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A VISCOPLASTIC CONSTITUTIVE EQUATION FOR ROCKS

'N. Cristescu

§1 Introduction

Rocks have long been considered in mining practice as being
linear elastic though it was well known that mechanical proper-
ties of rocks are much more complex (see OBERT and DUVALL
[1967], BAKLASHOV and KARTOZYA [1975], ERJANOV et al.[1970],
KARTASHOV [1973], GOLDSMITH and SACKMAN {19737, TAMA and. VU-
TUKURI [1978]. The rheological properties of rocks are signi-
ficant not only within geological time intervals but also
within much shorter time intervals (days, months) of interest
in mining industry.

The aim of the present paper is an attempt to establish a
much more precise constitutive equation for rocks to be used
in.time intervals ranging from a few minutes (sometimes even
shorter intervals) to several years. Rheological models for
rocks, mainly linear viscoelastic models, were already proposed
by many authors (see the literature already mentioned). It was
thought however, that rocks are more complex and that their
mechanical properties would rather be described by elastic
viscoplastic nonlinear models for both shearing properties
as well as for the volume compressibility. A tentative model
ié proposed based on several diagnostic tests, In the future
additional tests of the same kind or other are still necessary
to make precise some of the aspects mainly guantitative but
also gualitative concerning the model. Meantime the model
must be considered to be g first_a@proximation pending further
experimental data. Creep properties and deformation processes

: g ;¢ ‘ g N
during loading were mainly considered as being the ones iy
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involved in mining applications we had in mind. Other mechanic-

al properties were marginally discussed.

§2 Standard experiments in compression

From the point of view followed here, the reason of doing
such experiments was twofold, On one hand these are thé first
and the simplest tests which can be done in order to find the
dominant mechanical properties of various rocks in quasistatic
compression. Standard testing machines were used while the
cylindrical specimens were 10 cm. long and 5 cm. in diameter,
with unconfined lateral surface. In order to look for possible °
time effects, even these experiments have been done with va-
rious loading rates, controlled with the testing machine.

On the other hand, the rock response as revealed by such
experiments will be used in order to estimate the deformation
of the specimen during the first period of deformation in
c¢reep test, i.e. during the period when the testing machine
used in creep experiments is loaded. Further compressive
stresses and strains are defined as positive; in the experi-
ments discussed here only positive stresses and strains are
involved.

In fig.2.1 three stress-strain curves obtained in quasi-
static experiments for dry schist are shown (porosity from 3
to 8%). The upper curve (full dots) corresﬁonﬂs to the load-

2 2

min~t (2942 N cm” minfl), the middle one

2 2

ing rate 300 kgf cm™
(triangles) to the loading rate 40 kgf cm™ min~t (392 N cm”
min’l) and finally the lower one (circles) to a very small

2min."l). It results

loading rate of 1.33 kegf em™“min™* (13 N cm™
from these curves that the stress—strain relations are non-
linear and are dependent on the loading rate. This loading

rate effect is similar with the one reported by many auvthors
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Fig.2.1 Stress—strain curves for dry schist and domains

involved in the mathematical model
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for various rocks (see for instance LAMA and VUTUKURI (1978),
PERKINS et al. [1970], KUNTYSH and TEDER [1970]). Successive
cycles of unloading followed by reloading have also been done,
showing,significant hysteresis loops and variation of the
tangent modulus during both loading and unloading. In order %o
keep the figure simple only one such loop has been shdwn. The
unloading produced starting from various stages of deformation
have pointed out significant permanent strains. Generally the
permanent component of the strain is, as order of magnitude,v
about one quarter to one third from the total deformation; and
- therefore it is quite significant,

The ultimate point on various curves shown on fig;2.l
corresponds to the fracture of the.specimen. Generally with an
increased rate of loading the stress at failure is higher, butb
the corresponding strain is smaller. The stress at fai;ure de-
termined with moderate rate of loadings (of the order'bf 40

2 2min"l)) is involved in the mathema-

kgf em™min™T (392 N em”
tical model and will be denoted by Gr‘ This conventioﬁally
established magnitude for 6} will be considered to bhe a
typical constant for the particular kind of rock under consi-—
deration,

Another remark is that the stress—strain curve obtained
with unconfined lateral surface of the specimen has the concav-
ity directed towards the positive strain axis. Other rocks
however, (sandstone) even in such kind of experiments possess
stress-strain curves with an opposite curvature (directed to-
wards the positive stress axis) while some other rocks possess’

stress-strain curves which are quite linear, though highly

sensitive to the loading rate (limestone).




