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RITT SCHEMES
by
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§ Q. Preliminaries

In thtsepaper . all rings are supposed to be commutative
with 1—elemeﬁt and containing the field QQ of the ratio-
nal numbers, A differential ring will mean a ring A to-
gether with m derivations Dl""Dm & Der(A,A), If
a = (a;,...a.) &eMN"™ and x € A we shall write x(8)
instead of Dlal..Dmamx o If m =1 A will be called an
ordinary differential ring. An ideal L £ A is said to
be a differential ide¢al iff DiL L. fer all “d=1. .05
-If L is an ideal in A we denote by [:LJ the smallest
differential ideal which contains L and we put {l.}

[Ll which is also differential., If 'Ll,L2 are ideals
in A . then {LlLé'} = {‘LlZf\ i LZE . Let us consider

Sp A = {PE Spec A [ P . is differentiali
together with the topology induced by . Spec A, One knows
that

(0.1) Sp A is a dense subspace in Spec A
We say that A is differentially noetherian iff Sp A is
a noethérian topological space, If A is a differential
ring we may consider the ring of differential polynomials

Ayl = afy,, aemn™]
with the derivation rule Yéb)= Ya+b for all be&N"
we define Afv,,...¥ % = A zYl,..,Yn_l}{Yn7S . Then

(0.2) Theorem [7} If A is differentially noetherian
then A {Yl,..,Yn% is alsoAdifferenfially noetherian,

A morphism of differential rihgs will mean a morphism of

rings u: A —>B which commute with eachvof the m derim
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vations, We say that wu 1is Hifferentially of finite
type iff u is of the forﬁ ug Ay A ng,.,YnRJZoB
with w surjective. We write then B = A Zyl,,,yng, Yy F
= W(Yi) .

An extension of differential fields. kK c'LL " is said
to be differentially of finite type iff there exist
yl,.,yqﬁaﬁl such that £L is the smallest subfield ofSﬂ,

which contains K and vy,,.,y,. The extension K S

is called universal iff for all fields Kl’ K,
w ; .
K &= K — <L
w ] ;,«’”
fo w7 £

2

such that u and w are differentially of finite type
extensions of fields, there exists a morphism f :_kz——vja_
siuteh. that fw =.wv ,

(0.3) Theorem ([}] ) Every differential field has a uni-
versal extension.
A field K is called universal if it is a universal ex-
tension of {D ., Let K be a universal field. For all ideal
L in. K {Yl"'YnS put . V(L) = 2frlel<n’ F(nz)=0 for all FEL}
and for all X€ K" put I(X) =§F€ |<{Yl,.,Yn§IF(X)=o}
The sets of the form  V(I) will be considered closed in K"
and so we have a topology on K",

(o4 Theorem.([ﬁ]) R REET {L] for all ideal L in
K)Lvl,.,vn} Shd o MII0 ) = X o alllsahSets % - ofi K
Let A be a differential ring and B = A {Yl,.,Yn}‘. We
put Y§a)£§ ng) i8f. (d.lal,a) & (3,0blb) in. thesense
of the lexicographic order(mwﬂ\rm+2 ( here [al-= ap+..tay

if a.= (al,.,am) Yo If . B & B Let u be the largest

F

Yga) which occurs in F . and put Sg = é%%—(ca”e& serwnnfofFﬂ_
F
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(0.5) Theorem ( [#J ) If K 1is a differential field

and F,6E& K{Y;,..,Y §, G irreducible, such that F&
éﬁS&: SG and F-ds freée - of every proper derivgtive-oaf Us
then 6 divides . F,

It is important to consider the closed subsets of K"
as "geometric objects" i,e, tb consider morphisms between
them in order to decide when two systhems of differential
polynomials have “isomorphic“ sets of solutions, This point
of vue leads to our definition of a Ritt scheme ( see § 1)
The main problem which we solve in § 1 is : when are two
affine Ritt schemes isomorphic?. In §2 we discuss a coho=-
mological property of the'affine space_ﬁﬁ?c In §3 we dis=
cuss mérphisms differentially of finite type between Ritt

'
schemes and we prove Chevalley s constructibility theorem

for such morphisms ( in the case of a single derivation ),

§ 1 Ritt schemes, Classification of affine Ritt

schemes

(1.0) Definitions. Let X be a topological space. A
sheaf of differential rings on X will mean a sheaf of
rings (9 such that for any open set U &€ X the ring C9(U)
is - adifferentigl ring and for any epen Sets L VT
the restriction maps (V) —>®(U) 1is a morphism of
differential rings.

