that §1.§2=0 but §1#0, §2#O. Then ord §1 , ord §2<¢b . By theorem

(2.1) there exist Yy r ¥y in A such that yly2=0 and ord yi=ord §i

i=1,2. It follows that y,,y, are different from zero, i.e. y,,y,



P

arevzero divisors in A which contradicts £he hypothesis.

For the last part of ii) we observe that a polynomial
Fe A[Y] has at most deg F solutions in A, therefore it can not have
other solutions in B by virtue of (3.1).

iii) follows from ii) by base change A — A/p

iv) By base change A —> A/p we reduce to prove that Q(B)
is an algebraically pure extension of Q(A), in the case whem: A, B
are integral domains. Now the proof is as in Remark 1.9 v) [9].
Using (1.2) iv) it is sufficient to show that the morphism of the

type u:Q(A) -—-—-—'>Q(A)[é:o,§ B ,%;l], ~Z_rie B, -ZO#O, s elN have

l J o oo s

retractions. Let acA{Z], Z=(ZO,. ..,ZS) be the kernel of the map
A[z] —B given by P ~~—> P (%) and c=ord 'Zo . By 2.2 or 2.6, there
exists a solution % of a in A such that ord %o=c. In particular,

2'0750 and the map A[2] —>A given by P~»P (%) induces the retraction

Q(a) [5,_581] —> Q(A), we were looking for.

(3.2.1) Corollary i) If g is a p-primary ideal in A then
gB is pB-primary ideal in B.
‘ id) . Z£ §_=qlﬂ ﬂqs is a reduced primary decomposition
of ideal ae A and p, are the associated prime ideals of q; then
_@._B=qlBﬂ . o9 ﬂqSB is a reduced primary decomposition of ideal aB and

piB are the associated prime ideals of qu. Moreover, it holds

Vis- Va5

The proof is a consequence of 3.2 iii) and theorem 13
p-60 [1].
(3.2.2) Corollary ij Every saturated prime chain from A

remains a saturated prime chain by extension to B.

14.) .Every q esﬁ)ec A holds ht g=ht(gB).



Proof i) If A is an integral domain and g<A is a prime
ideal with heighﬁ one then gB is a nonzero ideal with height £1,
using theorem 19 p.79 f?]. B being integral domain (3.2 ii)) we
deduce ht(gB)=1. Consequently, the saturated prime chain (0)c g
remains a saturated prime chain by extension to B. This is sufficient
because always we may reduce to this case by a base change.

ii) B being catenar, ii) is a consequence Of s diis
Q.E.D.

(3.2.3) Corollary i) Let a<¢A be an ideal and g52a a
prime ideal of A. Then EAQ can be generated in Aq by m-elements iff

aB can be generated in B

2B by m-elements.

aB
ii) pe€Reg A iff pBe Reg B, where Reg A denote the set

of prime ideals of A such that Ap is regular;

Proof. Let a=(f,,...,£ ), g=(gyre-ergy)- Consider the

following system of polynomials

(8
Sfi=;§1Uiij ’ i=l,...,s
Fs:= J
$
sz:.l=k2=_"lvjkfk , S5 v 4 00
>
G:= S - g, T
=1 < K

where S, U.. ,V Z. , T, are variables. If aB

i3 5k ¢ 24 I is generated

gB
by m—élements @1,...,§me B then there .exist s,u,v ¢ B such that
(#,8,4,V) is a solution of F in B and the equation GlswT)=0 has

no solutions in B. By (2.3) or (2.6), F has a-solution (B,8,u,v)

in A such taht the equation G(s,T)=0 has no solutions s O



Consequently 5=(zl,...,zm) generates gAq.

»

ii) is a consequence of i) and 3.2.2 ii)

QB D
(3.2 .4).Corollary. If B ilg a.factorial ring. then A .is too,

-Proof. Let qc A be a prime ideal with height one. Then
gB is still a prime ideal with height one (3.2 ii), (3.242p 24))
and thus is principal. Applying (3.2.3) i) it results that g is

principal.

Q.E.D.

Now, let xl,...,xne:A be a system of paraﬁeters of A. The
ring A has a big Cohen-Macaulay module if there exists an A-module

E such that x=(x1,...,xn) is a regular sequence on E [{].

(3.3) Proposition. Let B be a Cohen A-algebra. Then A

has a big Cohen-Macanlay module iff B has one.