§3 Cree tests \

The creep tests have been pgrformed using specimens of the
sizes as mentioned before, on which successively increasing
loads (in steps) were applied. The specimen was first loaded
with a certain constant stress and the strain was recorded for
several days or weeks. Generally at the end of a finite, well
determined time period, the strain remains constant. When iv
became evident that the strain will increase no more, an addi-
tional load was applied to the specimen and so on. Typical
strain-time curves obtained in such kind of creep tests are
shown on fig.3.1l and fig.3.2, again for schist. The last points
shown on these curves correspond to the failure of the specimen.
Since for the same type of rock there is a broad range of
strength characteristics expressed by various values of the
stress at failure, in order to describe the creep test it is
more useful to report the variation of the strain to the rati&
Ocffective’/ Op Tather than %o the effective stress 6_pc. iives
This ratio will be denoted by A=G_../G_ and will be called
loading ratio. Here G, is obbained in standard compressive
tests with medium loading rate, as described above and is g
typical constant for the rock under consideration. The curve
from. fig.3«). is sﬁowing that at each increase of the loading
ratio we get an instantaneous increase of the strain, followed
by a slow increase of the strain due to creep.

A very important aspect in the deformation by creep is the
following. If the loading ratio applied to an unstressed and
undeformed specimen is not surpassing a certain limit, then
after several days or weeks the strain will become constant and
will stay constant no matter how long is the time used to per-—

form the experiment. Let us denote by A}S the highest wvalue

—————— e



% . | 065
065

S
-

i

o0

L
60 70
Time (. days

Fig.3.l Strain-time curves for schist during creep tests

& A

%

a7t Failure
. a7

K
%%
Q2t ' N
art 3 e
. -'5/./"6’11/ 1
0 1

Il 1 L 1. )| 1 1 ] 1 1 1 1 »
0 2 Hecibein®s dO okl & 18adb i A8 2l 22 8% 1 285028, 3002
Time (days)

Fig.3.2 OStrain-time curves for schist during creep tests and

one inverse creep test



for /\ for which the deformation by creep will still be stable
after a certain finite interval of time. Thus for any A >‘£3S
the deformation by creep is expected to become unstable in

the sense that for such loading ratio the strain is continuous-
ly increasing up to the failure of the specimen which occurs
after a fiﬁite time interval elapsed from the moment when the
load was applied. For A éléé the strain is becoming constant
after a certain interval of time. For zﬁ<(z§s this time in-
terval is finite and can be determined accurately'by experi-
ment, For A o~ Z&s it is quite difficult to decide if this
time interval is finite or infinite. For the purpoée of esta-
blishing a model further. ZXS will be chosen so that for any
2 52_[}8 the time of stabilization by creep be finite. Thus
[SS is depending on G _p. and G, but it will be assumed
that 438 does not depend on initial strain nor on the loain
ing rate. If for certain rocks this assumption cannot be done,
then in-order to uniquely define ZBS an unique standard load-
ing rate is to be used to determine Z}S in all successive
tests starting from the state G =€= 0 .

Inverse creep experiments (unloading) were also performed
(fig.3.2) in order to get information concerning the nature of
_varibus parts of the strain. When loading was removed practic—
ally instantaneous, a part of the strain decreased also instan-
taneously. Further on the strain continued to decréase slowly
in time, but after a certain period of time it does not decrease
rany more. Thus it was found that strain can be decomposed in
three partsi an instantaneous reversible one (elastic) Egr @
non«inétantaneous reversible one (viscoelastic)_&ve and finale~

ly a permanent one Eip. It is interesting to mention that
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generally the deformation of the specimen obtained during the
first stage of deformation, i.e. during the time‘when the load
is applied to the machine, contains a significant permanent
component. This is‘obvious if comparison is done between this
initial instantaneous component of the strain\and ‘Ee obtained
during instantaneous unloading. Recalling the results mention-
ed in §2 we come to the conclusion that this initial permanent
component is of viscoplastic nature.