A locally ringed space (X,(Q ) will be called a differen-
tial locally -ringed space iff @ is a sheaf of differen-
tial rings. A morphism of differential locally ringed spaces
(X ; é&) —_— (Y, d%) will mean a morphism of locally

ringed spaces such that for all open set U c X
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fﬂ(U,(9Y) - (f—l(U),C9x) is a morphism of differen-
tial rings. :
Wow et A be a differential ring, X = 5p A Y ="spec A
Y e inclusion map and M an A-module, Then
we may consider on Y the sheafs A and ™M in the sense
of D;] s et s define

ST o -1,
= A = j 7 (A) = structure sheaf on Sp A

X
AN S e /\_ :
and also put M = j (M) . Obviously A is a sheaf of dif-
: N A
ferential rings and M is a sheaf of A-modules.,
A differential locally ringed space (X,CQ) will be called
a Ritt scheme iff for any x & X there exists an open set -
A
U D x such that (U,C9lu) is isomorphic to (Sp A, A)
for some differential ring A. A Ritt scheme of the form
A ;
(sp A, A) will be called affine and will be denoted simply
by Sp A. The scheme Sp(A{ YyoeaY 3 ) will be called the
. L n
n-affine space over A and will be denoted by‘ﬂx >

f

(1.1) Connection with et If K 4is a universal field

and X is a closed subset in k" , a function f : X —>K
will be called regular at P& X if there exists an open
neighbourhood Y. of P in X and there exist. F,G &

€ K %Yl,.,YnE such that G(Q)= 0 for all Q €U and
.§(Q) = F(Q)/6(Q) for all QEU. The function f will be
called regular on an open set U & X if f is reguler at
ahy point of U, We get a "sheaf of regular functions”
which we denote by C91. On the other hand, let A be the
ring K {Yl,..,Yn% /I(X). Then the sheaf ‘Q defined on Sp A
naturally induces a sheaf 5 On X It -8 gpparent that
<9 and é) are naturally isomorphic,

1 2
A
(1.2) We may describe ™M as follows : For all f&€A

consider the mutiplicative systhem lf( = {sé&/\l 1§ é’{8§§
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anid then oM 15 the sheaf associated to the presheaf

D(f) bm—— My . D(f)=fPesp Al PPt}
Obviously for all P € Sp A the stalk of ﬁ at P is MP
The presheaf D(f)pF— le) is not generally a sheaf
as one may deduce from §22° However the following is true:

(1.3) Proposition,Suppose A is a differential ring which

is factorialvénd L is a differential radical ideal in A.
Then the _presheaf D(f)t—> L’f, is a sheaf,
Prootf, It is sufficient to show that for any f,fl,.,f &

n

€ A such that {f{ = }f,,.,f Jwe have Lm.. Chatihie

1
intersection ‘being taken din- K= field-of ouotiens of Aa

e oL e 1 obvious. To proye PanE e talce TR e ,/“\ Llf '

x = g/h such that g and h have no common prlme factors
in Ay, bn the other hand x = gi/ti with 9y € L and t,€
& lfil o It follows that t.9 & hL . From t.g'€ hA  we

get t,& hA : gA = hA and so {fS = {f . } { prert 5 =
- %h?j hence hé[f_ [ From t.g & L we get t; € L -pigh
which is also a differential radical ideal ( see[}{]) and

S0 {f}Sitl,.,tni € L : gA . We get gf & L and writing

x = gf/hf , gf € L, ~ hfe [f] it follows that x g L ¢

(1.4) Definition A differential ring A such that the

A
canonical morphism = A — > Al :=[(Sp A,A) is an iso=

morphism will be called an irredundant ring.

