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ON THREE DIMENSIONAL LOCAL RINGS WITH THE PROPERTY OF
APPROXTHMATION

G.Pfister and D.Popescu

Let (A,m) be a local noetherian ring (all the rings are
supposed to be commutative with identity). A is called a ring
with the property of approximation (shortly A€AE) if the fol-
lowing holds (cf.[4],{10]): :

uoaet f=(fl,.,.,fm)-be an arbitrary system of polynomials
in some variables Y=(Y1,...,YN) with coefficients in A. Then
every solution y of f in X (ﬁ denotes the completion of A)
can be well approximated in the m-adic topology) by a solution
of £ in A, i.e. for every positive integer ¢ there exists a
soluiion y-of £ -in A sueh that yé? mod ng% Clearly, the noe-

- therian local complete rings are trivial examples of AE-rings.
More general, we call an extension of rings A<yB algebraically
pure if every system of polynomials with coefficients in A has
8. Solution in B 1£f it has'one in A (ef|12) ) It is easy toi
see that .A¢AE iff the extension AC+X is algebraically pure.

Which rings with the property of approximation do we know?

1) Let R be a field or an excellent henselian discrete va-
luation ring, then the ring of algebraic power series
R(T),T=(T1,...,Tn), i.e the henselization of R[T](T)’ is an
AE-ring as M.Artin proved (cf.[4]). The case n=0Q was already
investigated by M.J.Greenberg [5] .

2) Let R be a valued field of characteristic 0, or a com-

plete valued field in characteristic p»0, then the ring R{T},



'T:(Tl,...,Tr) of convergent power series with coefficients in
R is an AE=ring, as M.Artin, M.André eand others proved (see
‘[m G i, ) |

%) ‘A one dimensional local, noetherian, reduéed ring is
an AE-ring iff it is henselian and unlversal1 ] ; : 5apanese
(this is an easy consequence of R.Elkik's theorem‘GJ)

4) A two dimensional local regular ring is an AE-ring iff
it is henselian and uﬁiversally japanese (cf[?],{ii}), (conver-
sely all AE-rings are henselian and universally japanese [4], [8].

Remark that in all these examples of AE-rings with dimen-
sion >3 the Weierstrass Preparation Theorem holds.

In{2j , M.Artin put the following question:

i) Let R be a complete discrete valuation ring and
X=(Xl,...,Xn), T=(T1,;.;,TS) some variables.

Does A:=R[fxﬂ£ T have the property of approximation?

In[8], a positive answer to i) is given, but the proof is
wrong. We see thigt for A the Welerstrass Preparation Theorem does
‘not heold, if @, s>1 A has also not "enough" automorphisms, i.e.
a formal power series;é 0 mod p ( p denotes a local parameter
in R) cannot be regularized by an automorphism of A (as it
happens in X). Thesé facts make i) difficult. However the case
n=0 of i) is already known (see 1) ) and clearly it is enough
to prove i) for s=1 and all nyls ‘ |

A positive answer of i) would give some interesting exam-
ples of AE-rings in dimension 3 but first of all it would
vield some nice applications in deformation theory, based on
the following consequence of i)«

" et K be a field and f=(fl,...,fm) an erbitrary system

of polynomials with coefficients in KT, X=(X],...Xg)+ Suppose



o

f has a formal solution §=(§1,...,§N) such that §f5KEK1’~~¢XmI]»
where the natural numbers n; satisfy lgnjs...gnNsn. Then y ca;
be well approximated by solutions of f in K{(X>having the same
property ".
For K being an algebraically closed field the above result was
already obtained by T.Mostowski [Jjusing some other methods.

The aim of this paper is to show that R[[XJ<TD,n,s=1 is
an AE-ring for an arbitrary complete discrete vaiuation ring
R. This gives us many interesting examples of AE-rings in dimen-
sion %: let A be a two dimensional AE-ring which is supposed to
be a domain in unequal characteristic case or arbitrary in equal

characteristic case, then ALT> is also an AE-ring.

§ 1. Rings with the property of approximation

(1.1) Theorem. Let (A,m) be an one dimensional local noetherian
ring, Then A is an AE-ring iff A is henselian and universally
japanese.

The proof is given in section 2.

(12 Remark. The equivalence stated by (1.1) does not hold for
three dimensional local rings. Indeed, if we consider A to be
the henselization of the ring R constructed by C. Rotthaus (see
§ 1[1{D, then A/J A is an integral domain but 2/@ A is not (see
§ 4[141). Thus A is not an AE-ring (see[8]).