» A mafhematical model to describe the main experimentally
fbund}characteristics presented above, can be obtained as
follows. We first consider in the G - & plane (fig.2.1) a do-
main &D bounded by three curves, all three obtained by expe-
riments. Curve CC is the boundary of stabilization by creep;
poiﬁts on this boundary are the points of maximum strain which
can be reached with various stresses (relatively small) during
creep tests. The experimental data used to determine Cc suggest
that this boundary has an horizontal asymptote .G’m a = const.,
and therefore the stresses involved in the experiments deter-
mining Cc do not surpass the stress corresponding to this
asymptote. If such an asymptote does not exist then G = a is
the ultimate stress still producing a stabilization of defor-
mation by creep. Curve Od is the curve of instantaneous res-
ponse of the rock, i.e. this would be the response of the rock
if the fastest (from the point of view of the kind of experi-
ments under consideration) possible loading is applied to the.
gpecimen, For instance if creep behaviour is to be described,
then a fast loading obtained with a standard testiﬂg machine
wouid be such a fast loading, generally much faster than the

one which could be obtained when a creep machine is loaded.



Pinally the last curve Cr is the boundary where the fracture
of the specimen is produced. These three curves aré bounding
the domain £§9 of all possible stress—strain states which can
be reached in loading processes by creep tests. We bbserve
here that for stresses in the neighbourhood of the G = a
both curves Cr and Cc are difficult to be found by cxperiments
since very long time intervals are necessary. Therefore it is
not certain that the two curves Gr and Oc have a certain com-
mon horizontal asymptote but the experimental data we used
would rather suggest this idea. The experimental data for
concrete obtained by RUSCH [1960] would also rather suggest
this idea.

We consider.now the general form of the constitutive equa-

tion (initially proposed for metals by CRISTESCU (1963])

€= (G+PE,C, send)G + ' (E,6) (3.1)

== o

with
, (P(E,G) i F >0
P(E,0, sgnl) = ' (3.2)
0 if é'<,0
where (i)(&,ﬁ) describes the "fast" or "instantaneous" proper-
ties of the rock and is a non-negative function of class Cl on.
0L £, 0 £ 6 L Ef. '\[/’ (£,6) describes the "slow" proper—
ties of the rock (creep, relaxation). E is an elastic modulus
determined in "fast" quasistatic loading tests. We recall that
for rocks E determined in quasistatic loading tests is depen-
dent on the loading rate. Here E = const. is defined by conven-
tionally choosing a certain "fast" loading rate for the machine,
In the model however, the cases when E depends on the stress

states can also be considered, if necessary. The dots above
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the letters in formulas above mean time derivative. It will
be assumed that strains and rotations are small. The "instan-
taneous" response of the rock starting from the state & =6 =0

will be approximated by a curve

G P

¥

‘with X >0 and /6 > 0 dimensionless characteristic constants
Qf that pafticular rock and Eo= const. a particular value of
E, for instance the value of E obtained in dynamic tests (by
low amplitude wave propagation). Then function ($>(£,67 will

be defined as
-1

. A
o) =p ) -1, Neoed . ()
0

eai b

The coefficient function \@/(E,Gﬁ is found by experiments
so that W%r(E,G) = 0 would be the equation of the curve of
stébilization by creep, i.e. the equation of curve Cc’ In
other words it will be assumed that exists a curve (&,0 =
C;C(E)) E;og? with the properties

\(e,5) > 0 1f G (g) <6

(3.5)
WI/(E,G) =0 if 6 (8)>6 .

Since the loadings surpassing a certain limit G = a produce

- an unstable deformation by creep (i.e. finally producing frac-

ture), the equation of the boundary C, was chosen in the form
6 =al1= exp(-bE)] (3.6)

where b > 0 is a dimensionless constant, while § = a is the
highest value of the stress still producing stabilization of

the deformation by creep. This criterion to choose the value



of a is ensuring, but a slight higher value for a can also be
" used if neéessary in specific applications.

Since even for a certain kind‘of rock one can find distinct
categories of mechanical properties which can be roughly cha-
ractérized by the conventionally defined fracture resistance
6, it is more convenient to introduce in (3.6) the maximal
ioaaing ratio 23 |

8

a=A 6 (3.7)

which would still produce a stable creep, while (Yr is obtain-
ed with standard testing machines., Now (3.7) can be written as
6" -