Irredundant rings cannot be found in general among rings
of the classical algebraic geometry, Indeed we have

(1.5) Proposition, Let A be an irredundant domain which

is not a field. Then A  cannot be an algebra of.finite type
over a dlfferenilal non-constant field,
Progfi. Stuppose - A ‘is an &lgebra of fihite typer over.K =

= a nonconstant differential field, Then A is integral



B
over a polynimial ring K [tlJf.,tS] and all we have to
show is that s =@ . Suppose é,;—l and put t=t,. Since
K is nonconstant, there exist xeK and i such that Dix4fo
Since degtrKL & oo (L=field of Quotieﬁs of “A) it follows
that there exists a polynomial B [Y,DiY,DiY,,,:] such
that E(t)=0L By I:’Fj)CL,_:I,§6tlwere exists c& K such that
F(c)#'o. Then the equality F(t-c+c)=0 shows that {t—c}:A°
Since & is irredundant, we have A = Alll= Al and since
t—cé,(ll it follows that t-c must be invertible in A,

But t-c is a prime element in K [tl,..,tsj)and by 1lying

over theorem it must lie in a prime ideal of A : contradic- -

tion. So s=0 and the proposition is proved,
In order to give an important example of an irredundant

ring , we first prove the following :

(1,6) Lemma.,Let A be a differential domain, B=A in"’YnS

FE B and D(F)= %P & Sp A ’ P $ F} . Then every element
X & /_\ BP may be written as X =% , H,G& B with
P & D(F)
Hg Saly

Proof: Let < K - be-the field of quotsiens of - All ;There exisr

F,.G, €8, i=1l,..,r , such that L By 98 oy DIE. e s

Fi/G’i forail. 4. lef o H Gi& B such thats % = it _and
H)G have no common prime divisors in the ring K {Yl,.,Yh}/
which is factorial,., Since HGi = FiG it follows that G:;

divides Gi 4y 1K zYl"'YnE so there exist al,.,ar & A

such that a G, &€ (G)B . Putting a=a;..a. it follows that
) s

{GBE%aGl,i,aGrb -%a} n%Gl,.,Gr} > aF . Now let

G = Ell....Ekk, where Ei are prime elements in the ring

K %Yl,.,Yng ieinge aFé}{Ei% we get by (0.5) that UF%

]

uaF;Q uEi. Since Uy = max, we get that Up 2 Ugo

1=1,.,ruE.
i

(1.7) Proposition. Let A be a differential domain. Then
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there is an isomorphism

N :
(6 A0 et Yo T Al Vi 5

Conseduently, if -A ds drredundant, so is A {Yl,.,Yn }.

Proof. Both rings are subrings in the field of quotiens

1 Con-
veigaely seduf - 1 e-Bl = //~“~\\ B, then by (1.6) x = F/g

P &5p B
with F& B and geg A. Let us prove that F/ge Al{Yl,.,Yn§

of ABieah BV oo X Kes Obyieusly, Ay 3. .. X ke s

by induction on the number of monomials in F, Let p & Sp A
and . P = pB + [Yl,.,YnJéSp B. Since F/QGBP we get that
FW = gH with W,H €& B and W(0,.,,0) =w &p. Let fM =

; f-r~T(Y§a))kia , T & A,_be a monomial of minimum degree

in ;:aIdentifying the coefficients of M we get fw = gh
with F'e A and so f/g & Apo Since p runs.through Sp A
it follows that f/g é;Al and so fM/g & Alg—Yl"'Yn }.
Applying the induction hypothesis to F.~- fM we get that

(F - tM)/g €Ay} Y ...Y .} and so F/g € Al{Yl,.,Yn .

In order to prove our main resvlt ( }.40) we have to
prove a technical lemma (1,9) .Let us reSume some facts
about modules of guotiens ., Let A be a ring, T~ a serre
class of A-modules closed under direct infinite sums and
put E.= Fy‘ = ZI ideal in A ] AT ETT, (.F is called "the
additive topology associated to jf")‘ Consider M & Mod(A).

One says that x& M 1is F~torsioned iff Ann(x) € F, Then

one associates to J a "radical" defined t(M) = tF(M)

=

lim Hom{TaMAE (b)) .. The functor M t—% Mg s left
Sep = et P

%x Q:Nil x is . F-torsioned %;. One defines then M

i
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‘exact .One has ker(M— M. )=t (M) and coker(M—> M) é;u/
For any ideal I in A, one ‘defines Sat(I)= {xgg A ,I xél=%
and put CF(A)=1%I ideal in A !I:Sat(lﬁ. Now the set