Proof. As M.Hochster showed [47 the non-existence of a
big Cohen-Macawlay module over A is equivalent with the compatibility
of a system of polynomial equations with- integral coefficients in

A. Clearly it is sufficient to apply (2.2).

§4. Proof of the theorem 2.3

For the beginning, we remaind a result from the theory
of ring ultraproducts [2], [9]. Let N be the set of naturals and
D a nonprincipal ultrafilter on [N. Let AX be the ultraproduct of

A with respect to D. The ring AX is local, let A, be its separate

1

in the adic topology given by the maximal ideal. Using hypothesis

Mot 4(H74



and notations of (2.2), we have the following proposition:

(4.1) PROPOSITION. B, is a Cohen A -algebra.

1 1

Proof. In fact, by structure theorem of noetherian local

-complete rings we have AZR [[Xﬂ /a , where R is either the field k

or a discrete valuation ring of characteristic 0, with residue field
k, and X=(X1,...,Xn) are variables. Let R’ be the Cohen-R algebra

with residue field K[3]. Then B=R’[[XJ] /ar' Txp ¢ It is known [9]
—D7 iT . . . .
that A =R Exﬂ /aR ‘IXZK , Bl—le)ﬂ}/_a_Ri{IXI[ and it is sufficient

to prove that if R—>3R’ is an unramified extension of discrete
valuation rings such that their residue field extension is a sepa-
rable one, then the morphism Rl‘_>Ri has the same property. The
extension R —= R’ being unramified it is sufficient to show that

if a field extension k —»K is separable then the extension kjf__;,KX
is too (here k* is the ultraproduct of the field k with respect to
the ultrafilter D). An algebraic closed extension L of K beinQ
éonsidered, it is sufficient to show that the fields KX, (kﬁ)/l/pc Lx
are linearly disjoint over K> (Mac-Lane’s criterion), where p=char (k)

Let o(l,...,o(t in K be llnearly independent over k with

Mt

2 1/p_ . 1/p. % =
1 aioli—o, where a, € (x*) (k )7 . Let a; [(aln ne ‘N]

- 1/p - " "
a, €k and ofi— [(b(in)nelN]’ e(ine K, where " [ I " means the
equivalence class modulo the relation given by the ultrafilter D. We
obtain that the set 4 = {nelNl L alno(ln—o} € D. On the other hand,
the set 5”={n€ N , L JPT are linearly independent over
in t,n '

k} € D. It results that for every n ¢ Jﬂ d " € D we have ain=0

i=l piascjty whencesall a; are zero; therefore 0(1, Sers Mt are linearly




independent over kx.

: QoEoDn

The proof of the theorem 2.3 will be done in several steps.

Step 1. Reduction to the ¢ase Al--—-.y.B1 .

Let us consider the commutative diagram:

B i bes: s

By i B

: ’ : . be
-and suppose that the theorem 2.3 is true for u,. Let F, G,...vyas in
theorem 2.3 and let (Z,y) be a solution in B of the system F such

that the linear system 2. ajka=Gj(E,§) has no solutions in B. By
k

hypothesis, F has a solution (§,§) in A such that the system
2. a.,T =G.(E,§) has no solutions in A,. The ring A, being ncethe-
I jk'k 73 1 £

rian local complete, it is an AE-ring [8] . Thus the system

Zirajka=Gj(g,y) has no solutions in Al/EcAl for a suitable c>»1

(m is the maximal ideal of A). By theorem 2.5.[9], there exists a

(a)

set JCGED and for every d € Jc a solution (z y(d)) for F in A

such that Z(dXEgd ' y(d)zyd mod gc. We claim that for at least

=Gj(z(d),y(d)) has no solutions in A.

de Sc the system =, ajka
, k

(d)

Otherwise, let t be a solution in A of the system = ajka=

k

=Gj(z(d),y(d)), d.€ J;. We consider in Ay the elements ,§,

~
it

‘defined by sequences (z v (tg)gen 23S follows:

ddew © Ydaem



(d) (d)

a
L L L

if d GJ; and 0 otherwise. Clearly, we

~ X
have‘F(§,§)=0 and t is a solution for linear system = ajka=Gj(z,§).

k
® A ~ 124 ~ A
But z=%, ?Qy mod chl , and we get =X a., t =G, (t,y) mod m°a

= 1 °
Contradiction !
Finally, we remark that the residue field extension

kx2~,,Kx is algebraically pure because the extension kc——¢.K-is SO.

Step 2. Reduction to the case when Ay is a formal power

series over a field or a discrete valuation ring with characteristic

g.