Or

Generally the coefficient b is also somehow dependent on G;

but it is of lesser importance for the discussion which follows.
Sometimes it is useful to determine the boundary of stabili-;

zation by creep using tests intermediate between creep tests

andvstandar&'tests. These are the tests in which continuously

increaéing loading is applied but with a very small loading

rate. Let us assume that

is the stress-—strain curve obtained with such a procedure. It
was found that this curve is close to the creep stabilization
curve and sometimes even slightly lower than the later one.
Then (3.9) can well be used for the creep stabilization boun-
dary. For many rocks (3.9) can be well approximated by a

straight line

G_
'6—; = h E ° . (3910)
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Thus the coefficient function ‘J'(¢,6) entering the consti-

tutive equation was chosen in the form

E%pig“s}éﬁﬁ;'mmb%gﬂ}m

\J(e,5) = 6> 6,4, - ex(-be)] (3.11)
0 it 0< G <6, A1 ~exp(-b €) |

with m > 0 a constant (further only the value m=l1 will be

used) or in the form

K.(El% exp "~ GrAs[l i} eXp(-bEﬂ_ l} if

B n

\?(E,G) = G >0';As{l - eXp(—bE):_{ (3.12)

o if oS o) \<0“rAS[1 - eXp(-ba)]

with n = const., or various other forms (see CRISTESCU and
SULICIU [1976]). Finally if the stabilization boundary is

taken in the form (3.7) we can write
x(0) ,
—-é——— [ G-G_h E] if 6 >6.h .E

W(E,G) = (3.13)

0 if 0< 0 L6 he€

or again another variant can be used. In these formulas since
E/%(G) can be considered to be a "viscosiﬁy coefficient" of
the rock in creep tests, k(6) is in fact governing the variable
value of this coefficient, To keep the model simple here it
‘will be assumed that k depends on stress alone.

Therefore the mathematical model.to describe the slow defor-

mation of rocks is fully determined in the form (3.1). The



viscosity cbeffioient can be determined by measuring the
strain at various times during creep tests and using the con-—
gtitutive equation. It will be éiven in Poise, .
The numerical coefficients were determined for several
rocks. For instance for schist several classes of strength
characterized by_the stress at fracture G;, were detcimined.
For one of these classes stresses up to 0= 300 kgf cm"2(2942
N em™?) are still producing a stable creep while stresses
above this value ‘do not. Since for this kind of rocks the
mean value for 6 is G = 500 kgf cm"2(4903 N cm"z) it yields
A, = 0.6 and further a = 300 kgf om™2(2942 N cm™2) and b =
300, Using formula (3,1) with (3.11) and m = 1 we can find a
méan value for k from creep tests., Generally for such rock k
is of the order of magnitude 0.2 - 0.07 ™% (4 stands for
"day") and it is smaller Ffor higher applied stress. This will
imply for the"viscosity coefficient" Ek™'  in such kind of
creep tests with final constant strain, an order of magnitude

12

of 10 Poise, Even for stationary creep we have found a visco-

sity coefficient of the same order of magnitude. This is a va-

lue smaller than 1017— 1018

Poise reported by MAXIMOV et al.
for stationary creep of argillaceous schist (see VYALOV [;978]).
VOLAROVITCH E1977] reports for granite, gabbro and liﬁestone
tested at rates of strains of the order 104~ 10~8 sec™t va-
lues for the viscosity coefficient in the range 10+2- 104
Poise, i.e. of the same order of magnitude as found in our
experiments. If formula (3.13) is used in conjunction with
(3,1) we obtain h = 69.3 and further k is somewhere between

-1

0.2 47~ and 0.09 a~l. Thus curve C, is determined by both ap-

proaches. From tests performed with standard testing machines
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it yields for the other constants approximately the values

B = 167,000 kef cu™2 (1,637,769 N cn2), &= 4.2 and f= 1.2
aﬁd therefore the cﬁrvé Cd is also determined, Thus the consti-
tutive equation (3;1) is fully determined.

Ih a similar way numerical coefficients to bé used in the»
constitutive equations of the form (3.1) were determined for
several other rocks (rock salt : BARONCEA et al. [1977], dolo~
mite, limestone, sandstone, gnaiss etc.). Some of these coeffi-
cients vary significantly from one rock to anothef, and some-
times even within the same kind of rocks. From all these coef-
ficients the elastic modulus E is the one which varies the
most from one kind of rock to another. The order of magnitude
for the other coefficients is not changing too much when pass-
ing from one rock to other.

Finally the third curve Cr necessary to fully define the.
boundary of the domain S@ is determined experimentally using
bofh standard testing machines (and various loading rates) and
creep tests (with various loading stresses). It was found that
for higher stresses and/or higher rates of loadings the strain
at fracture is smaller. On the other hand the fracture points
determined by standard testing machines are furnishing higher
strains (for the same stress) than those furnished by creep
tests. Curve Cr in conjunction with the constitutive law (3.1)
is of great importance for practical applications as for ine
stance the prediction of the failure of an undergroud struc-

ture etc.