=.{3 ideal in A [J,q-A € F% is an additive topology and
there is a one to one correspondence between CF(A)-and CFe(AF)/
given by IV 1. and J1=—>» 3NN A. This correspondence in-

duces a one to one correspondence between Spec A M CF(A) and

Spec AF/W C e(A Note that Spec A M CF(A) and Spec AN F

F -
form a partition of Spec A. (see BB e )
To formulate our lemma, let us consider a ring A and X a

subset of Y=§pec A. Let j : X% Y denote the inclusion

map. For all P & X consider TP ={Mé Mod(A) 1 MP = O}

and for all f & A put D(f):%PéX l fq!-:P} and ‘7}=

= //ﬂﬂ\\\ :7; v ilet” "Ff) Tanod te be the gdditive topology
P& D(F)

and the radical associated to Sr}. For "D(f)C D(g) “we*have

F(g)gg F(f) and so we get a presheaf on X defined by:

B YA > Mei gy

: v
which we denote by M. On the other hand we may consider =

A -1~
the sheaf M = j (M), Them:

(1.9) Lemma. Suppose that every D(f) is quasi-compact

and that Ass{M) € X. Then there exists a natural isomorphism

A v : 4
M > M of presheafs . Consequently, M is a sheaf.

e

E¥er X, P25
. Obvieusly; X & N is F(f)-torsioned iff there exists a finite

Proof. For any subset S <& A put {S}
edt’. & G Aan{x) such that{f%:'§8§ ( N being any A-module ).

Now x &M is F(f)-torsioned iff there exists n  suchthat
I

% = 0, Indeed, since Ass(M) € X, it follows that \/Ann(x)
is an intersection of prime ideals belonging to X, hence

\[;;;RZS {Ann(x)} nd so f x=0 for ‘sgme hi

Let us indicate two natural morphisms of A-modules u , v ,
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A v
[lEnie) ) = MF(f) which evidently satisfy wuv=id and
v
A
vu=id, Let us define u. Take seg [ '(D(f),M); by quasi-compa-

city of D(f), there exist f,,.,f € A and xl}.,xk € M such

thgt {fl,..,fk}= %f% and S]D(fi) is given by xi/fi.é'M/fi[

forall i=1, .,K. Since xi/fi = x./fj in any M, with P & D(fifj)
we get that f.x -f.x, € ATy Tp = 7:'f and so there
J P&D(f f.) g '

exist N such that s

(f f. ) (f xJ-f X ) =0 for all i emd>y. e
Replacing xi/fi by X; ’V/fN+l we may supnose that N=0O
Consider the morphisms of A-modules e : Ak——» I=f1A+n-+ka
and I @ Ak —> M sending the elements of ~2 basis of Ak

into fi and Xy ~espectively. Notice that r(ker(e)) < tf(M)o

Indeed if 8y
fj(zi'aixi)=§.aifixj = 0 for all j and so Zl‘, ayx; € te(M).

So r induces: a morphism T é;Hom(I,M/tf(M)). Now we define

8, €A such that 2: aifi=0 we get that
v

ulfe): “to be"the image g 2% B F(f) Let us define v .Take

R

X G:MF(f); since its image in MF(f)) s
—-torsioned, there existzfi,.,,fk%:g,f’} and  Xy,...% &M such
that ec(x,)=f,x for all i. It follows that éf(x fJ-x f'%o and
=Ye) xi/fi "s#ick" together and give a section s RO MR T E M)
(1.10) Theorem. Let A be a differential ring, differentially
noetherian and without embecded primes, Then
1) Al is differentially noetherian and without embedded primes.

2) The canonical morphism A < » Ay is injective.

3) The canonical morphism 8p Al—:¥38p A is an isomorphism
of Ritt schemes ; consequently, Al is irredundant,
Proof. Step 1, Ass(A) € Sp A and every D(f) € Sp A 1is quasi-

ey

compact. Consez{ufnﬂ\; ) Ai:AF(‘L) apds @3 A=vAy -3 znl/'ecfive :

" The quasi- compaai+j 4 follows immediately from the equality

3 \,[L] Now 1if P& Ass(A), by our. hypothesis P ~is mi=

nimal. Since every radical differential ideal in a differen-
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tially noetherian ring is a finite intersection of differen-
tial prime ideals, we have P,2~nil(A)=Pln-u/ﬁ PI< ; Pi & Sp A,
and so P = Pl for some 4.