With notations of the above step, we consider the commu-

tative diagram:

R, OX —— R} IxX

R, [xJ /-"%Rl Lxy *21 — B=R{[[x] /§_R1 Ixy

We claim that it suffices to prove the theorem 2.3 in case of
the morphism Rllij-——aRi[[XE g

Let a;,...,a ¢ Rl[ij be generators for the ideal a and
$

: k% * - S
consider the systems F —(Fl,...,Fm), F:=F, .; ajUijéiRlﬂ:X,Zﬂ[Y,Uj
g ' J=1
~ = ~ o~ ~ A
l: ) b1 .=
i=1,.¢+,m. and 5;& ajka+£:laka Gj r J=1,...,p, where Fi i Gj 7 ajk

denote some liftings of Fi S8 ajk in Rlﬂ:xﬂ . Clearly, F has

J

~a solution (Z,¥) in B, such that the linear system Ejajka=Gj(E,§)
: k

is incompatible in B, iff F* has a solution (2" yB,u) {din Ri[fx]

such that the linear system




23 ) o 1o :
25 ajka+Z_akvjk=Gj(z 'y") Helgie ol D

is incompatible in Ri IXxJ . In this way, we may reduce to the case

we were looking for.

Step 3. Reduction to the case when A=R, is a field or a

discrete valuation ring with characteristic 0, the system G being

finite but F perhaps not.

Now, let F=(Fl,...,Fm), G=(G1,...,Gp) be systems from
Rlax,z]] 3. wherg X=(X1""'Xn)' z=(zl,...,zM), Y=(Yl,...,Yﬂ).

Denote

. (- &
p*e 2 nZy e X i=1,...,M
o« EIN
e o §=1,...,N

.= Y. X

T§='Z Ty X€ k=1,...,q
oLeEN T
and substitute Zi ’Yj by Zf.: ' Y? into the systems of formal power
o oL
o<
series F, G, where O(=(o<'l,..., o(n)e‘ (Nn X =X1 1...Xn N and

-{Zi,ok} 7 {Yj,oc}' {Tk’o{f are countable sets of variables. We get

Fi(ZX,YX)= & o Fy %P i=1,...,m
/SeiN ’F‘

c.(zXy%= = 6. xP §=1,...,p

3 n73p

FetN

where Fi(s £ Gjpe Ry (IZiO:H [{ZI‘% o #0 ,{ijv . We remark that.

) 0
for every F,e [Nn , the number of variables Zi,°¢ ’ Yj,c( y X €N



which really appear in FiP or in Gj’g is, anyway finite. Also the

elements ajp € Ry [ X can be written in the following form:

2. A x P a. &R

ajk= !beth ]k,/5 jk,[B 1

Clearly, the compai&bility of the original system of equations
1o the
F=0 is equivalentYcompatibility of the countable system of equations

(1) F,, =0 Pem .

in a countable of variables Z Y

dot

2. ajka=Gj is equivalent with the following countable system of

P . Also the system

equations

i

2y = 5. T. . =G. Lew® , 3=1,...,
( k=l p+d=c P KA I SRR

" which is linearly in Tk,f ’

CIf (z,y) is a solution of F in B1=R1E'X} , and z,y have the

=S

form §=AZTE£ X* , respectively = 2 ¥ X (% A=A s e
ot ' o K
%

from the maximal ideal of R;), then (%

i,0
,2;) g asolution of. (1)

in R; and reciprocally. The system Za_., T =G.(Z,y), j=1,...,p is

incompatible in B, iff the system

1

is incompatible in Ri and this holds iff there exists a finite sub-

r

system of (3) which is still incompatible in Ry » as says the

following lemma:



of formal

such that

solutions

system of

p being a

(4.2) Lemma. Let E=(Fn(Zi,Yj) be a countable system

ne®™

) P ()

power series from Rl[[Z]]fY], Z=(Z;) 5 em * 35 em

i
every F_ depends only on finite variables. Then F has

in Rl iff every its finite subsystem has too.

Proof. The system F=0 is equivalent to the countable

congruences:
(4) FnEO mod pch c,nelN

local parameter in Rl' Let Fn & be a polynom from R[Z,Y]

’

such that s mod z° with =<l > ¢ ( ixI = EW%i), The system (4)

r

is equivalent with the following system of polynomial congruences:

Lifting Fn

F =0 mod pcR

Z =0 mod pR1

c to Rx we get the system

n
F =0 mod pcRX

Z =0 mod pRX

which gives a countable system P of polynomial equations over R ,

writing congruences as equalities. BY lemma 2.17 [9), we deduce

that the compatibility of F is equivalent to the compatibility of

every finite subsystem of P.