§4 Volume compressibility

- It is well known that in what concerns the voluﬁe compress-—
ibility the’rocks (and soils) have quite distinct properties
from other materials, as for instance metals, in the sense
- that volume is compressible and this compressibility is part-
ially permanent (VOLAROVITCH et al [1974], LEVYKIN and VAVAKIN
[1978], VYALOV [1978], STEPHENS et al.[1970]).

In order to investigate the volume compressibility of va-
rious rocks a spécial device was made. (Variants of such kind
of devices are described for instance by VOLAROVITCH et al.
(19747 and STEPHENS et al. (1970)). Small rock samples, 20 mm.
in diameter and about the same height were compressed with a
piston ingide a thick walled hard steel_cylinder. Thus these
are experiments with confined iateral surface. The diameter of
the cylinder was bnly slightly larger than that of the specimen.
The lateral surface of the specimen was lubricated. The piston
Was compressed either by a standard testing machine or by a
dead-weight loading machine. Generally due %o very high forces
involved, the whole device, though made by high strength steel,
will deform. It is expected that many experimental errors may
_be involved, and not all of these are fully estimated. There-
fore the resvlis obtained unfill now are considered to be ten-
fgﬁiﬁa, i.é. indicating qualitatively some properties of the
iock only. In all experiments only a single continuous loading
followed by a single unloading were dcne. The constitutive
‘equation proposed is thought to describe the material response
in such experiments.

An estimation concerning the stresses and displacement

fields involved was done assuming linear elasticity for the
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rock specimen., We ﬁse cylindrical coordinates r,é’, %z, the 0z
axis coinciding with the specimen symmetry axis. Let us denote
by G, the applied axial stress at the upper end z =4 of the
specimen, by T the frictional stress at the lateral surface
r = R of the specimen (which will be assumed to be constant,
i.e. independent on z and 6 ), and by ¢ the height of the
specimen., Assuming axial symmetry, that the surface r = R of
the steel cylinder is deforming negligible and that at the
bottom of the specimen, at z = 0 and r = R the displacement

is zero, it is easy to show that the mean stress (pressure)

can be expressed as

1 (e, 8 (4] G

Wi

0=

where Y is the Poisson's ratio. From this formula it yields
that if the lateral friction is small ( ¢ small), if the ra-
dius of the specimen is relatively big while its length is
relatively small, and if Y is not too far from 0.5 then the
mean stress is not too different from crl. Formula (4.1) was
used only to get a suggestion for the sizes of the specimen to
be used. Generally the friction forces are significant since |
even after unloading a significant force (of the order of ée~
veral tons) was necessary to push out the specimen from the
cylinder. “

Thus in this series of experiments a reiationship between
the axial stress GiAand the axial strain El was established.,
Both quantities were measured. The other coﬁponents of the
strain were considered to be small in a first approximation,
i.e.véﬁl='351 where £ is the mean strain. Such relationships

are anyway suggesting (at least qualitatively) the laws of

e 46D
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volume compressibility for rocks in confined experiménts.

To give an example on fig.4.l are represented the curves
Gi ~ €, obtained for échist with two loading rates (4 ton/min
and 1 ton/min); the unloadlng was done with the same rate. It
was always found that the volume compressibility of wvarious
rocks is rate sensitive mainly during loading but also during
uwnloading and that important component of the volume strain is
present. The magnitude of the permanent volume strain is also
highly dependent on the loading rate: when the loading rate is
higher then at the same stress the permanent volume strain'is
smaller., Both loading and unloading curves are nonlinear with
concavity directed towards the Gd_axis. The permanent compress—
ibility of the volume was checked also by measuring the size
- of the specimen after the test and also by density measurements.
A few preliminary tests have been performed also to check if
a creep in volume compressibility is not possible, Fof‘this
pufpose the machine was stopped at various levels of the applied
stress and further this stress was kept constant or a dead
weight machine was used. It was found that volume strain was
increasing though the applied stress was kept constant. The
procesé was a transitory one and after a few minutes or tents
of minutes the volume strain became consbtant and remained so
(see the small steps on fig.4.1 as well as the small horizontal
plateaux at the top of these curves). | ”

A mathematical model for the volume compressibility can beww
established following the same procedure as above by making
the following assumptions (see fig.4.2). It will be assumed
that there is a limit volume strain Es which cannot be sur-

passed no matter how big is the applied pressure (locking
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Fig.4.?