Let R be a complete discrete valuation ring and X,T some

variables.

(1.3) Theorem. R [X} {T> is an AE-ring.



The proof is given in section 3.

(1.4) Corollary. If A is a two dimensional AE-ring which is

supposed to be an integral domain in unequal characteristic
case, then ALT> is AE-ring too (AXT> denotes the henselization

of the local ring A[T)(T)).

Proof. First we consider the case in which A is a local
cbmplete ring. Then, by the Cohen Structure Theorem, A is a fi-
nite extension of a local complete regular ring B of dimension
two.

By (1.3), BT is an AE-ring end thus A{T) is also AE-ring,
since it is a finite extension of B{T> (apply (1.2) chapter II
from[9]). !

Now, if A is an AE-ring, then the morphism Ac~;£ is alge-
braically pure. Thus the morphism A{T}c—*ﬁﬁTﬂ is still algebrai-
cally pure by corollary 1l.12 [12]. As X(T> is an AE-ring (see
aboVe), the morphism X(T)c—aK[fTSS is still algebraically pure.
Consequently, A(T)u_aXGITﬂ is algebraically pure and thus A{LT>
is an AE-ring.

Q:bD:

(1.5) Corollary. If A is a two dimensional noetherian locally

complete domain (or more general an AE-domain), then ALT) is

factorial iff AJ[TR is also factorial.

Proof. By (1.4) A{T> is an AE-ring and it is enough to

apply (5.7) chapter v[9].

(1.6) Remark, If A is a two dimensibnal AE-ring which is supposed



-

to be domein in unequal characteristic case, then the foilowing
statements hold:

1) Every prime ideal qcA{T) extends to a prime ideal
qAEET]} o |

2) A prime ideal qcA{T> is regular iff qAlT} 1is a regu-
lar prime ideal.

3) Every primary decomposition of an ideal e L P>,
§=qf1..ﬂqs having pi={§; as associated prime ideals, extends to
a primery decomposition aA{[T] = Q3 AftTIf\..!lquﬂ:T]j having
piA{tTj =Vazzﬁifﬁ as associated prime ideals.

4) A{T> is an universally catenary ring.

For the proof we apply (5.1), (5.2} (5.5), chapter ¥ 9] .

(1.7) Remark. With the same methods used in the proof of theorem
1.3 one can also prove that for any one dimensional local AE-ring
A, which is supposed to be a domain in unequal characteristic

case, A{T> has also the property of approximation.,

Gzl Theorém: Let K be a field and X,Z,T variables, then
K{m>ﬂfx,zﬂ is an AE~ring. If K is a valued field of characte-
ristic zero or a complete valued field of characteristic p>0,
then K{T}IX,Y]] is also an AE-ring.

The proof is similer te the proof of (1.3) (cFf. remark 2.

§ 24 Proof: of theorem°(1,l)

1Let BzAfY]/(f) be an A-alaebra Of finite type.

The set of prime ideals qupec B such that the morphism



A«—;Bq is not smooth form a closed set defined by an ideal Hpe
By a result of R.Elkik (see[6]j), there exists a function

d:iNxIN — s N with the following property:

1 Tor eVery'yeAN such that f(y)=C mod m d(s,c) id

Hf(y)ﬁgs, there existe a solution § of - T im A suchothat
§§y mod_gc".

Now, let f=(f1,...,fm) be an arbitrary system of polyno-
mials from ALY}, Y=(¥y,...,Yy) and ?gﬁﬁa "formal" solution of f.
Adding some polynomials to f we may suppose that f generates the
kernel :of the map U’:A[Ej_ez given by P~>P(¥). We consider the
ideal Hf(i) generated in.ﬁ by elements of the form P(¥), Per.We
have the following cases:

Case 1). ht Hf(y):l or Hf(y)=A.

Case 2) ht Hf(y)=0.

Case 1, If Hf(§) is a m-primary ideal let us put Hf(§)>gsﬂ.

— N
¥ such that y=y mod QtA.

d(s,c)

Dencte t=max {d(s,c),?s} and ehoose yeA
By Taylor's formula, we get f(y)=0 mod m and gsﬁch(§)c
A 28/ s? A s
Hf(y).A + m““A. It results m Ach(y).A and thus g<:Hf(y). Con-
sequently, there exists a solution §6AN of T sueh that y§§ mod
S EER = : .
gc. T Hf(y)zA then the morphism A._»ALY]/(f) is smooth and we

may apply the Implicit Function TheoTem.