Q.E.D. for lemma 4.2.



Step 4. Incompatibility of (2) is equivalent with

compatibility of a finite system of polynomial equations, which can

be added to F.

The incompatibility of (2) is equivalent to the incom-

patibility of a finite system of the type

by step 3. Let r be the rang of ﬂajkll and A a nonzero rxr-minor

1 is not a field). There exists two kinds

of minimal wvaluation (if R

.of‘incompatibility for (5):

a) (5) is incompatible in the fraction field of Ri. This
happens when there exists a nonzero (r+l) x (r+l)-minor H(Z,y) of
the matrix "ajk‘Gj(E’§)“ . Let s=ord H(Z,¥). Adding to F the
polynomials H(Z,Y)—pSU, Uu’'-1 (U,U" are new variables), we settle

this case.

b) (5) is compatible in the fraction field of R! but

L
incompatible in Ri. Clearly (5) is equivalent with a system of the
following form:

(6) A T 2. A..T.=Gi(E,§) ; = RN,

_ % '
where Aing, GingIIZ]} [Y]. Remark that A ‘Aij ( A has the

minimal valuation) and thus (6) is incompatible iff there exists
i € {l NP ,r} such that cs‘r'al(A)}c‘m‘;L(GﬂiE (2,7)) + Let s=ord (Gjit (z,y)) .

o o
Adding to F the polynomials

%
GI (z,Y)-p°V , VY -1
(@)



o il A

V,V' being variables,we settle also this case.
After Step 4, the proof of (2.3) is a conseguence of

(4.2) and of the following lemma (the case R,=field is already over):

il
(4.3) Lemma. Let Re— R’ be an unramified extensioh of

complete discrete valuation rings of eharacteristic 0 such that

the residue field k’ of R’ is a separable extension of the residue

field k of R. Then the following statements are equivalent:

i) the morphism u:R ——— R’ is analytically pure.
11) u is algebraically pure.
111) The residue field morphism k —> k' is algebralcally
pure.
Proof. Using (1.5) it is enough to prove iii)=;>ii). Let
F=(F1,...,F ) be a system of polynomial equations from RIYJ,
Y= (Y ,...,Y ) and ¥ a solution of F in R’. Let q be the kernel of
the map R[Y] ———> R'.given by P ~> P (3) and denote r=ht(q) .
Adding some polynomials to F we may suppose that F generates
.q. R being of characteristic zero, the extension Q(R)e—s Q(R’) 1is
separable. By jacoblan criterion, the matrix (——) has a r x r-minor

DF b

M, which is not in g, let us put M=det (5?;)i,j=l,.,.,r.

Thus

M(7)#0 and using Neron'’s p-desingularization we may suppose that
M(Yy) is invertible in R’. Remark that ¥ induces a solution for the
system

F(¥)=0 , M(Y) .Usl

]
in k’. Then by iii) it has one in k. Thus there exists § é R such
that F(y)=0 mod p and M(Y) ¢0 mod p. By the Implicit Function Theorem
there exists a solution y of Fl,...,F in R such that y_y mod P

It remains to show that y is a solution for the whole



system F. Let "r(Fl,. ..,Fr)=qln <o ﬂqt be the reduced primary

decomposition of '\r(Fl,...,Fr) ¢ 4y being prime ideals. ine ®RIV) . As
q=(F) 3 (Fy,...,F.), g must contain an ideal q; . let us put godq; -

Tt results qufY]q=qR['ﬂq=(Fl,...,Fr)Rf‘L]q and we get g;=q . If

t=1 then clearly y is a solution for the whole F. If t >1 then
<

M€ Jq+§_ ; where a= N q; - (If bog+a is a prime ideal which does
i=q

not contain M, then C:=(R[Y]/ )

|is not integral domain,v’f\

Fl'°"'Fr) b

This is a contradiction because the mofphism R—>C is a smooth one).
Thus there exists an integer d 1 such that Md=M1+M2 with Mle aq

and M,e a. As g(y)=0 and M(y)#0 it results M, (y)#0. Consequently
F(y)=q(y)=0 because M,q C {(Fl,..,,Fr) .

Q.E%DS
(4.5) Remark. We see from the proof of theorem (2.3)
that this theorem remains true if we consider more "incompatible"

systems of the type 2 ajkasz . Also the coefficients of the

above linear system can be polynomials from R {{z]] [Y] and not

only elements from R.
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