Schema of domains and boundaries involved in
the constitutive equation for volume compress-

ibility
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model). If 6 is the pressure and € the mean strain, then it
will be assumed further that by making experiments with the
lowest loading rate of interest for the kind of experiments
we have in mind, we find a creep-stabilization boundary fer
the volume compressibility. The equation of such a boundary

can be written for instance as
= g = E*[ﬁ.- exp(- 3;) (4.2)

where G, > 0 is a constant of the material.

The previous assumption was made also in conjunction with
another kind of experiment in which the same device waé used
but the loading was applied with a dead-weight machine. This
time the load is applied in successive steps. The pressure-

" volume strain curve which results is step-wise looking. A
typical such curve shown on fig.4.2 reminds the Masson-Savart
(or Portvin-Le Chatelier) phenomenon. Generally at eaéh addi-
tional loading we get an "instantaneous" increase of the press—
ure and of the volume-strain, followed by a period in which
volume-~strain continues to increase under constant pressure.
The disadvantage of the experiments done with the dead-weight
machine is that the maximum pressure which can be reached is
smaller than in experiments using a standard testing machine
(in our experiments we were unable to surpass about 4 kbar
"~ with these machines).

The boundary (4.2) is thought to have distinct properties
than ti.e boundary CC discussed in the prévious paragraph: i.e.
" starting from \\/(556) € D, by any process with constant or
decreasing pressure the boundary (4.2) will be reached in an

infinite or finite time interval respectively.




Another assumption made is that by making the fastest pos-
gible test from the set of experiments we have in mind we get
an "instantaneous" response for volume compressibility which

may be expresseﬁ for instance as

if the experiments start from zero stress and zero strain
states. Here g(0) is a|non—neg@t;ve function of ClaSTmc}ﬁﬂni\\\nw :
046G ,0<& € < € In fige4.2 D2 is the domain
' 6
E*{l - exp(- -&—)lé EL €y, G20
: (o}

and domain Dl is

g(G) < E— < E*—l - eXp(- —6-6';)} 9 6\'>0 °
o ’

Points belonging to Dl are possible strain-stress states
which can be reached in loading processes when stress is in-
creasing. Some points in D2 can be reached during unloading
(decreasing stress) while others as for instance those in the
neighbourhood of & =E£*,, 60 = 0 cannot be reached by any con-
ceivable experiment. Power functions seem to be suitable for
. geveral rocks to be used in (4.3). In particular (4.3) can be
a straight line.

Tn order to describe the volume compressibility a rate type

constitutive equation of the form

° 1 e -
Eaz [m + f£(€,C, SgnO"):]G + %(5,6‘) (4.4)
is used. The instantaneous properties in loading are defined

by .
e jory e i S50

f(&’[)— ) S:‘gﬁb—): : : (405)
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where

Ye,o) = B . L, Veoen  (4.6)

and K(5) is the variable modulus in unloading. In a first ap-
proximation one can assume K = const. |
Function ,%’(8,63 describing the slow deformation of the

velme (ereep) is defined by

‘ "'2 {g*[l - exp(~ -0%)]-E}, E_(é*Il ~ exp(- -g-j—)]

(9]
8418,63 = (4.7)
0, €361 - exnt- O]

where 02 is a volume viscosity coefficient, which in.a first
approximation will be considered to be constant and is given
in sec™t (or (day)"l).

Making the rough assumption that G and (Ti are of the same
order of magnitude the constants involved in (4.4) can be de=-
termined by the tests mentioned. Thus for schiét approximate
velues are €y = 0.0108, G = 4000 kgf om™> (39228 N em™2),

1) = 43 a”1. For natural chalk which is a soft rock with =
45 kgf om™? (441 N cm"z) and initial density (= 1.67 g ™3
we get E,= 0.07 , G_= 550 kef cm™> (5394 N en™?) and 7 =

3.80 & 1.07 a~T

. The value of ) was determined from several
tents of tests (of horizontal plateasux at various levels of
gstresses). Generally it was found that M is guite consbant.
Since a small number of experiments were used to determine

these constants, the values given must be considered only as

indicative pending further experimental data.
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§5 Conclusions

It was shown how with severalydiagnostic tests one can de-
termine elastic viscoplastio constitutive equations for rocks
to be used in one-dimehsional compressive loadings and in the
compressibility of the volume. A‘three-dimensional generaliza~
- tion of the model based on these one-dimensional modelsri:
not yet possible since experiments which would reveal the
relationship between shearing properties aﬁd volume variation
(dilatancy) are still necessary. Certainly that even experi-
ments of the kind discussed are further necessary to make
precise many details in the model (mainly more exact values

of the constants involved etc.).
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