Case 2. We shall use the following lemma to reducé this
case to the first one (case 2 can only appear if A is not redu-

ced) .

> : :

(2.1) ILemma. Let BeA be an A-algebra of finite type. Then the-
A . ;

re is a B-algebra B'cA of finite type such that Bé is a smooth

A.

D~ algebra for all minimal primes peSpec A.



Apply (2.1) to our situation B:=ImV:A[Yj/(f), the isomor-
phism being induced by ¥ .
Then there exists a B;algebra B'CK of finite type; let us put
BE:A[Y,X]/(g), X:(Xl""'xr)’ g=(gl,...,gs), the isomorphism
being given by Y~sy, Xn~wX, i:(il,...,ir)eﬁr,such that
ht Hg(f;r,i):l or Hg(ir,i):A.

Now as in first case we get a solution (y,x)éAN+r of

£=0. In particular, y is a solution of f=0.

Proof of Lemma (2.1).Let M be the set of minimal primes

of A and S-A\Up. The imnclusions SlAcasch—»Sl split into &

PelM
product induced by the canonlcal maps

Lo
Il AP_L,.,JT B®,A sl @, A
peM peM P peM P

(Remark that JU A e A Ay

& p peM pA

peM
Now we see, that it is sufficient to prove that TTApA is
peM
a filtered inductive limit of smooth finite type T1a -algebras
& : p M
or equivalentlyYprove that'Apg is a filtered inductive limit

~ of smooth finite type A —algebras for all peM. Indeed, then
there exists a smooth SlA algebra Bc lA of finite type which

contains SlB and we may choose B'cA to be a B-algebra of finite

type such that

-1 o~
S B'aB.

: N
Finally, it remains to prove that ApK is a filtered induc-

~tive limit of smooth finite type Apnalgebras, peM. Let ke3K be



N
the residue field extension of Ap'"9Ap2 and K'c K a finitely

_génerated k-extension. K' is a separable extension of k (A uni-

versally japanese implies K/k separable). Choose x=(x1,...,xtkK4
algebraically independent over k and yeK' algebraically separa-
ble over k(x) such that K'sk(x,y). Let X=(Xy,...,X;),Y be va-
riables and F(Y)eApr,Y] be a polynomial, which 1lifts the irre-

ducible polynomial of y over k(x) Let (§,§) be a 1ifting of
/\

N .
(x,y) to pX’ We have F(x,y)c pA and (X,y);é pA.1 pA being lo-

cal artinian, there exists y CAPK such/%E X,y')=0 and y'= y mod pA
Let q be the kernel of the map Z: A [X Yj.ﬂ—éApK given by
P ~aP(X,y'). It results htg) = 1 because ac(F) + pAp[X,f] and so

Cpe = Ap[X,Yi/qvis a smooth Ap—algebra of finite type.

K!
; A
PCy and so Apﬁ is a fil-
K'/k separable

tered inductive limit of Ap—algebras of the type (CK,) . gépCK,.

ark that A a= 4
Now we remark that ApA‘ K% (CK.) A

§ 3, proof of theorem (1.3%)

Let F=(F1,...,Fm) be a system of m—polynomiéls in variables
Y= (*1,...,YT) with coefficients in.A:rRHfKﬁ<fT> such that it has
a solution y=(§1,..,§w) in 2=RﬁfX T

Adding (perhaps) some polynomials to F we may ‘suppose that
F generates the Kernel g of the morphism ¥: A[Y]_gA given by
P ~»P(¥). Denote r=ht(q). If g—(gl,...,gs) is a system of s-poly-
nomials from g, then we consider the ideal4ﬁlg,§L:g'generated by
all P r - mimors of the ﬁa%rix (:Qg (V) sonmﬁiges we denote
A(g,y) by Ap. - ‘

We shall prove in some steps that F has a solution in A.

Step 1. Desingularization step. Reduction to the case
ht (A(F,¥))1»2
In order to get this reduction it is enough to apply the




following lemma, which is in fact proposition 3 from [11).