Step 2, The morphism of topological spaces r : Sp Al-—oSp A
is a homeomorphism.

By lemma (1.9) and Step 1. we get that Al = AF(l) JRuE Bl )
Note that Sp A & CF(A) because if we found an x g Sat(P)\ P,
P €& Sp A, we should get P:x=I é;F'and 8o IXECLP.hehce 1% P
hence A={I} € P , contradiction, On the other hand we havé

Fe=F(e(l)) . Indeed if J & F€  we get I N A=I € F(1l) and so

s

there exist fl"’fk € 1 and .gy, EA such that‘ é;:%;gla N

This equality holds also in Al and so J 6,F(e(l)).'Conversely;

ife-9 & Flell) ) there exist yl,..,yq € J and Z,a E'Al such

hie (2) s i
that 1 = £ ZiaYs . There "~ exist gfl""fp&f’A ahd
ziak'yi.k': € A such that sziazziak and fkyi=yik E I n AQ

€11y , hence Y, € {I} : fk wich is a differential ideal and so
fkyga)=yiak€,{1}, for all i,a,k. We get than f;z = ZE: ZiakyiM<e
é,{sz . Consequently, A= %flz,.,fpzjé %I} , hence we'get that
IE&F AandA so J &F®. So we deduce that Sp Ap € G o(Ae) .
Obviously, if Q &€ Sp Ar then Q NA £€Sp A . Now iff P& Sp. A
then Pg & Sp Ap ( because since Ass(P) & Ass(A) < Sp A , ap-
plying leﬁma (1.9) to P "we.get PF= rﬂ(Sp A,Q) which has a nafura/
structure of an [ ' (Sp A,ﬁ):AF-differential module, so P is

a differential ideal in Ap Y. From all the above considerations

we deduce that the one-to-one correspondence between SpecA(wCF(A)

and Spec AF ~ C e(AF) gives us a one to one correspondence

F.‘
between Sp A and Sp Ag - Obviously Q=00 n A is Conti=
neous, To prove~that P H >PF is continous, take Yy &€ AF ithere

exist {fl,..,fk@ = A and y; € A such that fiy=yi. Then
-1 -1
HTo(B(y)) = “d HTT(DB(f,y)) = N/ D(y;) .
-1 i

sainpegnmv
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Step 3, The morphism of sheafs r : A B (A])
) .
is an isomorphism,
We only have to show that r is an isomorphism on the

A
stalks. Since r ‘is a homeomorphism, the stalk of r*_(Al)

N
at ‘P € Sp A is equal to the stalk of A at r_l(P) i.e.

1
it is equal to (AF)P . Consider the canonical morphisms
) :
A > AF f2 > AP. The ideal PAP, being differential has

the property that Q = PAPrj AF is also differential and

since Q m A=P we must have Q = Pe. by Step 2, We have the

following diagram

3
A RBLp: s ? AP
) - ol
(=
;e > (Aelp > (Aplea
1 ' {
We get ™ oA = ID _, eince {%a‘ is a morphism of A-algebras.

It is sufficient to prove thatlgl is injective, But if xe& Ag
such that (3(x§=0, then x must be annihilated by an element

C
of A\P__AF\ PF .

Step 4. A1 has no ¢mbedded primes. |
Indeed, if Q é}Ass(Al), then Q consists only of zero-divisors

We claim that the same is true for QO NA(If x& QnA then
o
Xy =0 for some%§<§ Al' There exist {fl,..,fkgr A such that

fiy=yice A and we get xyi=O for all i. But there existskat
least one i such that yi:# 0 ).We deduce that QN AZS Sj{ Py
By being differential ideals which are minimal. So weléet
QNA = By for some i. Consequently Q 4;Fe and so Q €;CFe(AF)

hence Q.= (0Q P\A)F = (B This shows that we cannot have

1)F‘
2 5 = :
QlfQZ & Aos(&l) with Ql > QZ . The theorem is proved,

We shall say that a Ritt scheme is noetherian iff its topo-

logical space is noetherian, We shall say that an affine Ritt

scheme has no embecded components iff it is of the form Sp A
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where A is a differential ring without embedded primes,
(1.11) Cordlary. (Classification) There is &n equ@alence

between the following categories

Differentially noetherian Diff. noetherian

affine Ritt schemes without irredundant rings

embedded components Ff7 without embedded primes
+ & +

morphisms of Ritt schemes morphisms of diff., rings

Let K be a universal field and X & kn a closed subset,
Let A=KLin,..,Yng J1(X) ite "coordinate rihg . Thes the Ritt
scheme Sp A will be denoted also by X,