(3.1) Lemma., Let A,A%, AcA' be noetherian factorial rings such
that every prime element t from A remains prime in A' and the
extension Q(A/(t))c‘>Q(A'/tA*) is separable. Suppose A' to be
local complete and the extension Q(A)cQ(A') to be separable.
Then every morphismﬁT:A[f]-—»A‘, Y:(Yl,...,YN) can be extended
to a morphism A [Y,ul —sact, U=(Up,...,Uyg.) such that ht(A_, )2
Indeed, we may apply (%3.1) for A'=K, the hypothesis of

(3.1) being fulfilled .because A is an excellent henselian rigs

Step 2. Reduction to the case in which g contains r-poly-
nomials g:(gl,...,gr) such that ht(Ale,yN) 22

Let U= (UlJ TR ONeR e R be some variables and
G; = jgﬁ Ujs F5; polynomials from ACUM(Y]. As before, let

A(G,§)CX<U> be the ideal generated by all r x r-minors of - the
matrix ( (y)) We meintain ht (A(G,¥))22. Indeed, we have
~Y(y))=(U S ( (y)) and thus a r x r-minor of ( (y)) is a
polynomial in U (of degree £1 in every variable U:-) having
minors of ( (y)) as coefficients., Clearly, there exists no
common divisor of the r x r-minors of (ET(y)) because otherwise
the v X r=minors of ( (y)) would have a common divisor a0 2
which is a contradiction (ht(A(F,¥))22). Consequently,
ht (A{G,¥))>2. Now,if there exist u=(aij) some non-units in A
such that the map Zu$X(U>——»X'given by P~»P(u) satisfies
ht(Zmpﬁ(G,y));2, then gi=Gi(u); $=1., v.,r are fron ATY] (wea™*Ny

in fact from g and A(g,i)zﬁi(A(G,&)). So-it.die eauEficient to

prove the following lemma:



= Jp-

(3.2) Jemma. Let A be a local regular ring of dimension 2 and

K<U> the ring of algebraic power series in varlables U=
=(U1,...,Un) with coefficients in the completion A of AL Tet
§§K<U> be an ideal with height> 2. Then there exist some non-

i A A
unit elements u=(uy,...,uy) in A such that the map g AXU7 —> A

given by P ~»P(u) yields ht(zﬁ(g))>2.

Proof. Using proposition 4 from [11] there exist some

g : ~
non-unit elements'ﬁz(ﬁl,...,u ) in A such that the map

l- Afoj-——»A given by S ~p S{l1) yields ht(ﬁ»(a MEUR )12 .

Thus, the map'Z \ A<U> yields ht (%, (a))z2. Consequently, if

h=(h1,...,h ) is a system of generators for a , then the system

(x) hl(ﬁ) = e Yl y 1] ey

-has no solutions in K; Z,Y; being variables. Using theorem

29 [loj(or theorem 1.4 Chapfer [91), there exists a natural
number celN such that the system (¥) has also no solutions in
X/mcﬁ’ where m is the maximal ideal of A. Choose ueg.An such

that uz=t mod ECA. Then the system
(K) hi(u) =Z- Yi, i=l,...,I‘
P4
has still no solutions in A (Otherwise (%) has solutions in

P = A
A/mCK and so (¥) has solutions el A/mcﬁ. Contradictiont!).

m e - .
Thus the map Zu:A(U7~»A given by S ~»S(u) yields ht(Zﬁ(g))22.



= 1.

Step 3. There exists an ideal gcA such that ht(a)=2 and
Al oa k.

- Clearly, it is enough to show that for every prime ideal .
beA of height two there exists an ideal acA such that ht a=2
and bog'x.

Now, let ch be a prime ideal of height two. Iflgc(p,x).ﬁ,
then b = (p,X)X and we take a=(p,X), p being a local parameter
of R.If E¢(P,X)X, then a contains a T-regular power series'h.
Thus the canonical map R[[Xj~éz/<h) is finite'by Weierstrass
Preparation Theorem and a must have a nonzero intersection ‘
with R[[XJ because of ht (b/ () =1. Lot b be theemonig polyno-
mial from R{IX]) [T] which is a multible of h. We may take for

g the ideal generated in A by'ﬁ and b RLX] .