(1.12) Corollary, (Classification in KN) ket ~xic. k" ‘and
Ao closed subsets in affine spaces, Thgd:chemes X and Y
are isomorphic iff the differential rings r~‘(X,C9X) and
F (Y'0Y) are isomorphic, This comes from the 7/0//0“’/"”7'-

(L.13) Remark, Both (1,10) and (1.11) hold if .we replace
"differentially noetherian without embecdded components” by
“reduced", (we say that an affine Ritt scheme is reduced iff
it is of the form Sp A with A reduced ). This is true be-
cause in a reduced differential ring any annihilator ideal

" is a differential ideal and in fact-this is *Q. property
which ¢e." sufficient in all the proofs we gave,

(1.14) Coroﬂérx. Let A be a reduced differential ring and

u : A

5B g mm}hism of differential rings, B being
reduced and irredundant., Then Al is irredundant and there-eQ

xists a tdnique morphism making commutative the diagram

( The proof is standard after using the fact that A.=A
£ B, )
andv B, = BFHQ) ')
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As a consequence of (1.13) and (1.14) one may prove the exis-
tence of the product of any two objects in.certain subcatego-
ries of “the category of Ritt schemes. An application will be

also given in §3. Let us make also the following

(1.15) Remark. For any differential ring A the morphism

A ”t»A/tl(A) induces an isomorphism of Ritt schemes

Sp A/tl(A) > Sp A.
(The proof is standard using only the definitions),

A Ritt scheme X will be called reduced ( or integral) iff

for any open set U X the ring r’UJ,C&) is reduced (‘EF\“VM~‘
integral ). By (1.15) it follows that an affine Ritt scheme is |
reduced ( or integral ) iff 4t is of the form Sp A, A being

a ‘reduceds( “‘or integral ) differential ‘ring.

: n
74 g
2, Non-vanishing cohomology of Jﬁi

For any topological space X and for all epen subset U & X
Hi(U, ) will denote the derived functors of [ﬁ(U, ) : Ab(X)—2Ab,
The following result shows that there is a great difference,
from the cohomological point of vue,betweeh schemes and Ritt
schemes.,

(2.1) Theorem. Let A be a differential domain, n 21 and

n .
.ﬂiA the n-affine space over A, 6} being the structure sheaf
=
of Aﬁ/\ . Then we have :
wlu,0) #o
n
for all nonempty open subset$ U of j%lN"

Proof. Suppose Hl(U,C9) = 0 where U = D(I:), I being a
nonzero ideal --dn B = A %Yl""Yn} . Replacing A {Yl"'Yn-lg
by A" we may suppose-that M=l and put Y=Y1.Consider Fies it
F$ A, ug = Y(b), bemm. Take a & [N", a>b in the lexico-

graphic order and take ce;ﬂﬂ“ﬂ c:ﬁé(o,.,o). Put - ¥y o= Y(a)ﬂY(a+C)
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and consider the exact secquence

> B/yB=M >0

Qis=—2-8

?‘B
where w is the mutiplication by y &€ B, This is a sequence
of B-modules (but not of differential B-moduled) and induces
an exact seaquence of 'Q = © _modules on %\;': 0 = —>
Ly C?-——w Q ey O., We get an exact sequence |

A
F(UIO) —_L7 P(U.,M) -

and we only have to prove that p is not surjective, Put Fl=

>y, )=0

=Y(a),;//agd~Fé‘Y(a+C) -1, Fl,F2 & B, We have D(Fl)\wlD(F2)=
e (c) = ad =
—=Sp Q because F; '=F, = 1. Put sy = 1./F1 é'MlFll and s, =
=al/Egie M g A o ellix- €8 We wWrite X = x mod yB ). Since
o e 2
l/Fl = 1/F, in M/F /, Sq and s, "stick together" and give

a section se}~%u M . It - ps-issurjective ., there exists t€

é,r'(U,@) such that p(t)=s, But F(U,(D) /—\B e
pe
< //ﬂ~\\ BP and so, by 1lemma (l1.6) t may be written t=W/H
P € D(F)
W,H&B and Uy < Ug s

phic order:] . Since we havé (W7§)/1 ='17Fl in any MP' Pe

ise. HE A[Y(e) l e £ b in the lexicogra-

& D(Fl) AU = D(FlI), we get that for any such P there exists
’TI,G B NP -and GPé B  such that
T (v )1y - H)_=.GP(Y(8)- JLERE)S
But Y(a)— Y(a+c) cannot divide the polynomial (Y(a>-l)W-H = E
because if it did, making in E ~the substitution Y(8)= Y(a+c)=l
"we would get H = O ( since H does not change under thié sub-

Y(a+c)

stitution- ), Consequently, Y(a)- divides T ,and so

P

(a) ] . z
T.€ LY for ell P & D(F;I). Let I be the ideal z(TP7£,.€
& D(Fll)x ; obviously we have F I C J. Hence, FlF<£ [Y(a{thich
', is a prime ideal. On the other hand Fle(a)— J_Q_EY(a)] and
F éa[y(a)}bacause uF=Y(b), b <& &, contradictien, Our theoren

is proved,

)
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3, The constructibility theorem

(3.1) Definition. A morphism of Ritt schemes X -_i__¢ -

will be called differentially of finite type iff it is quasi-
compact and locally , on both X and Y it is of the form

Sp B

> Sp A, where A »B is a morphism differen-

tially of finite type.
(More precisely, iff f is qguasi-compact and for every x & X

and y € Y with f(x)=y, there exist open nelghbourhoods \%
PV = )

amd U of o and. v respectively and there ex1sts a morphism

A > B differentially of finite type such that we have a

.commutative diagram

v %
U 2
Sp B > Sp A )
(3.2) Pr‘obosition° 065 T z T (- NS S T morphisms

differentially of finite type between integral Ritt schemes,
then gf is also differentially of finite type.

Eroofi, We prdve.the probositiom in several.steps. To make our
formulations shorter let us give the following definition : a

morphism A >B Dbetween two irredundant domains will be

called  an gr—morphism i dr ds of thHe fornm peal L& ~001=B

where wu is differentially of finite type and C is a domain,

Step 1, 1f A ;—iaa B is a morphism differentially of finite
SEED ; Yy

type between domains, then Al 1 > Bl is an 3? -morphism.

Indeed we have the followinjdiagram

ARESE AR R %Yl,.,v R e

J d

Al,._s(Ag\( })l.o(A{Yl,.Y Lp) = B
Using (1.14) one may check that (A {Yl,;,Yn} /P =. {G/P )1,

where Py= PF(l) and € = (A %Yl,.,Y;pl = Al % 17 r } by (
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éteg T PR AR i B ST ate

oy
an -+ -morphisenm,

is also

Using again (1.7) we get the following

A-*)A%Y],L,YAS-»E——$E1=B-—?Elizl,.,zm}ea
s . N
BN T el Moz,

Now using (1.14) one may check that
-1, -1

where J = p “(w
Step 3 "Let’ A== B "be an Jz—morphi

(Ah)l ~—~»(Bh)l

Indeed there exists a domain C and a

~—>) C —3C,=B, the first morphism being

1
nite typeg It follows that Ah-—x:&v is
hite type and by Step 1 (Ah)l-————~>(Ch)l

On the other hand one may easily check t

an isomorphism.

,qu351 -compact £
Step 4, A morphlsm X

SNz of iRt

differentially of finite type iff for an

we have being open

i

is obwvious via (1.15) and

—1

(U) =~ v, v,
such that [ (u, ) __—>[“(v are
Indeed, "if"

if" remark that we may suppose A and

(3.1) to be domains ( replacing them by

which are domains ), Now let U=Sp E, E=
(for all yeU
subset in. Y, By Step 1., there exists
that (W)=\JW,, W,=Sp G, G,=(G,),
" phisms. We may suppose W & U ( because
s & F such that y 6Sp(FS) < Sp E  and

(Fs)l ”'—7((61)3)1 are J -morphisms).