Step 4. Preparation for Newton lemms

Let c¢N. In this step we shall prove the existence of
some yeAN such that g(y)Q(p,X)cz§2(g,y) and y=y mod (p,X,T)C.X.
Let acA be an ideal of height two such that.A(g,?))gK; lLet :
v=(v1,...,jt) be a system of generators of a, let us consider

m E=iET, . o A :
Mz f;i Mj(y).uij,1=1,...,t where uijéA and My,...,M, are the
r x r-minors of (%% ). We remark that A/ C.a2 is an AE-ring

(e (1, 1)

Now, consider the following system of equations over A:

() g =0
s ) 5
j%lnqj (Y) uUij — Vi 3 1~l,ooo,t

where U=(Ujj) are some variasbles. The pair (¥,3) induces a so-



Pt e

ﬁ °
lution of (+) in A/XCaZK , which can be approximated modulo

(p,X,T)c by a-sclutisn of (+) from A/Xc 2y lses there exists

: 2
(y,u) in A such that g(y)=0, §i Dﬁ(y) Uy sEV5 mod x a” and

V=Y, U =u mod (X,Z T)CA Consequently, there exist d. ch a,i;k=1,

w-ayt-such thet jz‘l M (y) ulJ=vi+Zd‘ik Vi
Bl =1 e beiihus g(y)éx,ﬂ (g,5) e

and so vieﬂ(g,y) for

Step 5. Newton lemma

Applying the Newton lemma we get a solution §gAN for g such

that y=y mod x°A(g,y).

Step 6. The solutions of g obtained for c sufficiently 1érge
are solutions for the whole g

let qi‘i=1,...,t be the minimal prime ideals of (g). Clear-
ly q is one of these, let us say q=gqy. Let ¢ v METES e
the map given by P~s>P(y). We have Ker%'347§3 and thus we are
reedy if t=1. If t>1, then“consider a"polynom Se€ Eﬁ Q; which
is not in g. Thus S(¥)#0 and there exists a naturai~§umber e
such that S(¥)#0 mod (p,X e

If cyc', then we get S(§)ﬁp mod (p,X T)C' by Taylor's for-

mula and so Q#Ker§ . It results that qc:Kergf, the second ideal

being prime.

() RemapEL_One'can prove theorem 1.8 with the same methods
used in the proof of 1l.3. Questions could only arise in Step 3,

but also here one can use the same idea because

R{ix 2] o 50 Tx, 2> R X, 20< TS




[6}

171

L9y

T10]

2 =R o

References

M.André, Artin®s theorem on the solutions of analytic
equatioﬁs in positive characteristic, Manuscripta
Math 1500 975) .. 541-347.
M. Artin, Construction techniques for algebraic spaces,
Actes Congrds intern.math., 1970 Tome 1, 419-42%,
M.Artin, On the solutions of analytic equations, Inventio-
nes Math., 1968, 5, 277-291,
M.Artin, Algebraic approximation of structures over com-
plete local rings, Publ.Math.Inst.Hautes Etudes
Sci., 1969, 36, 23-58,
M.J.Greenberg, Rational points in henselian discrete valua-
tion rings, Publ.Math. THES, 1067, 31, 59—64.
R.Elkik, Solutions d'equations a coefficients danms un
anneaux hensélien, Ann.Sc.Ec.Norm.Sup.4e Serie t 6
1973, 533 - 604,
U.J&hner, Der Satz von M.Artin tber die L&sungen analy-
tischer Gleichungen mit Koeffizienten in einem
Kérper beliebiger Charakteristik, Archiv der Math.,
~¥ol XXX (1977), 485-490.
H.Kurke, G.pfister, M.Roczen, Henselsche Ringe und alge-
braische Geometrie, Berlin 1974.
H.Kurke, T.Mostowski, G.Pfister, D.Pqpesém and M.Roczen,
Die Approximationseigenschaft lokaler Ringe, Lecture
Notes in Math., 634, Springer-Verlag, Berlin 1978.
G.Pfister and D.Popescu, Die strenge Approximationseigen-

schaft lokaler Ringe, Inventiones Meth., 1975, 30,



11§

[12]

117

[14

Sl

D.Popescu, Algebraically pure morphisms, Rev.Roum,.iath.,
pures et Appl., Tome XXIV,"no.6(19792, 947-977.

D.Popescu, A remark on two dimensional local rings with
the property of approximation, INCREST, Preprint
Series in Mathematics, No.39/1979.

M.Van der Put, A problem on coefficient fiéids an equa-
tions over local rings, Compositio Math. 30(3%),
(194 5) 2%55=258.

C.Rotthaus, Nicht susgezeichnete, universell japanische

Ringe, Math.Z.,152, (1977), 107-125.