such that vy & Sp(Et) € Sp F. We get the

=morphisms then vu

diagram

Elgzl,.,zm}/q=F-—»Fl=c

- "Z$)l
(A{Yl"’Yn’Zl"'Zm%/a)l

sm and h& A, Then

3 L .
is also an J -morphism,

factorizetion A ——>
differentially of fi-
differentially of fi-
is an ?y-morphism.
hat (Ch)l -—a(Bh)l is
egral Ritt schemes is
y affine subset UZC Y

affine subsets in X

Pand

‘j.
1 .10,

-morphisms.
To prove "only
B from the definition
A/tl(A) B/tl(B)

El be an open affine

W=Sp F Dy, F=F,
F—G,

and

such
—~J
J =mor-

there exists

and are
otherwise
by Step 3, we get that
Now there exists t&EE

diagram:




g
E > F > G
Se o ' |
o

Y y, 7
B )y 6y

(E¢dy
: _ o
G being any Gi‘ Sincel/3 s -an o -morphism, by Step 3
we get that Y is an jj -morphism, Obviously ¢ is an iso-

: j 8
morphism and since <¥ is an ¢ -morphism, it follows from

Step .2 that . E

> (Gt)l is an 5?'-morphism. Since the

-1

family Sp(Gf) cover f~7(U), our statement follows.

f

(3.3) Theorem., Let X — >Y a morphism of ordinary.

Ritt schemes, differentially of finite type. Suppose Y 1is
differentially noetherian, Then f is constructible,

Proof. We may obviously reduce ourselves to the case of a

f u

mogphism of the form Sp B ———> Sp A, where A > B

is differentially of finite type.

Step 1. The case when u is of finite type { in the wsual
sense ),

It is sufficient to prove that f(Sp B) 1is constructible.
Since Sp A is a noetherian space, it is sufficient by a clas-
sical criterion ([é], 6.C ) to prove that Whenever a mofphism
Sp(B/PB).—Ls Sp(A/P) is dominant for some P & Sp A, it fol-

lows that the image of g contains a nonempty open subset, But

if g 4is dominant one may check that A/P > B/PB is injec-
tives as in the non-differential caese. So we may suppose that

A is a domain and A & B and we have to show that f(Sp B)
contains a nonempty open subset in Sp A, But f(Speé B) con-
tains a nonempty open set U < Spec A ( see [8], proof of 6.E
which holds without .noetherian hypothesis ) and oug statement
follows‘from (0.1) and from the general formula f(Sp‘B) =

= f(Speci Bl v Sp.A. |

Step 2, General case,

Jupak 46%5€
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It is sufficient to prbve that. f(Sp B)-dis constructible

and applying [83 6.C again, we reduce ourselves to the fol-

lOW1ng problem : if u : A >B is injective and dlffe-

rentially of finite type, A heing a differentially noe-

therian domain, then the image of f:S5p B 2§p A Yeon-—
tains a nonempty open set, Suppose B = A%yl,..,yn }. et

N ARERERY be a maximal Ffamily of differentially algebraic
indepehﬁent elementsover A, Put C = Agyl,.,yNﬁ. Since B
is differentially noetherian by (0.2), we may write nil(B)=
:=>Plfﬂ ..f\Pr ; Pi_é-Sp B and so we get (0)=nil(B)MNC =

(PlPQC)rﬁ..r\(Prr\c) hence there exists 1 such that

the morphism C >B/Pi=E is injective. Put Zj=yj mod Pi

for all j 7 N+1. For any such j take F. & C%Y.S : Fj .TL
=0, F., (z )=0. Suppose that we have chosen Fj of minimum
order nj and of minimum degree among those of order nj.
Consider S = <5F./é (nj) the separant of Fj' We have

S == 0 (because of the Characterlstlc) and Sj(zj);A-O by

the minimality of Fj’ 'Put S =7 1 N+l j(zj) which is

a nonzero element in E. We claim that Eg is an C-algebra

of finite type. Indeed for each j we have

= Y )l e c[Y,Y',.,Y(nj—l)l

We get
() (nj+l)

‘ ?Eﬂ \ : Jykieas

We get then by induction that for any q 20

( ) SEM) (M) :I & :
: & C P RRENIE PR VZo i Zp -1/8 ,M—mex nj
By Step l the morphism Sp(ES)

> Sp C is constructible
and since it is dominant we get that its image contains a
principal open set D(H)<E Sp C, H:% O oNewe =it h " 8
nonzero coefficient of H it follows that pifh)-<FSp A 1S

contained in f(Sp«B/Pi)S)) C f(Sp B). The theorem is proved,
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